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ABSTRACT

Large language models can produce creative and diverse responses.

However, to integrate them into current developer workflows, it

is essential to constrain their outputs to follow specific formats

or standards. In this work, we surveyed 51 experienced industry

professionals to understand the range of scenarios and motivations

driving the need for output constraints from a user-centered per-

spective. We identified 134 concrete use cases for constraints at two

levels: low-level, which ensures the output adhere to a structured

format and an appropriate length, and high-level, which requires

the output to follow semantic and stylistic guidelines without hal-

lucination. Critically, applying output constraints could not only

streamline the currently repetitive process of developing, testing,

and integrating LLM prompts for developers, but also enhance the

user experience of LLM-powered features and applications. We

conclude with a discussion on user preferences and needs towards

articulating intended constraints for LLMs, alongside an initial

design for a constraint prototyping tool.
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1 INTRODUCTION

Over the past few years, we have witnessed the extraordinary

capability of Large Language Models (LLMs) to generate responses

that are not only creative and diverse but also highly adaptable

to various user needs [5, 7, 18, 21, 22, 29, 31, 32]. For example,

researchers can prompt ChatGPT [25] to condense long articles into

concise summaries for fast digestion; while video game developers

can generate detailed character profiles with rich personality traits,

backstories, and unique abilities on demand, simply by dynamically

prompting an LLM with the game context and players’ preferences.

As much as end-users appreciate the unbounded creativity of

LLMs, recent field studies examining the development of LLM-

powered applications have repeatedly demonstrated the necessity

to impose constraints on LLM outputs [10, 30]. For instance, a user

might require a summary of an article to be “strictly less than 20

words” to meet length constraints, or a generated video game char-

acter profile to be “a valid JSON that can be parsed by Python” for

a development pipeline.

However, as evidenced by many recent NLP benchmarks and

evaluations [16, 36, 42, 43], current state-of-the-art LLMs still lack

the ability to guarantee that the generated output will invariably

conform to user-defined constraints in the prompt (sometimes re-

ferred to as controllability). Although researchers have proposed

various methods to improve controllability, such as supervised fine-

tuning with specialized datasets [35] or controlled decoding strate-

gies [1, 4, 24, 40], they tend to only focus on addressing a nar-

row range of constraints without taking into consideration the

diverse usage scenarios and rationale that real-world developers

and end-users encounter when prototyping and building practical

LLM-powered functionalities and applications [12–14, 23].

In this work, we took the first step to systematically investigate

the scenarios and motivations for applying output constraints from

a user-centered perspective. Specifically, we sought to understand:

https://doi.org/10.1145/3613905.3650756
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• RQ1: What real-world use cases would necessitate or benefit

from being able to constrain LLM outputs?

• RQ2: What are the benefits and impacts of being able to apply

constraints to LLM outputs?

• RQ3: How would users like to articulate their intended con-

straints to LLMs?

We investigated these research questions by distributing a survey

to a broad population of industry professionals (software engineers,

researchers, designers, project managers, etc.) who have experi-

ence building LLM-powered applications. Our analysis identified

six primary categories of output constraints that users desire, each

supported by detailed usage scenarios and illustrative examples,

summarized in Table 1. In a nutshell, users not only need low-level
constraints, which mandate the output to conform to a structured

format and an appropriate length, but also desire high-level con-
straints, which involve semantic and stylistic guidelines that users

would like the model output to adhere to without hallucinating.

Notably, developers often have to write complex code to handle

ill-formed LLM outputs, a chore that could be simplified or elimi-

nated if LLMs could strictly follow output constraints. In addition,

the ability to apply constraints could help ease the integration of

LLMs with existing pipelines, meet UI and product specifications,

and enhance user trust and experience with LLM-powered features.

Moreover, we discovered that describing constraints in natural lan-

guage (NL) within prompts is not always the preferred method of

control for LLM users. Instead, they seek alternative mechanisms,

such as using graphical user interfaces, or GUIs, to define and test

constraints, which could offer greater flexibility and a heightened

sense of assurance that the constraints will be strictly followed.

