
Kubernetes Study Jam

Ramón Medrano Llamas - Staff Site Reliability Engineer

Agenda

Kubernetes Core
Concepts

Google
Kubernetes
Engine

Istio
Service Mesh

1 2 3

01Kubernetes
Core Concepts

At Google, everything
runs in a container

On average, we launch

4 billion
new containers per week

(That’s 571M/day, 24M/hour, or ~6600/sec)

Namespaces isolate what processes can see

cgroups isolate what resources can be used*

Container?
Processes isolated by OS primitives

Portable across any system with
Container Runtime (local, dev, prod)

Container Foo

OS + Container Runtime

Dependencies

Application Foo

Machine

*developed by Google in 2006

The compute spectrum

} sweet spot

web browsers

BorgMaster

link shard

UI shardBorgMaster

link shard

UI shardBorgMaster

link shard

UI shardBorgMaster

link shard

UI shard

cluster

Scheduler

borgcfg web browsers

scheduler

Borglet Borglet Borglet Borglet

BorgMaster

link shard

read/UI
shard

Config
file

persistent store
(Paxos)

Binary

Borg

No VMs, pure containers

10K - 20K nodes per cluster

DC-scale job scheduling

CPU, mem, disk and IO

 Nodes

 Master

Kubernetes abstracts away infrastructure

Kubernetes provides a declarative API

observe

compare

act

$ kubectl apply -f k8s-manifest.yaml

 Source Code CI CD Kubernetes

11

Node 2

Pod 1 Pod 3

Node 1

Pod 4

Node n

Pod 5

Pod 6Pod 2

Master

Kubernetes
Control Plane

Kubernetes API

Kubelet
agent

Docker
runtime

Kubelet
agent

Docker
runtime

Kubelet
agent

Docker
runtime

Kubernetes Architecture

12

Control Plane
The Kubernetes Master also known
as the Control Plane

Its job is to know the current state of
the cluster and make decisions to
move the cluster to its desired state.

This can be a single node but is
horizontally scalable for High
Availability.

Kubernetes Master

 API Server

 Controller Manager

 Scheduler

 etcd

Control Plane: kube-apiserver
AKA The API Server

Stateless REST server that exposes Kubernetes
API, backed by a datastore

All communication about cluster state flows
through the API Server.

Validates Kubernetes objects and interacts with
end users, scheduler, controller managers, and
kubelets

Supports CRUD and Watch operations

Kubernetes Master

 API Server

 Controller Manager

 Scheduler

 etcd

Control Plane: controller-managers
AKA managing controllers powering Kubernetes
abstractions

20+ control loops that help abstractions like
deployments work

+ cloud-controller-manager that helps Kubernetes
integrate with cloud providers for persistent disk,
load balancers, else

Clean separation of each controller’s functionality

Kubernetes Master

 API Server

 Controller Manager

 Scheduler

 etcd

Control Plane: kube-scheduler
AKA The Scheduler

A control loop that is crucial to cluster operation by
ensuring that nodes run pods

If the API Server stores current and desired state of
the cluster, the scheduler uses that data to make
decisions about where and when pods should run

Makes scheduling decisions based on multiple
data points

Kubernetes Master

 API Server

 Controller Manager

 Scheduler

 etcd

Control Plane: etcd
AKA The API Server’s datastore

The backing service to the API Server; it’s an
implementation detail

Distributed, strongly consistent, and highly
available kv store, powered by Raft consensus -
this means in High Availability (HA) we must run >
2 master nodes

Persists all cluster data

Kubernetes Master

 API Server

 Controller Manager

 Scheduler

 etcd

17

Node 2

Pod 1 Pod 3

Node 1

Pod 4

Node n

Pod 5

Pod 6Pod 2

Master

Kubernetes
Control Plane

Kubernetes API

Kubelet
agent

Docker
runtime

Kubelet
agent

Docker
runtime

Kubelet
agent

Docker
runtime

Kubernetes Architecture (Revisit)

18

Cluster Nodes
The underlying machines (physical or
virtual) are known as the nodes

