
Visual Grounding for User Interfaces

Yijun Qian† Yujie Lu‡ Alexander G. Hauptmann† Oriana Riva§*

† Carnegie Mellon University
‡ University of California, Santa Barbara

§ Google Research

Abstract
Enabling autonomous language agents to drive
application user interfaces (UIs) as humans do
can significantly expand the capability of to-
day’s API-based agents. Essential to this vi-
sion is the ability of agents to ground natu-
ral language commands to on-screen UI ele-
ments. Prior UI grounding models work by
relaying on developer-provided UI metadata
(UI trees, such as web DOM, and accessibility
labels) to detect on-screen elements. However,
such metadata is often unavailable or incom-
plete. Object detection techniques applied to
UI screens remove this dependency, by infer-
ring location and types of UI elements directly
from the UI’s visual appearance. The extracted
semantics, however, are too limited to directly
enable grounding. We overcome the limitations
of both approaches by introducing the task of vi-
sual UI grounding, which unifies detection and
grounding. A model takes as input a UI screen-
shot and a free-form language expression, and
must identify the referenced UI element. We
propose a solution to this problem, LVG, which
learns UI element detection and grounding us-
ing a new technique called layout-guided con-
trastive learning, where the semantics of indi-
vidual UI objects are learned also from their
visual organization. Due to the scarcity of UI
datasets, LVG integrates synthetic data in its
training using multi-context learning. LVG out-
performs baselines pre-trained on much larger
datasets by over 4.9 points in top-1 accuracy,
thus demonstrating its effectiveness.

1 Introduction

Autonomous language agents that are capable of
interacting with real-world applications are emerg-
ing (Li et al., 2020; Liu et al., 2018; Kim et al.,
2023; Rawles et al., 2023; Zheng et al., 2024). Pro-
vided with a task described in natural language,
these agents drive application user interfaces as hu-
mans do by clicking, typing, scrolling, etc. The

*Work done while at Microsoft Research.

myriad of tasks such UI agents could accomplish
is potentially unlimited, much beyond what tradi-
tional API-based agents can do. In this paper, we
focus on a fundamental problem UI agents must
solve: grounding natural language commands to
on-screen elements, i.e., mapping commands such
as "enable auto-notification" or "open the second
item in the list" to the correct UI action and on-
screen element.

Prior work (Bai et al., 2021; Li and Li, 2023)
achieves UI grounding by assuming the location
bounds and types of UI elements present in a screen
are known beforehand. Hence, they define ground-
ing as the problem of ranking a set of UI elements
based on the given natural language command. The
set of UI elements is computed automatically using
developer-provided UI metadata, consisting of UI
trees (e.g., web DOM tree or Android View Hierar-
chy) and accessibility annotations. The issue with
this approach is that such UI metadata is often not
accessible for security or privacy reasons (XDA,
2021). Developer-provided metadata can also be
noisy, corrupted with missing object descriptions or
misaligned structure information (Li and Li, 2023).
Finally, as others pointed out (Chen et al., 2020a),
accessibility labels are generally not provided for
all UI elements (see Appendix A.1 for further de-
tails). These constraints make these approaches
hard to deploy and limit their performance.

Another way of approaching this problem with-
out relying on UI metadata is to train object de-
tection models for UI screens (Chen et al., 2020b;
Zhang et al., 2021). This line of work, generally re-
ferred to as screen understanding or screen parsing,
localizes UI elements in a screen solely from its
visual appearance. Elements are labeled with tech-
nical terms such as “Button”, “Text-Input”, “Icon”,
etc. As these labels carry limited semantic infor-
mation, they are not sufficient to directly support
grounding of natural language commands. This
means that a second model, possibly an LLM, must



Figure 1: Visual UI grounding unifies the task of UI
grounding that relies on the availability of UI metadata
and screen understanding which localizes elements in a
screen and classifies them into pre-defined types (but-
ton, text-label, text-input, icon, etc.). In this new task, a
UI element referenced by a natural language command
must be localized in the given UI screen, by relying
solely on the screen’s visual appearance (without assum-
ing UI metadata).

be used to map natural language commands to the
detected elements (Yan et al., 2023a). The adop-
tion of a 2-step process causes information loss and
increases maintenance and deployment costs.

We address the limitations of both worlds by uni-
fying detection and grounding into the new task
of visual UI grounding, illustrated in Fig. 1. The
model takes as input a UI screenshot (without meta-
data) and a free-form language expression, and
must predict the bounding box of the referenced
element. Hence, unlike previously-proposed meth-
ods where bounding boxes of candidate UI objects
are given as input or pre-computed by a separate
model, here a single model must perform both ele-
ment detection and action grounding.