Informed by these results, we present an early design of Con-

straintMaker, a prototype tool that enables LLM users to experi-

ment, test, and apply constraints on the format of LLM outputs (see

Figure 2 for more details), along with feedback and insights from

preliminary user tests. Overall, this paper contributes:

• a comprehensive taxonomy summarizing both low-level and

high-level output constraints desired by LLM users (Table 1),

derived from 134 real-world use cases reported by our survey

respondents (RQ1),

• an overview of both developer and user-facing benefits of

being able to impose constraints on LLM outputs (RQ2),

• an exploration of LLM users’ preferences for expressing con-

straints, whether via GUIs or natural language (RQ3),

• a initial design of the tool ConstraintMaker, which enables

users to visually prototype LLM output constraints, accompa-

nied by a discussion of preliminary user feedback.

2 SURVEY WITH INDUSTRY PROFESSIONALS

Methodology. To get a broad range of insights from people who

have experience with prompting and building LLM-powered ap-

plications, we deployed an online survey to users of an internal

prompt-based prototyping platform (similar to the OpenAI API

Playground [28] and Google AI studio [11]) at a large technology

company for two weeks during Fall 2023. We chose this platform

because it was explicitly designed to lower the barriers to entry

into LLM prompting and encourage a broader population (beyond

machine learning professionals) to prototype and develop LLM-

powered applications. We publicized the survey through the plat-

form’s user mailing list.We ran the survey for twoweeks during Fall

2023. Participants were rewarded $10 USD for their participation.

The survey was approved by our organization’s IRB.

Instrument. Our survey started with questions concerning par-

ticipants’ background and technical proficiency, such as their job

roles and their level of experience in designing and engineering

LLM prompts. The survey subsequently investigated RQ1 and RQ2

by asking participants to report three real-world use cases in which

they believe the implementation of constraints to LLM outputs is

necessary or advantageous. For each use case, they were encour-

aged to detail the specific scenario where they would like to apply

constraints, the type of constraint that they would prefer to imple-

ment, the degree of precision required in adhering to the constraint,

and the importance of this constraint to their workflow. Finally,

the survey investigated RQ3 by asking participants to reflect on

scenarios where they would prefer expressing constraints via a GUI
(sliders, buttons, etc.) over natural language (in prompts, etc.) and

vice versa, as well as any alternative ways they would prefer to ar-

ticulate constraints to LLMs. The GUI alternative draws inspiration

from tools like the OpenAI Playground that allow users to adjust

settings like temperature and top-k through buttons, toggles, and

sliders. Detailed survey questions are documented in section A of

the Appendix.

Results. 51 individuals responded to our survey. Over half of the

respondents were software engineers (58.8%) across various product

teams; others held a variety of roles like consultant & specialist

(9.8%), analyst (7.8%), researcher (5.9%), UX engineer (5.9%), designer

(3.9%), data scientist (3.9%), product manager (2.0%), and customer

relationship manager (2.0%). All respondents had experience with

prompt design and engineering, with the majority reported having

extensive experience (62.7%). The targeted audience and use cases

of their prompts were split approximately evenly among consumers

and end-users (33.3%), downstream development teams (31.4%), or

both (29.4%), with some created specifically for exploratory research

& analysis (5.9%). Together, respondents contributed 134 unique

use cases of output constraints. To analyze the contents of the

open-ended responses, the first author read through all responses

and used inductive analysis [34] to generate and refine themes for

each research question with frequent discussions with the research

team. We present the resulting themes for each research question

in sections 3-5.

Limitations. Note that our findings largely capture the views

of industry professionals, and may not encompass those of casual

users who engage with LLMs conversationally [25]. Additionally, as

our respondent sample is limited to a single corporation, the results

described in the following sections may not be representative of the

entire industry. Furthermore, our frequent use of open-ended ques-

tions might have negatively impacted the response rate. However,

the saturation of novel findings and insights towards the end of the

survey deployment suggests that we have successfully captured a

comprehensive range of perspectives.
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Category % Representative Examples Precision

Low-level constraints

Structured

Output

Following standardized or

custom format or template

(e.g., markdown, HTML,

DSL, bulleted list, etc.)