Nodes communicate with the API
server, execute container processes,
and route container traffic

These can be scaled out to many
instances and sized to various
configurations. Node Pools share the
same VM configurations

Kubernetes Nodes

 Kubelet

 Container Runtime

 Kube Proxy

The Node: kubelet
AKA the node agent

Communicates with API Server to know what
pods it should run

Will kick execution of a set of containers to the
Container Runtime

Will fetch secrets, environment variables from
the API Server for Containers

Broadcasts status of pods, nodes

Kubernetes Nodes

 Kubelet

 Container Runtime

 Kube Proxy

The Node: Container Runtime Interface
Default is Docker

Kubernetes also supports rkt

The Container Runtime is actually responsible
for executing your processes

Looking to support all open container initiative
compliant runtimes via CRI-O

Kubernetes Nodes

 Kubelet

 Container Runtime

 Kube Proxy

The Node: kube-proxy
Watches Pods and Services in the cluster and
makes the Service IP forward traffic to the set of
Pod IPs

Runs on every node and generates/updates
iptables rules

Kubernetes Nodes

 Kubelet

 Container Runtime

 Kube Proxy

22

Node 2

Pod 1 Pod 3

Node 1

Pod 4

Node n

Pod 5

Pod 6Pod 2

Master

Kubernetes
Control Plane

Kubernetes API

Kubelet
agent

Docker
runtime

Kubelet
agent

Docker
runtime

Kubelet
agent

Docker
runtime

Kubernetes Architecture (Recap)

Core
Concepts

● Namespaces

● Pods

● Deployments

● Services

Namespaces: Logical isolation between
kubernetes objects

Most resources are scoped to a namespace, but
there are parts of kubernetes outside of
namespaces scope (ie nodes)

Can be used for Role Based Access Control
(RBAC)

Useful for isolating environments within a single
cluster to multiple team members

master

Core Concepts: Namespaces

Core
Concepts

● Namespaces

● Pods

● Deployments

● Services

Core Concepts: The Pod

Container Container Container

Volume A Volume B

Network interfacePod: The atomic unit of Kubernetes

Comprised of one or few containers with
shared networking & storage

Containers in a pod share most linux
namespaces, but not control groups

Kubernetes will nicely automate setting up
namespace, cgroup

Great for packaging containers together

nodemaster node node

apiVersion: v1
kind: Pod
metadata:
 name: my-app
spec:
 containers:
 - name: my-app
 image: my-app
 - name: nginx-ssl
 image: nginx
 ports:
 - containerPort: 80
 - containerPort: 443

Core Concepts: The Pod (and manifest)

apiVersion: v1
kind: Pod
metadata:
 name: my-app
spec:
 containers:
 - name: my-app
 image: my-app
 - name: nginx-ssl
 image: nginx
 ports:
 - containerPort: 80
 - containerPort: 443

nodemaster node node

Core Concepts: The Pod (and manifest)

apiVersion: v1
kind: Pod
metadata:
 name: my-app
spec:
 containers:
 - name: my-app
 image: my-app
 - name: nginx-ssl
 image: nginx
 ports:
 - containerPort: 80
 - containerPort: 443

nodemaster node node

Core Concepts: The Pod (and manifest)

Core
Concepts

● Namespaces

● Pods

● Deployments

● Services

Deployment: An abstraction that allows you to define
and update desired pod template and replicas

If pods are mortal, abstractions like deployments give
us resiliency

One of many abstractions to control how pods are
scheduled and deployed

Core Concepts: Deployments

nodemaster node node

nodemaster node node

kind: Deployment
apiVersion: v1beta1
metadata:
 name: frontend
spec:
 replicas: 4
 selector:
 role: web
 template:
 metadata:
 name: web
 labels:
 role: web
 spec:
 containers:

 - name: my-app
 image: my-app
 - name: nginx-ssl
 image: nginx
 ports:
 - containerPort: 80
 - containerPort: 443