In the search for a solution to the problem of vi-
sual UI grounding, we first consider recent work on
open-vocabulary object detection (Li et al., 2022;
Yuan et al., 2021; Gu et al., 2022). These mod-
els are trained end-to-end to map natural language
expressions to objects in an image. While they rep-
resent a perfect fit for our problem, we find that,
despite their large training datasets, they do not
perform well on UI screens (see baseline compar-
isons in §5). Our explanation is that these mod-
els are trained on real-world scene datasets (Lin
et al., 2014; Gupta et al., 2019) where objects of
the same appearance (color, shape, size) share sim-

ilar meanings, whereas UI objects are subject to
application and context sensitivity. In other words,
in UI screens, objects that may look similar have
different meanings depending on the application
and surrounding UI elements. For example, con-
sider a heart icon which in Facebook loves a post,
but in Etsy adds a product to the favorites; if the
same icon appears next to a label “click for more”
it assumes yet another meaning.

To address the problem of application and
context-sensitivity of UI objects, we propose LVG
(Layout-guided Visual Grounding). We observe
that while objects in real-world scenes do not usu-
ally follow a regular pattern in their arrangement,
UI elements are organized through layouts, which
can be key to understanding their meaning. For ex-
ample the function of an icon or an element in a grid
can be better understood by relating it to a nearby
text label or to another element spatially aligned to
it. Hence, we introduce layout-guided contrastive
learning where the model learns to classify ele-
ments into groups based on their visual containers
(headers, lists, tables, etc.). This enforces the tar-
get element’s features to be closer to those of its
sibling elements and far from those of elements in
other containers, thus enriching their semantic rep-
resentations. Application-derived features are then
combined with element-specific features. Further,
to cope with the lack of UI grounding datasets, we
synthetically generate natural language referring
expressions paired with original UI screens. We
successfully transfer knowledge learned from syn-
thetic to real-user expressions using multi-context
learning, i.e., forcing the model to generate similar
features when synthetic and natural expressions are
referring to the same element.

In summary, we make the following contribu-
tions: (i) we define the task of Visual UI Ground-
ing, (ii) we propose a solution, LVG, and introduce
layout-based contrastive learning, and (iii) we gen-
erate a synthetic dataset of diversified language
queries and use it effectively through multi-context
learning. Overall, LVG surpasses strong baselines
by over 4.9 points on top-1 accuracy.

2 Related work

UI grounding UI grounding models detect UI el-
ements referenced by natural language commands
in a screen. Both supervised (Pasupat et al., 2018;
Li et al., 2020; Liu et al., 2018; Gur et al., 2019)
and unsupervised (He et al., 2021; Bai et al., 2021;



Banerjee et al., 2022) methods rely on deriving the
bounding boxes and types of the candidate UI el-
ements (or regions of interest (Li and Li, 2023))
from UI trees (e.g., Android View Hierarchy or
web HTML) and often make use of accessibil-
ity labels to enhance the UI element representa-
tion. This is the case also in recent LLM-based
approaches (Wang et al., 2022a; Zheng et al., 2024).
The issue with these methods is that UI trees and
accessibility labels are often inaccessible (e.g., an
Android app cannot access the UI tree of another
app) or unavailable (accessibility labels lack both
in websites and mobile apps (Chen et al., 2020a)).
While web HTML is accessible, raw HTML is
large and noisy, often not fitting the input win-
dow of LLMs (Zheng et al., 2024), which leads
to heuristics being used to reduce its size. For all
these reasons, these solution are hard to deploy and
scale. LVG performs grounding without depending
on UI metadata.

Screen understanding Screen understanding
(also called screen parsing) models avoid the depen-
dency on UI metadata, by inferring bounding boxes
and types of on-screen elements solely from a UI
screenshot (Chen et al., 2020b; Zhang et al., 2021;
Wu et al., 2021). The inferred class labels ("but-
ton", "radio-button", "slider", "text-input", etc.),
however, are semantically very limited to directly
enable grounding of open-vocabulary referring ex-
pressions. For this reason these methods must be
paired with a second model, an LLM or VLM,
for language grounding. Rawles et al. (2023) use
screen understanding techniques based on a combi-
nation of OCR and IconNet (Sunkara et al., 2022)
to detect elements on the screen and produce a tex-
tual representation of the UI. Then, they train a
grounding model using behavioural cloning or use
LLMs in a zero/few-shot manner to identify the
referenced element. Another 2-step approach (Yan
et al., 2023a) which involves GPT-4V uses the same
screen understanding techniques to identify bound-
ing boxes of relevant elements, which are then rep-
resented by visually adding numeric tags to the UI
image (Yang et al., 2023). Finally, Pix2Act (Shaw
et al., 2023) adopts Pix2Struct (Lee et al., 2022)
(consisting of an image encoder and text decoder)
to first transform UI screenshots of MiniWob (Shi
et al., 2017) synthetic webpages into simplified
HTML and then apply behavioural cloning, rein-
forcement learning or Monte Carlo Tree Search.
The main downside of these approaches is that the