26.1% “Summarizing meeting notes into markdown format”
“... the chatbot should quote dialogues, use special marks for scene description, etc.”
“I want the output to be in a specific format for a list of characteristics [of a movie] to then
easily parse and train on.”

Exact

Ensuring valid JSON object

(with custom schema)

16.4% “... use the JSON output of the LLM to make an http request with that output as a payload.”
“I want to have the output [of the quiz] to be like a json with keys {"question": "...",
"correct_answer": "...", "incorrect_answers": [...]}”

Exact

Multiple

Choice

Selecting from a prede-

fined list of options

23.9% “Classifying student answers as right / wrong / uncertain...)”
“While doing sentimental analysis, [...] restrict my output to few fixed set of classes like
Positive, Negative, Neutral, Strongly Positive, etc.”

Exact

Length

Constraints

Specifying the targeted

length (e.g., # of characters

/ words, # of items in a list)

16.4% “... Make each summary bullet LESS THAN 40 words. If you generate a bullet point that is
longer than 40 words, summarize and return a summary that is 40 words or less.”
“I want to limit the characters in the output to 100 so it is a valid YouTube Shorts title.”

Approx.

High-level constraints

Semantic

Constraints

Excluding specific terms,

items, or actions

8.2% “Exclude PII (Personally Identifiable Information) and even some specific information...”
“If asking for html, do not include the standard html boilerplate (doctype, meta charset, etc.)
and instead only provide the meaningful, relevant, unique code.”

Exact

Including or echoing

specific terms or content

2.2% “... I want [the email] to include about thanking my manager and also talk about the
location he is based on to help him feel relatable.”
“We want LLM to repeat input with some control tokens to indicate the mentions. e.g. input:
‘Obama was born in 1961.’,... , we want output to be ‘«Obama» was born in 1961.”’

Exact

Covering or staying on a

certain topic or domain

2.2% “[The output of] a query about ‘fall jackets’ should be confined to clothing.”
“For ex. In India we have Jio and Airtel as 2 main telecom service provider. While building
chat bot for Airtel, I would want the model to only respond [with] Airtel related topics.”

Exact

Following certain (code)

grammar / dialect / context

4.5% “While generating SQL,... restrict the output to a particular dialect and use the table /
database name mentioned in the prompt.”
“... implement[ing] a voice assistant that calls specific methods with relevant arguments,...
the output needs to be valid syntax and only call the methods specified in the context”

Exact

Stylistic

Constraints

Following certain style,

tone, or persona

6.7% “... it is important that the [news] summary follow a style guide, ... for example, preference
for active voice over passive voice.”
“Use straightforward language and avoid complex technical jargon...”

Approx.

Preventing

Hallucination

Staying grounded and

truthful

8.2% “... we do not want [a summary of the doc] to include opinions or beliefs but only real facts.”
“If the LLM can’t find a paper or peer-reviewed study, do not provide a hallucinated output.”

Exact

Adhering to instructions

(without improvising

unrequested actions)

4.5% “For ‘please annotate this method with debug statements’, I’d like the output to ONLY
include changes that add print statements... No other changes in syntax should be made. ”
“LLMs usually ends up including an advice associated to the summarised topic, advice we
need to avoid so they are not part of the doc.”

Exact

Table 1: Taxonomy of the six primary categories of use cases of output constraints, derived from the 134 use cases that

respondents submitted (RQ1). Totals add up to more than 100% since we placed some use cases into more than one category.

The final column indicates whether the output is expected to match the constraint exactly or approximately, as agreed upon by

the majority of respondents.

3 RQ1: REAL-WORLD USE CASES THAT

NECESSITATE OUTPUT CONSTRAINTS

Table 1 presents a taxonomy of six primary categories of use cases

that require output constraints, each with representative real-world

examples and quotes submitted by our respondents.