Core Concepts: Deployments

kind: Deployment
apiVersion: v1beta1
metadata:
 name: frontend
spec:
 replicas: 4
 selector:
 role: web
 template:
 metadata:
 name: web
 labels:
 role: web
 spec:
 containers:

 - name: my-app
 image: my-app
 - name: nginx-ssl
 image: nginx
 ports:
 - containerPort: 80
 - containerPort: 443

nodemaster node node

Core Concepts: Deployments

kind: Deployment
apiVersion: v1beta1
metadata:
 name: frontend
spec:
 replicas: 4
 selector:
 role: web
 template:
 metadata:
 name: web
 labels:
 role: web
 spec:
 containers:

 - name: my-app
 image: my-app
 - name: nginx-ssl
 image: nginx
 ports:
 - containerPort: 80
 - containerPort: 443

nodemaster node node

Core Concepts: Deployments

Core
Concepts

● Namespaces

● Pods

● Deployments

● Services

Services: Stable endpoint for pods

If pod IPs are mortal, services give us a stable
way to access our pods

Provides load balancing across multiple pods

With services you can speak to pods via external
IP, cluster internal IP or DNS

Service will target multiple pods with the same
key/value pair metadata, known as a label
selector

master

service

Core Concepts: Services

Internal Calls

● Service Type: ClusterIP
○ Internal IP, available only within the

cluster

master

service

Core Concepts: Services

External Calls

● Service Type: NodePort
○ externalizes service by making it

available at each node’s IP & specified
port, routing that to ClusterIP

Core Concepts: Services

master

service

service

Public Load Balancers

● Service Type: LoadBalancer
○ Create a load balancer with the cloud

provider in front of
NodePort/ClusterIP

Core Concepts: Services

master

service

service

Public LB

kind: Service
apiVersion: v1
metadata:
 name: web-frontend
spec:
 ports:
 - name: http
 port: 80
 targetPort: 80
 protocol: TCP
 selector:
 role: web
 type: LoadBalancer

Core Concepts: Services

master

service

service

Public LB

kind: Service
apiVersion: v1
metadata:
 name: web-frontend
spec:
 ports:
 - name: http
 port: 80
 targetPort: 80
 protocol: TCP
 selector:
 role: web
 type: LoadBalancer

Core Concepts: Services

master

service

service

Public LB

kind: Service
apiVersion: v1
metadata:
 name: web-frontend
spec:
 ports:
 - name: http
 port: 80
 targetPort: 80
 protocol: TCP
 selector:
 role: web
 type: LoadBalancer

Core Concepts: Services

master

service

service

Public LB

Scheduling:
Decide where my containers should run

Lifecycle and health:
Keep my containers running despite failures

Scaling:
Make sets of containers bigger or smaller

Naming and discovery:
Find where my containers are now

Load balancing:
Distribute traffic across a set of containers

Kubernetes Handles...

Storage volumes:
Provide data to containers

Logging and monitoring:
Track what’s happening with my containers

Debugging and introspection:
Enter or attach to containers

Identity and authorization:
Control who can do things to my containers

Custom Resource
Definitions

Example CRD
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: securedeployments.ctl.gcp.solutions
spec:
 group: ctl.gcp.solutions
 version: v1
 scope: Namespaced
 names:
 plural: securedeployments
 singular: securedeployment
 kind: SecureDeployment
 shortNames: ["sd", "securedeploy"] $ kubectl get sd

$ kubectl describe securedeploy

CRDs
When?

● You want to create a
new kind of object

● You want to package
multiple objects as
one

What?

● Extension of the
Kubernetes API

● You write the spec
and build a
controller

Where?