preliminary step of converting UI screenshots into
textual representations or annotating UI images
with numeric tags causes information loss. Some
elements may be missed, and especially text-only
representations are not well suited for visual ele-
ments such as icons and symbols. The two-step
approach also increases the deployment costs from
one model to two. In our approach, one model is
trained end to end, thus lowering the deployment
costs and avoiding any lossy pre-processing.

Open-vocabulary object detection Recent work
in the computer vision community tackles the prob-
lem of open-vocabulary object detection (Joseph
et al., 2021; Li et al., 2022; Zhong et al., 2022;
Gu et al., 2022; Kaul et al., 2023), where a model
is tasked to detect classes of objects that have not
been introduced to it before. RegionCLIP (Zhong
et al., 2022) learns a regional visual-semantic
space that covers rich object concepts such that
it can be used for open-vocabulary object detec-
tion. GLIP (Li et al., 2022) unifies grounding and
detection tasks by reformulating object detection
as phrase grounding, thus being able to learn from
both detection and grounding datasets. While re-
lated to our goal, these methods are designed for
images and objects that represent real-world scenes.
When fed with UI datasets their performance is
inferior because UI screens exhibit some unique
features (see results in §5 and Appendix A.3). To
address UI-specific challenges we introduce layout-
guided contrastive learning and leverage global-
local feature aggregation.

3 Method

A key contribution of our work is to address
the problem of application and context sensitivity
which characterizes UI screens. Application sen-
sitivity occurs with UI elements that despite their
similar appearance have different functionality in
different applications (e.g., a “hand” symbol in a
video call application or in a drawing application
have completely different functions). Context sen-
sitivity occurs with UI elements that change their
functionality depending on "context", i.e., neigh-
boring UI elements (e.g., a list item must be consid-
ered in the context of the other items appearing in
the same list or a text-label can change the meaning
of a symbol located next to it).

Next, we describe how LVG addresses these
challenges. Fig. 2 shows the architecture of LVG.
We use SWIN Transformer (Liu et al., 2021) as the



Figure 2: LVG architecture.

visual backbone Nv, to extract visual features Fv

from UI screens, and BERT (Devlin et al., 2019)
as text backbone Nt, to extract textual features Ft

from natural language commands.

Application sensitivity We fuse visual and text
features using a multimodal fusion module (Li
et al., 2022). Specifically, we use multiple head
attention structures to fuse features from the two
modalities. Inspired by the design of the residual
block of ResNet (He et al., 2015), to account for
application-level information in element recogni-
tion, we build a shortcut that concatenates global
features (extracted from the whole UI screenshot)
with pooled region proposal features generated by
Dynamic Head (Dai et al., 2021). Two task specific
head modules, which are implemented as Multi-
Layer Perceptron (MLP), are designed to perform
the regression of bounding box locations and clas-
sification of element labels based on the features
derived from the pooled region proposals.

We use an attention layer (Attn) to get the fused
region features F̂R ∈ Rn×d from the global fea-
tures FG ∈ R1×D and proposal feature FR ∈
Rn×d, where n is the number of region proposals
and d is the degree of feature space:

F̂R = Attn(FG, FR)[1 :] (1)

Context sensitivity A possible solution to this
problem is to augment the features of each re-
gion proposal with those of spatially-close regions.
We tried different settings such as fusing features
of horizontal regions, fusing features of vertical

regions, and fusing features of both horizontal
and vertical regions. However, none of these ap-
proaches worked effectively because features from
irrelevant regions were often included. In fact, be-
ing two UI elements spatially close does not au-
tomatically imply they have a relationship. For
example, a caption may be related to the image
appearing above or below it, and two text-labels
may or may not have a relationship depending on
whether they are spatially aligned and on whether
they use the same font size and color. Instead, we
observe that we have a reliable source of contextual
information which has been overlooked by prior
work: UI layouts. Layouts enforce how UI ele-
ments are grouped and organized in visible or invis-
ible containers, such as lists, headers, or navigation
bars, which are in fact critical to help humans un-
derstand and navigate UIs. Layouts not only allow
us to identify nearby UI elements that are relevant
to a target element but also to exclude elements that
despite their spatial closeness are irrelevant.