These can be further divided into low-level and high-level con-
straints — low-level constraints ensure that model outputs adhere

to a specific structure (e.g., JSON or markdown), instruct the model

to perform puremultiple choices (e.g., sentiment classification),

or dictate the length of the outputs; whereas high-level constraints

enforce model outputs to respect semantic (e.g., must include or

avoid specific terms or actions) or stylistic (e.g., follow certain

style or tone) guidelines, while preventing hallucination.

Below, we discuss a number of interesting insights that emerged

from our analysis of the use cases:

• Going beyond valid JSON. Note that recent advancements in

instruction-tuning techniques have substantially improved the

the chances of generating a valid JSON object upon user request
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Developer-facing Benefits User-facing Benefits

Increasing prompt-based development efficiency (§4.1) Satisfying product and UI requirements (§4.3)

Speeding up prompt design / engineering (less trial and error)

Reducing or eliminating ad-hoc parsing and plumbing logic

Saving the cost of requesting multiple candidates

Fitting output into UI presets with size bounds

Ensuring consistency of output length and format

Complying with product and platform requirements

Streamlining integration with downstream processes and workflows (§4.2) Improving user experience and trust (§4.4)

Ensuring successful code execution

Improving the quality of training data synthesis

Canonizing output format across models

Eliminating safety and privacy concerns

Improving user trust and confidence

Increasing customer satisfaction and adoption

Table 2: Respondents’ perceived benefits of having the ability to apply constraints to LLM output (RQ2).

[27, 29]. Nonetheless, our survey respondents believed that this

was not enough and desired to have more precise control

over the JSON schema (i.e., key/value pairs). One respondent

stated their expectation as follows: “I expect the quiz [that the
LLM makes given a few passages provided below] to have 1 correct
answer and 3 incorrect ones. I want to have the output to be like
a json with keys {"question": "...", "correct_answer":
"...", "incorrect_answers": [...]}.” It is also worth men-

tioning that some respondents found that “few-shot prompts” —
demonstrating the desired key/value pairs with several exam-

ples — tend to work “fairly well”. However, they concurred that

having a formal guarantee of JSON schema would be greatly

appreciated (see section 4.1 for their detailed rationales).

• Giving an answerwithout extra conversational prose.When

asking an LLM to perform data classification or labeling, such

as “[classifying sentiments as] Positive, Negative, Neutral, etc.,”
respondents typically expect the model to only output the

classification result (e.g. “Positive.”) without a trailing

“explanation” (e.g., “Positive, since it referred to the
movie as a ‘timeless masterpiece’...”), as the addition of

explanation could potentially confuse the downstream parsing

logic. This indicates a potential misalignment between a com-

mon training objective — where LLMs are often tailored to be

conversational and provide rich details [2, 17, 33] — and certain

specialized downstream use cases where software developers

need LLMs to be succinct. Such use cases necessitate output con-

straints that are independent of the prompt that would help adapt

a general-purpose model to meet specific user requirements.

• Conditioning the output on the input, but don’t “impro-

vise!” One thread of high-level constraints places emphasis on

directing the model to condition its output on specific con-

tent from the input. For example, the model’s response should

semantically remain “in the same ballpark” as “the user’s original
query” — “[the output of] a query about ‘fall jackets’ should be
confined to clothing.” A particular instance of this is for LLMs

to echo segments of the input in their output, occasionally with

slight alterations. For example, “we want LLM to repeat input with
some control tokens to indicate the mentions. e.g. input: ‘Obama
was born in 1961.’,... , we want output to be ‘«Obama» was born in
1961.’” Nevertheless, respondents underscored the importance

of the model not improvising beyond its input and instruc-

tions. For example, one respondent instructed an LLM to “an-
notate a method with debug statement,” anticipating the output
would “ONLY include changes that add print statements to the
method.” However, the LLM would frequently introduce addi-

tional “changes in syntax” that were unwarranted.

