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Abstract

Understanding the influence of genetics on human disease is among the pri-
mary goals for biology and medicine. To this end, the direct study of natural
human genetic variation has provided valuable insights into human physi-
ology and disease as well as into the origins and migrations of humans. In
this review, we discuss the foundations of population genetics, which pro-
vide a crucial context to the study of human genes and traits. In particular,
genome-wide association studies and similar methods have revealed thou-
sands of genetic loci associated with diseases and traits, providing invaluable
information into the biology of these traits. Simultaneously, as the study of
rare genetic variation has expanded, so-called human knockouts have eluci-
dated the function of human genes and the therapeutic potential of targeting
them.
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INTRODUCTION

Human traits and diseases are the result of individual or combinatorial factors of genetics and the
environment, the precise breakdown of which varies by disease. Some diseases such as lung cancer
have primarily environmental contributions such as smoking. Some diseases such as cystic fibro-
sis are genetically mediated, although severity can vary with the environment and other genetic
effects. Most diseases are intermediate, with some important genetic and environmental contri-
butions (e.g., heart disease). Thus, understanding the influence of genetics on human disease is
among the primary goals for biology and medicine.

Model organisms are often an ideal system for testing biological hypotheses because their en-
vironments can be highly regulated and genetic interventions are relatively simple. Trading off
physiological complexity for similarity in genetic background, cell lines derived from human tis-
sue can also be manipulated in relatively controlled environments, but in vitro systems may be
insufficient to represent the biological complexity involved in disease. Given uncertainty in how
precisely either model organisms or human cell lines reflect human biology, especially for higher-
order functions, datasets of natural human variation can provide a direct lens into understanding
human phenotypes when these approaches fall short.

These advantages notwithstanding, analyzing natural human variation datasets presents unique
challenges spanning rare to common complex diseases that must be addressed in order to extract
useful biological information. Because the human genome is shaped by human history, under-
standing evolutionary concepts from population genetics is critical for appropriate interpretation
of genetic studies. Additionally, the number of individuals with a rare disease is inherently low,
and thus a phenotype-first approach requires extensive domain knowledge to confidently associate
genes with diseases when statistical power is low. Conversely, common diseases enable large-scale
studies, but they are typically complex and variable, with many genes and pathways contribut-
ing weak effects alongside the environment that result in the disease state. This complexity means
that large sample sizes are required to achieve statistical power for robust findings, leading tomore
expensive experiments. However, the success of genome-wide association studies (GWAS) in ro-
bustly finding and replicating thousands of associations for thousands of phenotypes has demon-
strated the utility of these approaches and ushered in a new era of human genetics. These studies
can home in on causal pathways and relevant cell types in an unbiased fashion, with the ultimate
goals of understanding disease states and, ideally, of positive therapeutic outcomes.

POST–HUMAN GENOME PROJECT

Nearly 20 years ago, the Human Genome Project completed the first draft sequence of the hu-
man genome (1). This first genome provided a backbone for future studies of human genomes,
including the location and base composition of genes. This gene map has since enabled numerous
studies of gene functions and their associations to disease. Perhaps most importantly, this genome
continues to serve as a reference genome that enables geneticists to speak a common language
when analyzing any additional genomes, of which millions have been genotyped or sequenced
over the ensuing decades (Figure 1). In this way, any variation can be characterized in a uniform
manner.

Soon after the Human Genome Project, the dense sequencing of ten 500-kb (kilobase) seg-
ments in hundreds of individuals, performed as part of the International HapMap Consortium
(2), identified a number of locations (loci) in the genome where a single base pair (bp) commonly
varies among individuals, known as single-nucleotide polymorphisms (SNPs). Most variant sites
are rare and typically private to an individual or population, but there are many common vari-
ants that are shared across populations. Nearby variants are typically inherited together and are
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Figure 1

Growth in size of modern genetics datasets. (a) The number of samples whose whole genomes or exomes
were sequenced over time through September 2019 by the Broad Institute. Panel a courtesy of Niall
Lennon, Broad Genomics. (b) The increasing number (top) and fraction (bottom) of samples in genome-wide
association studies as a function of ancestry compared to the global population. Panel b adapted with
permission from Reference 58; copyright 2019 Springer Nature.

therefore often found in a correlated state known as linkage disequilibrium (LD), which leads to a
block-like structure of haplotypes. Further, this sequencing has revealed the now well-established
fact that any pair of individuals have remarkably similar genomes, with approximately 99.9% of
sites in the genome being identical.

