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Two use cases:
Ca n R L b e a e Logistics: middle mile
e Set covering
useful tool
f O r O R? Hard constraints: the problems have structure
°

Can RL deal with it?
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Middle-mile logistics

The problem in a nutshell:

e Hubs, trucks with fixed schedule
e Shipments to move from one hub to another
e Constraints: truck capacity, shipment deadline

Model it as an MDP?

e State: a time-expanded graph
o Nodes are hubs with time
o Edges are trucks with their schedule
o Parcels are located at nodes
e Transition: one shipment moves from one hub
to another
e Reward: whenever a shipment reaches its
destination
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Middle-mile logistics

Use RL to solve the problem

e PPOforRL
e GNN for the Q and policy functions

Results?

e GNNs provide a good fit
e Significantly more parcels delivered
than with a linear model!

Feasibility achieved through:

e Modelling for deadlines
e learning and state for capacities

Middle-Mile Logistics Through the Lens of Goal-Conditioned Reinforcement Learning

Onno Eberhard, Thibaut Cuvelier, Michal Valko, Bruno de Backer
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Conference on Neural Information Processing Systems (NeurlPS) Goal-Conditioned Reinforcement Learning Workshop, New Orleans (USA), December 2023.
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Set covering

The problem in a nutshell:

e |tems to cover (e.g., chessboard square): rows
e Subsets that cover items (e.g., knights): columns

Direct applications in vehicle routing: cover shipments
with possible routes

Model it as an MDP?

e State: items covered, subsets with number of items
they will cover

e Transition: one subset at a time

e Reward: total cost of solution (humber of subsets)

Results?

e DQN: works slightly better than a greedy heuristic
(Chvatal)
e Not (yet) scaling to any number of items/subsets
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Model Solution/Greedy
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Results not yet published
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