4 RQ2: BENEFITS OF APPLYING

CONSTRAINTS TO LLM OUTPUTS

Beyond the aforementioned use cases, our survey respondents re-

ported a range of benefits that the ability of constraining LLM

output could offer. These include both developer-facing benefits,

like increasing prompt-based development efficiency and streamlin-

ing integration with downstream processes and workflows, as well

as user-facing benefits, like satisfying product and UI requirements

and improving user experience and trust of LLMs (Table 2). Here

are the most salient responses:

4.1 Increasing Prompt-based Development

Efficiency

First and foremost, being able to constrain LLM outputs can sig-

nificantly increase the efficiency of prompt-based engineering and

development by reducing the trial and error currently needed to

manage LLM unpredictability. Developers noted that the process

of “defining the [output] format” alone is “time-consuming,” often
requiring extensive prompt testing to identify the most effective

one (consistent with what previous research has found [30, 41]).

Additionally, they often need to “request multiple responses” and
“iterating through them until find[ing] a valid one.” Therefore, being
able to deterministically constrain the output format could not only

save developers as much as “dozens of hours of work per week” spent
on iterative prompt testing, but also reduce overall LLM inference

costs and latency.

Another common practice that respondents reported is building

complex infrastructure to post-process LLM outputs, sometimes

referred to as “massaging [the output] after receiving.” For example,

developers oftentimes had to “chase down ‘free radicals’ when writ-
ing error handling functions,” and felt necessary to include “custom
logic” for matching and filtering, along with “further verification.”
Thus, setting constraints before LLM generation may be the key to

reducing such “ad-hoc plumbing code” post-generation, simplifying

“maintenance,” and enhancing the overall “developer experience.” As
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0 10 20 30 40 50
Count

1. Output should be exactly 3 words, no more than 3 paragraphs, etc.

2. Output in a specific format or structure (e.g., JSON, XML, bulleted / ordered list)

3. Only output "left-handed", "right-handed", or "ambidextrous"

4. Output must include or avoid certain words / phrases

5. Output must cover or avoid certain topics, only use certain libraries when generating code, etc.

6. Output style should mimic Yoda / Shakespeare / certain personas, etc.

1 (Strongly prefer NL)
2
3
4 (Neutral)
5
6
7 (Strongly prefer GUI)

Response

Figure 1: Respondents’ preferences towards specifying output constraints either through natural language or GUI (RQ3).

Participants were asked to score each question (left) on a 7-point Likert scale from “1 (Strongly prefer NL)” to “7 (Strongly

prefer GUI).”

one respondent vividly described: “it’s a much nicer experience if
it (formatting the output in bullets) ‘just works’ without having to
implement additional infra...”

4.2 Integrating with Downstream Processes and

Workflows

Because LLMs are often used as sub-components in larger pipelines,

respondents emphasized that guaranteed constraints are critical to

ensuring that the output of their work is compatible with down-

stream processes, such as downstream modules that expect a spe-

cific format or functional code as input. Specifically for code gen-

eration, they highlighted the necessity of constraining the output

to ensure “executable” code that adheres to only “methods specified
in the context” and avoids errors, such as hallucinating “unsup-
ported operators” or “SQL ... in a different dialect.” Note that while
the “function calling” features in the latest LLMs [8, 26] can “select”

functions to call from a predefined list, users still have to implement

these functions correctly by themselves.

Many studies indicate that LLMs are highly effective for creating

synthetic datasets for AI training [9, 15, 38], and our survey respon-

dents postulated that being able to impose constraints on LLMs

could improve the datasets’ quality and integrity. For instance, one

respondent wished that model-generated movie data would “not
say a movie’s name when it describes its plot,” as they were going to

train using this data for a “predictive model of the movie itself.” Any
breach of such constraints could render the data “unusable.”

Furthermore, given the industry trend of continuously migrating

to newer, more cost-effective models, respondents highlighted the

importance of “canonizing” constraints across models to avoid extra

prompt-engineering after migration (e.g., “if I switch model, I get
the formatting immediately”). This suggests that it could be more

advantageous for models to accept output constraints independent

of the prompt, which should now solely contain task instructions.