We leverage UI trees included in public
datasets (Deka et al., 2017) to teach the model how
to recognize layout structures from visual inputs
only. At inference time, the model does not actually
take UI trees as input. UI trees provide a hierarchi-
cal representation of the UI where each node in the
tree may contain any number of nodes. We process
UI trees to extract a multi-level tree representation
including leaf nodes (the visible UI elements) and
containers, such as lists, grids and navigation bars
(regardless of whether they are explicitly drawn in
the UI). We compute each leaf node’s bounding box



Figure 3: Examples of element groupings as predicted
by LVG. The same color represents elements in the same
container. We do not report all detected groupings to
make the visualization more readable. LVG is able to
correctly group together icons, texts and buttons belong-
ing to the same navigation bar as well as date pickers,
icons and sliders with the corresponding text labels.

(based on location bounds provided in the UI tree)
and use the parent container information extracted
from the UI tree to identify its siblings. If a node
has no siblings under its direct parent container,
we recursively traverse the tree until we find one.
Hence, we build a mapping between elements and
containers as M = {M1,M2, ...,Mw} ∈ Rw×c,
where w is the number of containers and c is the
number of elements. Fig. 2 shows some examples
of layout mapping where icons are grouped with
their associated text labels despite the container not
being visible in the UI screenshot. Additionally,
Fig. 3 demonstrates the layout grouping capabil-
ities learned by LVG through various examples
including header bars, date pickers, and list items.

Then, we introduce layout-guided contrastive
learning. The contrastive loss aims to separate el-
ements into groups, where each group contains a
target element and its siblings. Given the fused
region features F̂R and the element-container map-
ping M , we compute the contrastive loss Lcon =
lossxe(Scon;M), where Scon = Ncon(F̂R). Ncon

is a Multi-Layer Perceptron that projects region
features to a probability distribution of layout con-
tainers Scon ∈ Rw×c and lossxe is a cross-entropy
function.

In addition to contrastive loss, we implement
an alignment loss Laln = lossxe(Saln; T ), where
Saln = ϕ(F̂R)ϕ(Ft)

T is the probability distribu-
tion of alignments between region proposals and
referring expressions. Similar to M, T ∈ Rn×m

is a mapping dictionary that records the ground
truth alignments between elements and phrases (ϕ
represents the normalization function). Finally, we

add a standard localization loss Lloc to optimize
the localization task (Ren et al., 2015).

4 Datasets and data synthesis

For training, we use the UIBert dataset (Bai et al.,
2021),1 which contains 16,660 referring expres-
sions associated with a total of 5,682 Android
UI screenshots. We also complement this human-
collected dataset with a synthetic dataset. We ob-
tain UI screens of original Android apps from the
Rico dataset (Deka et al., 2017) and use the UI
tree information associated with each screenshot
to determine a set of cues from which we heuris-
tically generate referring expressions. Our cues
extend those proposed in RicoSCA (Li et al., 2020)
where every expression consists of an operation (a
verb, such as “tap”) and a target element. We make
various improvements to RicoSCA to increase the
diversity of the generated expressions, and add
layout-based cues. We generate expressions only
for interactable UI elements (buttons, input fields,
icons, etc.) through the following process.

First, we assemble a collection of operational
phrases such as “click xxx”, “select xxx”, “type
xxx”, “tap xxx”, “go to xxx”. Each phrase con-
sists of a verb and a placeholder xxx. Second, we
establish a set of rules to replace “xxx” placehold-
ers with one or multiple object identifying expres-
sions. These expressions are generated using UI
tree information. For example, a UI tree may list
an object of type “button”, with name “Cancel”,
with location bounds x1,y1,x2,y2, and with property
clickable=true. We create rules to produce object
expressions such as “the button with name Cancel”
or “the Cancel button” or simply “Cancel”. In gen-
eral, we identify a target element using its name
(accessibility label, textual content), type (class
name) or location. We generate location-based ob-
ject expressions using the location bounds of the
object and the neighboring objects to obtain object
descriptions such as “at the top of the page” (us-
ing absolute location) or “appearing in the menu
next to the login button” (using relative location).
Third, we create multiple rules based on the ob-
ject’s properties to determine which operational
phrases can be applied to an object. For example,

1At the time this work was done very few UI datasets ex-
isted. The Android in the Wild (AitW) (Rawles et al., 2023)
and Mind2Web (Deng et al., 2023) datasets were released
recently. While focused on UI automation scenarios, they con-
tain high-level task instructions rather than low-level referring
expressions and are therefore not suitable for this study. AitW
also does not contain accessibility trees.