● Docs:
https://kubernetes.io/docs/con
cepts/extend-kubernetes/api-ext
ension/custom-resources/

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

The Operator
Pattern

Elasticsearch Operator
apiVersion: enterprises.upmc.com/v1
kind: ElasticsearchCluster
metadata:
 namespace: elasticsearch
 name: example-es-cluster
spec:
 kibana:
 image: kibana/kibana-oss:6.1.3
 cerebro:
 image: cerebro:0.6.8
 elastic-search-image: elasticsearch-kubernetes:6.1.3_1
 client-node-replicas: 3
 master-node-replicas: 2
 data-node-replicas: 3
 data-volume-size: 100Gi
 snapshot:
 scheduler-enabled: true
 type: gcs
 bucket-name: my-project-snapshots
 cron-schedule: "@every 2m"
 image:
cloud-solutions-group/elasticsearch-cron:0.0.4

The kind defined by the CustomResourceDefinition

Operator gives me:
1. Elasticsearch Cluster with configurable topology
2. Kibana
3. Cerebro (dashboard)
4. Snapshot jobs with cron schedule

02Google
Kubernetes
Engine

51

Kubernetes the
Easy Way

Start a cluster with one-click

View your clusters and workloads in a single
pane of glass

Let Google keep your cluster up and running

52

Enter Google Kubernetes Engine

 Kubernetes Master, Fully Managed by Google

 Nodes Nodes Node Pool C Node Pool B Node Pool A

GKE is Google Cloud’s
Kubernetes Platform

Generally Available since
August 2015

Take advantage of the
deep integration with
Google Cloud Platform
features and services

Nodes with Automated Operations via GKE

GKE Cluster

53

Kubernetes Control
Plane

 API Server

 etcd

 Scheduler

 Controller
Manager

Fully Managed K8s Control Plane
 Kubernetes Master, Fully Managed by Google

Site Reliability Engineers
manage, scale, and upgrade
the control plane in a
Google-owned project

Upstream Kubernetes,
tracks open source releases
closely

 API Server

 etcd

 Scheduler

 Controller Manager

Nodes

54

Managed K8s Nodes

Nodes in GKE run in
customer projects, and...

GKE provides automation to
help keep nodes healthy
and up-to-date

GKE Nodes can run either
Container-Optimized OS or
Ubuntu

GKE Nodes

 Kubelet

 Kube-Proxy

 Container Runtime

 Container Network

Control Plane

55

Node Pools for Diverse Workloads

GKE Clusters support
multiple Node Pools with
heterogeneous resources.

Users can create Node Pools
with:

● Preemptible VMs
● GPUs or Local SSDs
● Custom Machine

Types

 Node Pool C Node Pool B Node Pool A

1 CPU
3.75 GB RAM

1 Nvidia V100 GPU

16 CPU
64 GB RAM

Preemptible VM

4 CPU
4 GB RAM

Custom Machine

GKE Cluster

56

Auto
Kubernetes

Auto-repair

Automatically
initiate repair
process for nodes
that fail a health
check.

Auto-upgrade

Keep the control
plane and nodes in
the cluster
up-to-date with the
latest stable
version

Auto-scale

Cluster autoscaling
handles increased
demand and scales
back as needed

57

GKE Autoscaling Paradigms

Scale Infrastructure Dynamically
Node Auto Provisioning

Trigger: Resources Required by Pods Larger than
Existing Node Pools

Scale Workloads Vertically
Vertical Pod Autoscaling

Triggers: VPA Recommendations

 Nodes Nodes

58

Multi-Zone Clusters: Enables higher service level by deploying nodes across multiple zones

Google Kubernetes Engine, Multi-Zone Cluster

Kubernetes Master
us-central1-a

node-pool-ndefault-pool node-pool-n

Node,
us-central1-a

Node,
us-central1-b

Node,
us-central1-a

Node,
us-central1-b

Node,
us-central1-a

Node,
us-central1-b

Multi-zone and Regional Clusters

59

Multi-zone and Regional Clusters
Regional Clusters: Enables zero-downtime upgrades and 99.95% uptime by deploying multiple masters

Google Kubernetes Engine, Regional Cluster

Kubernetes Master
us-central1-a

node-pool-ndefault-pool node-pool-n

Node NodeNode Node Node Node

Kubernetes Master
us-central1-b

Kubernetes Master
us-central1-c

Node Node Node

Load Balancer

containerd runtime
● The full Docker runtime is largely unused by

Kubernetes, and represents a large code
surface-area

● containerd is the CRI-compliant minimal Docker
component

● Available for node pools running COS and GKE 1.11+

● Use the new runtime-agnostic crictl utility to
troubleshoot individual containers