4.3 Satisfying UI and Product Requirements

Respondents stressed that it is essential to constrain LLM output to

meet UI and product specifications, particularly when such output

will be presented to end users, directly or indirectly. A common

case is to incorporate LLM-generated content into UI elements

that “cannot exceed certain bounds”, necessitating stringent length
constraints. Content that doesn’t “fit within the UI” usually gets

“thrown away” all together, a concern likely to be more pronounced

on mobile devices with limited screen real estate [6, 20]. Maintain-

ing the consistency of output length and format was also considered

important, as “too much variability in the generated text can be over-
whelming to the user and clutter the UI.” Moreover, being able to

constrain length can help LLMs comply with specific platform char-

acter restrictions, like tweets capped at 280 characters or YouTube

Shorts titles limited to 100 characters.

4.4 Improving User Experience, Trust, and

Adoption

Finally, respondents suggested that developing LLM-powered user

experiences requires constraint mechanisms to mitigate hallucina-

tions, foster user trust, and ultimately drive “user adoption.” One
prominent aspect is to reduce safety and privacy concerns, for

instance, by preventing LLMs from “repeat[ing] existing or hal-
lucinat[ing] PII (personally identifiable information).” In addition,

respondents expressed a desire to ensure user trust and confidence

of LLM-powered tools and systems, arguing that, for example, “hal-
lucinations in dates are easy to identify” and, in general, “users won’t
invest more time into tools that aren’t accurate.”

5 HOW TO ARTICULATE OUTPUT

CONSTRAINTS TO LLMS

Fig. 1 shows distributions of respondents’ preferences towards spec-

ifying output constraints either through GUI or natural language.

An overarching observation is that respondents preferred using

GUI to specify low-level constraints and natural language to

express high-level constraints. We discuss their detailed ratio-

nale below:

5.1 The case for GUI: A Quick, Reliable, and

Flexible Way of Prototyping Constraints

First and foremost, respondents considered GUIs particularly ef-

fective for defining “hard requirements,” providing more reliable

results, and reducing ambiguity compared to natural language in-

structions. For example, one argued that choosing “boolean” as the

output type via a GUI felt much more likely to be “honoured” com-

pared to “typ[ing] that I want a Yes / No response [...] in a prompt.”
Another claimed that “flagging a ‘JSON’ button” provides a much

better user experience than “typing ‘output as JSON’ across multiple
prompts.” In addition, respondents preferred using GUI when the

intended constraint is “objective” and “quantifiable”, such as “use
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Generate a character profile for a video game, 
including the character's name, age, names of their 
three children, and whether they can be controlled by 
the player.

Write your prompt:

Output:

Generate 5 cities that have access to a beach:

Classify the sentiment of the following movie 
review: [[Twilight (2008) is a teen romance 
that failed to live up to the hype…]]

1

2

3

4

2a

2b

2d

2c

5

6

2e

Figure 2: ConstraintMaker’s user interfaces (1-4) & use cases (5-6). After writing the prompt (1), users can easily specify

output constraints using a graphical user interface (2 & 3) provided by ConstraintMaker, and the resulting output (4) is

guaranteed to follow the constraints. Additional details of this process is discussed in section 6.

only items x,y,z,” or “a JSON with certain fields specified.” Moreover,

respondents found GUI to be more flexible for rapid prototyping

and experimentation (e.g., “when I want to play around with dif-
ferent numbers, moving a slider around seems easier than typing”).
Finally, for novice LLM users, the range of choices afforded by a GUI

constraint can help clarify the model’s capabilities and limitations,

“making the model seems less like a black box.” One respondent drew
from their experience working with text-to-image models to under-

score this point: “by seeing “Illustration” as a possible output style
[among others like “Photo realistic” or “Cartoon”], I became aware of
[the model’s] capabilities.”