Figure 4: Examples of generated synthetic expressions.
The expression with a specific color is referring to the
element within the bounding box of the same color.

if the object’s property “clickable” is set to true
and its type is “button”, operational phrases such
as “click xxx” or “tap xxx” can be applied to it.
Finally, for each object we assemble multiple refer-
ring expressions. The selected operational phrases
are instantiated using one or multiple object expres-
sions. For instance, the phrase “tap xxx” selected
for the “Cancel” element described above is instan-
tiated as “tap cancel” or “tap the cancel button” or
“tap the cancel button next to login”. Fig. 4 shows
some examples of generated synthetic expressions.

Overall, we generated 22,617 synthetic expres-
sions for 21,282 Android UI screens. We found that
simply mixing UIBert’s real-user expressions with
synthetic ones did not bring noticeable improve-
ments due to the domain gap (synthetic expressions
can be longer and the ratio of referring queries us-
ing relative location is higher). We adopt multi-
context learning which in robotics has been shown
to successfully combine together imitation learn-
ing datasets of different sizes and nature (Lynch
and Sermanet, 2021). We find it is important to
generate for each UIBert expression a synthetic
counterpart, for the same referred element. This
forces the model to map both types of expressions
to the same space, and to ultimately leverage the
larger size of synthetic data.

5 Evaluation

We train and evaluate on the UIBert dataset (Bai
et al., 2021) using the official splits. We expand the
UIBert train set with 22,617 synthetic expressions.
As evaluation metric we use acc@k with IoU > 0.5,
which measures the fraction of correctly identified
UI elements in the top k ranked results.

We compare against 3 baselines: GLIP (Li
et al., 2022), OFA (Wang et al., 2022b), and
UNINEXT (Yan et al., 2023b). (UNINEXT and
OFA currently rank first and third, respectively, in
the RefCOCO leaderboard (ref, 2023).) All models
are trained on UIBert with or without synthetic data

Table 1: LVG performance compared to baselines when
trained on UIBert and synthetic data.

Backbone Method Val Acc Test Acc

@1 @5 @1 @5

GLIP GLIP 38.42 54.98 31.27 52.33
GLIP_synt 40.27 55.20 33.98 54.85
LVG 38.85 62.05 33.74 55.92
LVG_synt 42.60 64.68 35.19 58.74

OFA OFA 37.79 55.71 37.88 56.88
OFA_synt 41.80 62.19 40.27 59.26
LVG 43.78 63.48 42.99 63.51
LVG_synt 45.67 64.40 45.19 65.25

UNINEXT UNINEXT 36.11 54.82 32.19 51.93
UNINEXT_synt 36.72 55.30 32.48 51.46
LVG 38.19 57.21 34.03 53.28
LVG_synt 38.22 58.20 35.67 53.88

Table 2: Ablation analysis. Models trained on UIBert.

Method Val Acc Test Acc

@1 @5 @1 @5

GLIP 38.42 54.98 31.27 52.33
GLIP + LContast 40.33 62.84 33.80 55.09
GLIP + Glob-Loc 39.06 60.93 32.03 58.93
LVG 38.85 62.05 33.74 55.92

(as specified). For all experimental settings see the
Appendix (A.2).

Main results As shown in Table 1, LVG con-
sistently outperforms the tree baselines on both
validation and test sets, demonstrating the efficacy
of layout-guided contrastive learning. The best
results are obtained with the OFA backbone and
synthetic data, where LVG_synt’s test acc@1 is
45.2% (acc@5 is 65.3%); this is 4.92 (5.99) per-
centage points higher than OFA_synt. As the error
analysis in §A.3 shows, OFA fails because it does
not manage to leverage the spatial context of the
target object. We also observe how all tested mod-
els benefit from synthetic data, thus demonstrating
our multi-context learning approach is successful at
transferring knowledge from the synthetic domain
to the natural descriptions.

Ablation analysis For ablation purposes we use
the GLIP backbone because it is less compute in-
tensive. We add layout-guided contrastive learning
(LContrast) and global-local feature aggregation
(Glob-Loc) to GLIP, and train on UIBert. As Ta-
ble 2 shows, LContrast surpasses the baseline by
2.53 points in test acc@1 (2.76 in acc@5) demon-
strating its effectiveness over traditional contrastive
learning for UI tasks. Glob-Loc also surpasses the



baseline by 0.76 points in acc@1 (6.6 in acc@5).
The full LVG model does not achieve the best per-
formance on all metrics, possibly due to the small
size of UIBert, which increases model overfitting
as the number of parameters increases. To better
appreciate LVG’s layout detection capabilities we
provide examples of grouping predictions in Fig. 3

6 Limitations

LVG was evaluated on an Android dataset. We
acknowledge that the dense layouts of desktop UIs
may make the visual UI grounding task more chal-
lenging. Moreover, there are UI structures such as
tables, charts and specialized grids which are not
included in our datasets and that may bring addi-
tional challenges. Referring expressions can also
vary widely. So far we have focused on relatively-
short referring expressions. Ideally, LVG should
be able to support expressions ranging from very
short, under-specified commands (as those charac-
terizing voice-based scenarios) to long and detailed
instructions (as those found in instruction manuals).
Finally, we acknowledge that the model is trained
and tested on referring expressions that are always
possible. In real world scenarios a user may refer
to a UI element that is not present on the screen.