Later, the development of microarray technologies enabled the genotyping, or ascertainment
of the genotypic state (homozygous reference, heterozygous, or homozygous alternate) of a known
location in the genome, of hundreds of thousands to millions of genetic variants in an individual
(3). Genotyping of hundreds of individuals spanning multiple populations provided insight into
the level of haplotype sharing across individuals. Shared haplotypes paved the way for imputation,

www.annualreviews.org • Analytic and Translational Genetics 219

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
:2

17
-2

41
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
04

/0
8/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



BD03CH10_Karczewski ARjats.cls June 25, 2020 21:3

the process of filling in genotypes, which enabled cost-effective GWAS.However, these genotyp-
ing technologies are limited to known loci and therefore are biased toward those that are variable
in previously studied populations.

In the last decade,whole-genome sequencing (WGS) technologies have dramatically improved
and become much cheaper, enabling the identification of nearly all the genetic variation specific
to a given individual. In these technologies, genomic DNA from an individual is sheared and small
fragments of DNA (currently about 150 bp on each end of the fragment) known as short reads
are sequenced (4). Typically for a high-coverage genome, nearly one billion of these reads are
sequenced so that the coverage, or the average number of times a base at each position in the
genome is observed, of a sequencing run is about 30-fold. These fragments are aligned (mapped)
to a reference genome, and differences from this reference are identified in a process known as
variant calling. Over the years, methods for accurate variant calling have improved considerably,
including those for single-nucleotide variants (SNVs), short insertions or deletions (indels), and
larger variants including copy number variants and structural variants (SVs).

With these technologies, large sequencing projects have identified the scale of common and
rare genetic variation in human populations.The 1000Genomes Project performed low-coverage
(4–8×) sequencing of 2,504 individuals, providing a high-resolutionmap of genetic variation.This
catalog of variants spans the allele frequency spectrum, from those that are very common globally
or within a population to those that are very rare, sometimes even newly arising in a single gener-
ation (de novo mutations). Assessments of these de novo mutations and phylogenetic comparisons
with primates, our nearest ancestors, have enabled estimation of the humanmutation rate (μ) to be
approximately 10−8 per base per generation. Further, the project characterized detailed patterns of
variation around genes, including depletions of variation in and near exons and transcription start
sites. Data from the 1000 Genomes Project as well as from the Human Genome Diversity Panel
have now been updated to include high-coverage (30×) sequence data, which are freely available
to researchers (5, 6).

A targeted version of this technology known as whole-exome sequencing (WES), which en-
riches for protein-coding regions of the genome, is several-fold cheaper. This technology and
cost reductions of WGS have enabled still larger projects (Figure 1a), including 6,503 individu-
als from the Exome Sequencing Project (7) and 60,706 individuals from the Exome Aggregation
Consortium (ExAC) (8). This cohort and the Genome Aggregation Database (gnomAD), which
includes 141,456 individuals with exome and genome sequence data, are metacohorts that include
individuals from several common disease cohorts and population studies (9).

POPULATION GENETICS

Evolutionary Forces Governing Genetic Variation

In each generation, the human genome accumulates genetic variation in the form of de novo
mutations, which are new mutations that arise in offspring and are not present in the parents. On
average, de novo mutations are found at a rate of approximately 65 SNVs and 5 indels (10), as well
as 0.35 SVs (11), per individual. Given these mutation rates [ranging from 10−9 to 10−7 across
genomic contexts (9)] and a population size of 7.5 × 109, it is likely that every possible SNV that
is compatible with life exists in at least one individual.Most variants are noncoding and are benign
to the development and life of the individual. As such, these variants can be passed on to further
generations, and may stochastically rise or fall in frequency over multiple generations in a process
known as genetic drift. The likelihood that a de novo variant remains in the population is inversely
proportional to the effective population size (Ne): the number of individuals in a theoretically ideal
population with the same level of genetic drift as the actual population (12).
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Figure 2

Natural selection shapes genome-wide variation. (a) A schematic of negative and positive selection acting over generations. Panel a
adapted with permission from Wikipedia (https://en.wikipedia.org/wiki/Evolution) (CC BY-SA 3.0). (b) A histogram of the natural
selection coefficient (s), here measuring only negative selection against deleterious (predicted loss-of-function) variation, for all
protein-coding genes.