5.2 The Case for NL: More Intuitive and

Expressive for Complex Constraints

Respondents found natural language easier for specifying complex

constraints than GUIs, especially for extended background contexts

or numerous choices that wouldn’t reasonably fit into aGUI. Natural

language was also preferred for expressing vague, nuanced, or open-

ended constraints, like “don’t include offensive words” or “respond
in a cheerful manner.” At a high level, respondents emphasized that

natural language provides a more natural, familiar, and expressive

way to communicate (potentially multiple) complex constraints,

and, “trying to figure out how to use a GUI might be more tedious.”
Additionally, some respondents noted that, despite their prefer-

ence for using GUIs to define constraints from time to time, they

ultimately have to use natural language prompts due to API lim-

itations. Moreover, some wished to reference “external resources”
in constraints that are not feasible to directly include in prompts

(e.g., “a large database / vocabulary”). These suggest that a dedicated
“output-constraints” API field for specifying constraints could be

advantageous, potentially through the use of a formal language or

notation.

6 THE CONSTRAINTMAKER TOOL

Informed by the survey results, we developed a web-based GUI,

ConstraintMaker (Fig. 2), that enables LLM users to prototype,

test, and apply constraints on the format of LLM outputs. With

ConstraintMaker, users can specify different types of output

constraints by simply selecting from the list of available constraint
primitives (Fig. 2-2b). If needed, users can click the pencil icon (Fig.

2-2a) to further edit the details of a constraint primitive, such as

specifying the schema of a JSON object (Fig. 2-3). Users also have

the flexibility to mix and match multiple constraint primitives to-

gether (e.g., Fig. 2-6) to form more complex constraints. Currently,

based on users’ needs and priorities identified by the survey, Con-

straintMaker initially supports JSON object , Multiple choice ,

List , Ordered list , and Some text as primitives (Fig. 2-2b), where

Some text asks the LLM to generate freely as it normally would.

Under the hood, we used a GPT-3.5-class LLM. We addition-

ally implemented a finite-state machine-based decoding technique

akin to that outlined in [39], ensuring the language model out-

puts strictly adhere to formats defined by a specialized regular

expression (henceforth, “regex”). In fact, ConstraintMaker auto-

matically converts a GUI-defined constraint into a regex (Fig. 2-2d),

which the LLM observes during generation (Fig. 2-4).

6.1 Iterative Design and User Feedback

To explore the usability and usefulness of ConstraintMaker, we

conducted a series of informal (around 30 minute each) user tests

with five participants who self-identified as experts in prompting

LLMs, as well as self-experimentation among the authors. We used

the feedback from these sessions to iteratively refine the design

of ConstraintMaker. We present some interesting findings and

reflections below:

6.1.1 ConstraintMaker enables an intuitive separation of concerns.

With ConstraintMaker, one can now specify “the tasks they want
the model to perform” separate from “the expected format of the
output,” an approach participants considered more intuitive and

effective in steering LLMs to consistently achieve desired results

compared to traditional prompting. Additionally, participants envi-

sioned the possibility of reusing constraints across various prompts,

which could reduce the effort of crafting new constraints for similar

tasks and eliminate the need for prompt engineering post model

migration.
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6.1.2 Constraint-prototyping GUI needs to cater to both developers

and non-developers. On the one hand, for non-technical users inter-

ested in experimenting with constraints, we noticed that the visible

regex alongside the constraint primitive GUIwas somewhat distract-

ing. To address this, we added a feature that allows the regex to be

toggled as hidden via the “< >” button (Fig. 2-2c). On the other hand,

for more advanced users (e.g., developers), we observed a frequent

need to make fine-grained adjustments to the underlying regex

after creating an initial draft with the ConstraintMaker GUI (e.g.,

changing the “bullet” of a “bulleted list” from the default “− [...]”
(Fig. 2-5) to “* [...]”). As a result, we enabled direct manipulation

of the regex by toggling on "Edit constraints manually" (Fig. 2-2e).

6.1.3 “Inserting” words among constraints. For example, one par-

ticipant asked in the prompt for the LLM to first write a paragraph

describing a short story, followed by a list of suggestions on how

to improve the story. In situations like this, they found that em-

bedding specific words into the constraints, such as “Short story:

Some text ” followed by “Suggestions: List ”, yielded better-quality

results than simply using Some text followed by List alone. There-

fore, we introduced the Exact text GUI primitive, enabling the

LLM to insert user-prescribed text into its output.