7 Conclusions

We propose the new task of visual UI ground-
ing and present our solution to it. Compared to
strong baselines trained on much larger datasets,
LVG’s layout-guided contrastive learning and
multi-context approach for synthetic data demon-
strate great improvements in identifying UI ele-
ments referenced by NL expressions.

8 Ethical considerations

LVG uses some human-labeled data (UIBert
dataset), but also demonstrates how synthetic re-
ferring expressions can help improve model perfor-
mance and scale to many different types of appli-
cation. We think that investing further in synthetic
data generation can alleviate the risk of training
visual grounding models that work only for certain
types of application or platform.

A possible use case for our techniques are screen
readers for visually-impaired users. Accessibility
labels are often missing or incompletely defined;
LVG can enable visually-impaired users to access
a much wider range of applications. Another po-
tential use case of LVG is task automation. This

use case has tremendous opportunities to advance
human productivity. On the other hand, we ac-
knowledge that it also has societal and safety impli-
cations (e.g., what if an agent fails in the execution
and take irreversible actions?).

References
2023. Referring expression comprehension on Ref-

COCO.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Agüera y Arcas. 2021. UIBert: Learning
generic multimodal representations for UI under-
standing. In Proc. of the 30th International Joint
Conference on Artificial Intelligence, IJCAI 2021,
pages 1705–1712. ijcai.org.

Pratyay Banerjee, Shweti Mahajan, Kushal Arora,
Chitta Baral, and Oriana Riva. 2022. Lexi: Self-
supervised learning of the UI language. In Proc. of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei
Xu, Liming Zhu, Guoqiang Li, and Jinshui Wang.
2020a. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by
Deep Learning. In Proc. of the ACM/IEEE 42nd
International Conference on Software Engineering,
ICSE ’20, pages 322–334.

Jieshan Chen, Mulong Xie, Zhenchang Xing, Chun-
yang Chen, Xiwei Xu, Liming Zhu, and Guoqiang Li.
2020b. Object detection for graphical user interface:
Old fashioned or deep learning or a combination? In
Proc. of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE
2020, pages 1202–1214.

Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen,
Mengchen Liu, Lu Yuan, and Lei Zhang. 2021. Dy-
namic head: Unifying object detection heads with
attentions. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
7369–7378.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hi-
bschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A Mobile App
Dataset for Building Data-Driven Design Applica-
tions. In Proc. of the 30th Annual ACM Symposium
on User Interface Software and Technology, UIST
’17, pages 845–854. ACM.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

https://paperswithcode.com/sota/referring-expression-comprehension-on-refcoco
https://paperswithcode.com/sota/referring-expression-comprehension-on-refcoco
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651


Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2Web: Towards a generalist agent for the
web.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proc. of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguis-
tics.

Google Research Blog. 2023. A vision-language
approach for foundational UI understanding.
https://ai.googleblog.com/2023/02/a-vision-
language-approach-for.html.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
2022. Open-vocabulary object detection via vision
and language knowledge distillation. In International
Conference on Learning Representations.

Agrim Gupta, Piotr Dollar, and Ross Girshick. 2019.
LVIS: A dataset for large vocabulary instance seg-
mentation. In Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition.

Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and
Dilek Hakkani-Tur. 2019. Learning to Navigate the
Web. In 7th International Conference on Learning
Representations (ICLR ’19).

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2015. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778.

Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying
Xu, Lijuan Liu, Nevan Wichers, Gabriel Schubiner,
Ruby B. Lee, and Jindong Chen. 2021. ActionBert:
Leveraging User Actions for Semantic Understand-
ing of User Interfaces. In 35th AAAI Conference on
Artificial Intelligence, AAAI 2021, pages 5931–5938.

K J Joseph, Salman Khan, Fahad Shahbaz Khan, and
Vineeth N Balasubramanian. 2021. Towards open
world object detection. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5830–5840.

Prannay Kaul, Weidi Xie, and Andrew Zisserman. 2023.
Multi-modal classifiers for open-vocabulary object
detection.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.

Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu,
Fangyu Liu, Julian Eisenschlos, Urvashi Khandel-
wal, Peter Shaw, Ming-Wei Chang, and Kristina
Toutanova. 2022. Pix2struct: Screenshot parsing
as pretraining for visual language understanding.

Gang Li and Yang Li. 2023. Spotlight: Mobile UI
understanding using vision-language models with a
focus. In Proc. of the 11th International Conference
on Learning Representations.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
2022. Grounded language-image pre-training. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10965–
10975.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020. Mapping natural language instruc-
tions to mobile UI action sequences. In Proc. of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 8198–8210. Association for Computa-
tional Linguistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and
C. Lawrence Zitnick. 2014. Microsoft COCO: com-
mon objects in context. CoRR, abs/1405.0312.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and
Percy Liang. 2018. Reinforcement learning on web
interfaces using workflow-guided exploration. In 6th
International Conference on Learning Representa-
tions (ICLR ’18).

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. 2021.
Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 10012–10022.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Corey Lynch and Pierre Sermanet. 2021. Language
conditioned imitation learning over unstructured data.
Robotics: Science and Systems.

Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin
Guu, and Percy Liang. 2018. Mapping natural lan-
guage commands to web elements. In Proc. of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4970–4976. Association
for Computational Linguistics.

Chris Rawles, Alice Li, Daniel Rodriguez, Oriana Riva,
and Timothy Lillicrap. 2023. Android in the wild:
A large-scale dataset for android device control. In
NeurIPS 2023 Datasets and Benchmarks Track.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
39:1137–1149.

http://arxiv.org/abs/2306.06070
http://arxiv.org/abs/2306.06070
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://ai.googleblog.com/2023/02/a-vision-language-approach-for.html
https://ai.googleblog.com/2023/02/a-vision-language-approach-for.html
http://arxiv.org/abs/2306.05493
http://arxiv.org/abs/2306.05493
http://arxiv.org/abs/2303.17491
https://doi.org/10.48550/ARXIV.2210.03347
https://doi.org/10.48550/ARXIV.2210.03347
https://openreview.net/forum?id=9yE2xEj0BH7
https://openreview.net/forum?id=9yE2xEj0BH7
https://openreview.net/forum?id=9yE2xEj0BH7
https://www.aclweb.org/anthology/2020.acl-main.729/
https://www.aclweb.org/anthology/2020.acl-main.729/
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2005.07648
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.18653/v1/D18-1540
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088


Peter Shaw, Mandar Joshi, James Cohan, Jonathan Be-
rant, Panupong Pasupat, Hexiang Hu, Urvashi Khan-
delwal, Kenton Lee, and Kristina Toutanova. 2023.
From pixels to ui actions: Learning to follow instruc-
tions via graphical user interfaces.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of Bits: An
Open-Domain Platform for Web-Based Agents. In
34th International Conference on Machine Learning
(ICML ’17), volume 70, pages 3135–3144.

Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles
Baechler, Yu-Chung Hsiao, Jindong Chen, Abhanshu
Sharma, and James W. W. Stout. 2022. Towards bet-
ter semantic understanding of mobile interfaces. In
Proc. of the 29th International Conference on Compu-
tational Linguistics, pages 5636–5650. International
Committee on Computational Linguistics.

Bryan Wang, Gang Li, and Yang Li. 2022a. Enabling
conversational interaction with mobile ui using large
language models. Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022b. OFA: unifying
architectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. In Inter-
national Conference on Machine Learning, ICML
2022, volume 162, pages 23318–23340.

Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P
Bigham. 2021. Screen parsing: Towards reverse en-
gineering of UI models from screenshots. In Proc. of
the 34th Annual ACM Symposium on User Interface
Software and Technology, UIST ’21, pages 470–483.

XDA. 2021. Google is trying to limit what
apps can use an Accessibility Service (again).
https://www.xda-developers.com/google-trying-
limit-apps-accessibility-service/.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, Zicheng Liu, and
Lijuan Wang. 2023a. GPT-4V in Wonderland: Large
multimodal models for zero-shot smartphone GUI
navigation.

Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Zehuan
Yuan, Ping Luo, and Huchuan Lu. 2023b. Universal
instance perception as object discovery and retrieval.
In CVPR.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
yuan Li, and Jianfeng Gao. 2023. Set-of-mark
prompting unleashes extraordinary visual grounding
in gpt-4v.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong
Huang, Boxin Li, Chunyuan Li, et al. 2021. Florence:
A new foundation model for computer vision. arXiv
preprint arXiv:2111.11432.