While most newly arising variants are evolutionarily neutral, natural selection also governs the
longevity of variants in a population (Figure 2a). In extremely rare cases, de novo mutations may
be beneficial in the population and be positively selected, increasing in frequency by conferring
a survival advantage. Conversely, some variants may result in severe disease or even embryonic
lethality and thus may not be transmitted to future generations. Between strongly deleterious
and neutral variants, those that slightly decrease fitness result in an average of fewer progeny per
generation. These fitness effects lead to a decrease in the frequency of the mutation through a
mechanism called negative selection. A selection coefficient measures the difference in relative
fitness of individuals with a particular genotype (Figure 2b), including positive and negative se-
lection. Robust examples of positive selection in humans are less common but have occurred in
traits like lactase persistence, skin pigmentation, hypoxia adaptation, diet, and immune function.

The evolutionary forces of mutation, drift, and natural selection govern the landscape of ge-
netic variation and how it varies in frequency throughout the genome.Summaries of variant counts
by frequency are commonly called the allele or site frequency spectrum (SFS;Figure 3a).The SFS
can be polarized with respect to the derived allele frequency (the human-specific allele, compared
to the allele in the closest diverged species, the chimpanzee) or simply refer to the minor allele
frequency (the less common allele in the population). The vast majority of standing variations
across humans are very rare. Meanwhile, the increase in frequency of some variants has resulted
in a seemingly paradoxical phenomenon: Most variants in a population are rare, but most variants
in an individual are common (Figure 3b). Further, due to natural selection removing deleterious
variants from the population, variants that have risen in frequency tend to be less deleterious than
those that are rare (Figure 3c).

The infinite sites model is a widely used assumption in population genetics in which mutations
occur only once per site with no recurrence or backmutations.As allele frequencies are ascertained
in increasingly large genetic datasets, we have recently observed and quantified a phenomenon in
which the same genetic variant originates multiple times, invalidating the infinite sites model for
these datasets (8) (Figure 3d). This has the effect of saturating observations of certain classes of
variation, particularly for CpG transitions, which have a ∼100-fold higher mutation rate than
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Figure 3

Allele frequency properties across the genome. (a) The number of variants for each frequency bin, showing that most variants across the
genome are rare. (b) The percent of variants that are common or rare for all variants within a cohort of 125,748 individuals or within a
single individual. Most variants in the population are rare but most of an individual’s variants are common in the population. (c) The
percent of variants that are missense and synonymous for rare and common variants in a cohort. Rare variants are more likely to be
deleterious, while common variants are more likely to be neutral. (d) The number of variants observed for each mutational class as a
function of increasing sample size. Mutational recurrence, the phenomenon that invalidates the infinite sites model according to which
the same mutation originates multiple times, becomes clear at large sample sizes among CpG variants (8). Data from the Genome
Aggregation Database (9).

other transitions or transversions, leading to a skew in the SFS. Specifically, these variants are
less likely to be singletons (found only once) in large datasets due to multiple mutational origins,
which can affect estimates of negative selection against these variants. For instance, the propor-
tion of singletons among stop-lost variants is higher than that of stop-gained variants, despite the
expectation that the latter have a larger deleterious effect; however, this is solely due to the inabil-
ity of a CpG variant to create a stop-lost variant. This effect (the decrease in the proportion of
singletons due to recurrence) can be adjusted using known mutation rates, estimated from back-
ground mutations in whole-genome data, in a metric termed the mutability-adjusted proportion
of singletons (MAPS) (8); this metric has been used in other large cohorts to assess the level of
negative selection against variant classes (13).