6.1.4 Automatically inferring constraints based on prompts. One

interesting feature request for ConstraintMaker is the ability to

automatically infer constraints from user-written prompts, simi-

lar to previous intelligent prediction or auto-completion systems

and tools [3, 19, 37]. For instance, for a prompt shown in Fig. 2-1,

ConstraintMaker could proactively suggest to the users if they’d

like to constrain the model output to a JSON object with specific

fields. This feature would be appealing, given the current some-

what cumbersome process of manually creating and modifying

constraints from scratch. Similar to code auto-completion, partici-

pants suggested that constraint auto-completion could streamline

the overall experience of defining constraints. Additionally, auto-

matic constraint suggestions could serve as learning opportunities

for novice users to become familiar with the range of possibilities

that ConstraintMaker affords, which would be particularly use-

ful in future versions where the tool might support a wider selection

of constraint primitives. Finally, proactively suggesting constraints

could promote a “constraint mindset.” This encourages users to

always consider the output format before deploying a prompt, lead-

ing to more rigorous and controllable prompt engineering, much

like conventional software development.

7 CONCLUSION

In this work, we introduced a user-centered taxonomy of real-world

scenarios, benefits, and preferred methods for applying constraints

on LLM outputs, offering both a theoretical framework and prac-

tical insights into user requirements and preferences. In addition,

we presented ConstraintMaker, an early GUI-based tool that en-

ables users to prototype and test output constraints iteratively. Our

results shed light on the future of more controllable, customizable,

and user-friendly interfaces for human-LLM interactions.
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A THE SURVEY INSTRUMENT

In this section, we detail the design of our survey. The survey starts with questions about background and self-reported technical proficiency:

• What best describes your job role: software Engineer; research scientist; UX designer; UX researcher; product manager; technical

writer; other (open-ended)

• To what extent have you designed LLM prompts: a) I have “chatted with” chatbots like Bard / ChatGPT as a user; b) I’ve tried making

a prompt once or twice just to check it out, but haven’t done much prompt design / engineering; c) I have some experience doing

prompt design / engineering on at least three LLM prompts; d) I have done extensive prompt design / engineering to accomplish

desired functionality. Only those participants who selected either option c) or d) were given the opportunity to continue with the

remainder of the survey. This approach is specifically designed to exclude “casual” LLM users.

• I primarily design prompts with the intent that they will be used by: a) consumers / end-users (e.g. a recipe idea generator); b)

downstream development teams (e.g. captioning, classifiers); c) both, I split my time about evenly between the two; d) other audience

or use cases (open response).

The survey then asked participants to report three real-world use cases where they would like to constrain LLM outputs. For each use case,

participants were asked:

• How would like to be able to constrain the model output (open response);

• Provide a concrete example where it would be useful to have this constraint (open response);

• How precisely do you need this constraint to be followed: a) exact match; b) approximate match and why (optional open response);

• How important is this constraint to your workflow (5-point Likert scale from “it’s a nice to have, but my current workarounds are

fine” to “it’s essential to my workflow”) and why (optional open response).

The survey then asked participants to reflect through open response on scenarios where they would prefer expressing constraints via GUI
(sliders, buttons, etc.) over natural language (in prompts, etc.) and vice versa, as well as any alternative ways they would prefer to express

constraints. To facilitate the reflection, the survey additionally asked participants to rate their level of preference in:

• Output should be exactly 3 words, no more than 3 paragraphs, etc.

• Output in a specific format or structure (e.g., JSON, XML, bulleted / ordered list)

• Only output “left-handed”, “right-handed”, or “ambidextrous”

• Output must include or avoid certain words / phrases

• Output must cover or avoid certain topics, only use certain libraries when generating code, etc.

• Output style should mimic Yoda / Shakespeare / certain personas, etc.

Each question presented a 7-point Likert scale from “strongly prefer natural language” to “strongly prefer GUI.”
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