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin,
Samuel White, Kyle Murray, Lisa Yu, Qi Shan,
Jeffrey Nichols, Jason Wu, Chris Fleizach, Aaron
Everitt, and Jeffrey P Bigham. 2021. Screen Recog-
nition: Creating Accessibility Metadata for Mobile
Applications from Pixels. In Proc. of the 2021 CHI
Conference on Human Factors in Computing Systems,
CHI ’21.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v(ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chun-
yuan Li, Noel Codella, Liunian Harold Li, Luowei
Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. 2022.
Regionclip: Region-based language-image pretrain-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
16793–16803.

http://arxiv.org/abs/2306.00245
http://arxiv.org/abs/2306.00245
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://api.semanticscholar.org/CorpusID:252367445
https://api.semanticscholar.org/CorpusID:252367445
https://api.semanticscholar.org/CorpusID:252367445
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3472749.3474763
https://www.xda-developers.com/google-trying-limit-apps-accessibility-service/
https://www.xda-developers.com/google-trying-limit-apps-accessibility-service/
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2311.07562
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2310.11441
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186


A Appendix

A.1 UI metadata

UI metadata consists of the underlying tree-
structured representation of an application UI
(called View Hierarchy on Android and DOM on
web) and accessibility labels. This metadata is
not always available and can be incomplete. Even
when available, it may not be accessible.

Technical reasons make UI metadata hard to
obtain. On Android, UI metadata is observable
through the Accessibility Service. However, for
security and privacy reasons, Google heavily re-
stricts who can access it (XDA, 2021). Even when
the Accessible Service can be invoked, elements
rendered using OpenGL, Unity and Canvas are not
included in the retrieved View Hierarchy. This is
true also for elements residing inside WebViews
which are common in Android apps. View Hier-
archies can also present misaligned structure in-
formation (Google Research Blog, 2023; Zhang
et al., 2021). Accessibility labels are extremely
useful to infer the semantics of UI elements. How-
ever, they are rare. A previous study reported that
more than 77% of 10k Android apps have missing
accessibility labels (Chen et al., 2020a).

In desktop apps, accessing UI trees is generally
more difficult. For example, the UI tree of com-
mon Electron apps like Microsoft Teams are not
accessible from the Windows UI Inspector service.
Finally, while web DOM trees are generally acces-
sible, they can be very large and noisy, and hence
hard to interpret.

A.2 Implementation details

We train on the UIBert dataset (Bai et al., 2021)2

using the official splits: train: 4,646 images, 15,624
expressions, validation: 471 images, 471 expres-
sions, test: 565 images, 565 expressions. We ex-
pand the train split of UIBert with 22,617 synthetic
expressions (no longer than 55 words) generated
for 21,282 different Android UI screens.

For experiments with GLIP, we use GLIP-base
(SWIN Transformer (Tiny) and BERT) as default
backbone. Following the GLIP settings, SWIN-
Tiny is pre-trained on ImageNet (Deng et al., 2009),
and the input images are resized to 224 × 224
pixels. Models are trained for 100 epochs.

For experiments with OFA, we use OFA-base
(ResNet101 and BART-base) initialized with the

2released under license CC BY 4.0

same pretrained weights. The input images are
resized to 384 × 384 pixels. Models are trained for
50 epochs.

For experiments with UNINEXT, we use
UNINEXT-base (ResNet-50 and BERT) as the de-
fault backbone, initialized with weights pretrained
on Objects365. The images are pre-processed with
the same procedure as in UNINEXT. Models are
trained for 50 epochs.

For all the settings, the models are optimized by
AdamW (Loshchilov and Hutter, 2017) with initial
learning rate of 1e−4, and weight decay of 0.05.
The best models are selected based on the results
on the validation split.

A.3 OFA error analysis
In Fig. 5 we show failure cases of the OFA model
on the UIBert dataset. Note that in these tests LVG
correctly identifies the referenced element. The
errors show how OFA does not manage to lever-
age the spatial context of a target object, which is
described by words such as “above”, “below”, or
“right to” in the referring expression. Understand-
ing localization in a grid (“first option in second
row”) is also challenging. In some cases, the predic-
tion is wrong due to closely-related elements, but
also in these cases understanding the spatial layout
can help the model (e.g., in the first example, LVG
can use layout-guided contrastive learning to group
the text “All countries” with “Countries” and the
text “All” with “Age”, thus identifying the correct
referenced object).



Figure 5: Examples of grounding errors of the OFA model. LVG correctly grounds these commands. Red-colored
bounding boxes are the ground-truth elements correctly idenfitied by LVG. Blue-colored bounding boxes are the
OFA predictions.


	Introduction
	Related work
	Method
	Datasets and data synthesis
	Evaluation
	Limitations
	Conclusions
	Ethical considerations
	Appendix
	UI metadata
	Implementation details
	OFA error analysis