Previously, dockerd was the proxy to containerd

kubelet

Now, the kubelet can speak directly to containerd

kubelet

Sandbox Pods (gvisor runtime)

Machine-level virtualization Rule-based execution gvisor

Stackdriver
Kubernetes
Monitoring

● Kubernetes-aware
monitoring

● Drill down through
clusters, nodes
and pods right
through to the
container

Knative

● Building-blocks for serverless workloads – on Kubernetes

○ Serverless without the lock-in of serverless!

● Three main components

○ Build – turns your code into runnable containers

○ Serving – revisions, traffic splitting, autoscaling

○ Eventing – enables late-binding to event sources and
consumers, consistent with the emerging CloudEvents
specification

● Backed by Google, Pivotal, IBM, RedHat, and SAP.
Knative

https://github.com/cloudevents/spec

03Istio
Service Mesh

In the past

10% canaries
Load Balancing

Traffic control tied to
infrastructure

 Canary

 Default

 Default

 Default

 Default

 Default

 Default

 Default

 Default

 Default

With Istio
Traffic flow separated from
infrastructure

 Canary

 Default

10% canaries
Istio Load Balancing

90% of traffic

10% of traffic

pictures

App Rollout
hosts:
 - pictures
http:
 - route:
 - destination:
 host: pictures
 subset: v1
 weight: 90
 - destination:
 host: pictures
 subset: v2.0-alpha
 weight: 10

Subset v2.0-alphaSubset v1

90% 10%

 Proxy

Frontend

 Pictures

Proxy

 Pictures

Proxy

Traffic steering
hosts:
 - pictures
http:
 - match:
 - headers:
 user-agent:
 regex: ^(.*?;)?(iPhone)(;.*)?$
 route:
 - destination:
 host: pictures
 subset: v2.0-alpha
 - route:
 - destination:
 host: pictures
 subset: v1

pictures

Subset v2.0-alphaSubset v1

 Proxy

Frontend

 Pictures

Proxy

 Pictures

Proxy

● A C++ based L4/L7 service proxy

● Extensible with the concept of L4/L7 “filters”

● Battle-tested @ Lyft

● Traffic routing and splitting, health checks, circuit breakers,

timeouts, retry budgets, fault injection, …

● HTTP/2 & gRPC

● Transparent proxying, designed for observability

● Control plane config protocol xDS

Envoy, the Istio service proxy

With Istio

 Control Plane
Istio Control Plane

Proxy

Frontend

Proxy

Payments

Istio Architectural Components

Pilot: Control plane to
configure and push service
communication policies.

 Mixer: Policy enforcement
with a flexible plugin model
for providers for a policy.

Citadel: Service-to-service
auth[n,z] using mutual TLS,
with built-in identity and
credential management.

Galley: Validates user config
on behalf of the other control
plane components

CitadelPilot

Mixer

Control Plane API

Service A Service B

proxy proxy

HTTP/1.1, HTTP/2,
gRPC or TCP --
with or without

mTLS

Config to data
proxies

TLS certificates
to proxies

Policy checks,
telemetry

Galley

Adaptor

Config data

Mixer: Extensibility

Mixer has an open API and a
pluggable architecture: Send
telemetry, logs and traces to
your system of choice

Out-of-process adapters
allows independent scaling
of mixer and the adapter, add
additional backends without
having to redeploy mixer

Istio 1.1 defaults: Telemetry
enabled, Policy disabled

frontend

proxy

API: /pictures
Latency: 10ms
Status Code: 503
src: 10.0.0.1
dst: 10.0.0.2

Policy

Template
Specific

gRPC
Service

Telemetry

Out-of-process
adapters

https://github.com/istio/istio/tree/master/mixer/adapter

Adaptor

Adaptor

Adaptor

Adaptor

https://github.com/istio/istio/tree/master/mixer/adapter

73

That’s a wrap!