Recombination further shapes the inheritance of genetic variation by influencing how nearby
variants are inherited. Offspring typically inherit one complete chromosome from their mother
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and one complete chromosome from their father. Maternal and paternal chromosomes that are
passed on have undergone meiosis, such that approximately one chromosomal crossover has taken
place to physically swap chromosomal segments, resulting in a new mosaic of variation along
the full chromosome that has not previously been seen. The segments that were directly copied
from each parent are called haplotypes. Haplotype lengths decay exponentially as a function of
generations due to recombination (2) (Figure 4a). Intuitively, people inherit decreasing amounts
of variation from their parents to their grandparents to their more distant ancestors. In this way,
variants that are far away from each other on the same chromosome tend to not be inherited
together, whereas variants that are close to each other are more correlated (Figure 4b–c). This
phenomenon (LD) is typicallymeasured as the squared correlation between the genotypes of a pair
of SNPs, r2, which varies as a consequence of demographic history (Figure 4c). Recombination
events typically take place near hot spots: regions of the genome that are far more likely to undergo
crossover events. These hot spots tend to be shared throughout a population and are regulated by
PRDM9 (14).

Consequences of Human Demography

A population’s demographic history influences the landscape of genetic variation. Humans orig-
inated in Africa, and those humans who migrated to the Middle East and then to other parts of
the world took sequential subsets of genetic diversity with them (Figure 5a), a concept called a
serial founder effect (15). Throughout human history, there have been population expansions and
bottlenecks, which consequently increased or decreased the amount of genetic diversity in the
population, respectively (Figure 5b) (16–19). This history is important to understand for inter-
preting the function of variants across the allele frequency spectrum. For example, the mutation-
selection balance that governs the efficiency of natural selection to purge deleterious variation
from a population depends on effective population size (20). Relatedly, the classical concept of
mutation load describes the burden of deleterious variants carried by a population (21, 22), which
has been explored in depth more recently with a range of models and assumptions in sequencing
data (23).

Natural variation keeps a direct ledger of population history, providing a useful tool to infer
past demographic events. A typical first step for summarizing genetic variation in a population
and subsequently correcting for this structure in association studies is using principal com-
ponents analysis (PCA) on genotype data (24, 25). PCA applied to high-dimensional genetic
data summarizes ancestry differences by providing continuous axes of variation that reflect
genetic differences. These continuous principal components based on genetic data mirror
geographical distance (Figure 6a,c) (24–26). More complex insights into population history
from modern genetic data, such as how effective population sizes changed, how populations
mixed (Figure 6b), and how populations migrated over time can be inferred by comparing the
allele frequency spectrum across populations and the patterns of haplotypic variation across
populations, or through more complex coalescent models (7, 27–29) (for a recent review, see
Reference 30).

When genetic variation is assessed, we typically know its genotype state, but not which parent
passed on each allele. Determining which alleles are inherited on a chromosome together, or the
so-called haplotype structure, can be important for interpreting variant function and a helpful step
prior to running a GWAS. Because nearby regions of the genome tend to be inherited together,
creating LD, and because large numbers of community-wide reference genomes have been se-
quenced, an entire genome does not need to be deeply sequenced to estimate the genotype state
at all variants (31).
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Figure 4

Variants that are physically close tend to be transmitted together. (a) A schematic of linkage disequilibrium (LD), the phenomenon in
which variants are linked in the population. Nearby variants are inherited together, and recombination begins to break down these
blocks over varying timespans within families (left) and in populations (right). In both cases, the local haplotype structure remains
apparent. Panel a adapted with permission from Reference 98 (CC BY). (b) Recombination over time results in higher correlation
between nearby variants, and lower or no correlation for distal pairs of variants. (c) Mean-squared correlation (r2, a measure of LD)
across pairs of variants from individuals in the Genome Aggregation Database (9) as a function of distance between the variants.
Notably, patterns of LD vary as a function of human demographic history.

This principle is commonly used in GWAS to balance cost considerations, as GWAS arrays are
more cost effective than sequencing awhole genome to high coverage.Variants are first statistically
phased with a reference panel of haplotypes to obtain estimates of genome-wide genotype states in
a cohort. Phasing approximately decouples which haplotype segments were inherited together in
each individual. Next, using these phased haplotypes, researchers fill in gaps between variants on
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Human history shapes patterns of genetic diversity. (a) A map of global human migration history over time,
including spatiotemporal founder effects (bottlenecks) as humans populated the globe. Panel a adapted from
Reference 16. (b) Population expansion and bottleneck models modify the extent of genetic diversity and the
spectrum of variant deleteriousness. Panel b adapted with permission from Reference 19 (CC BY 4.0).

the GWAS array that are captured in these reference haplotypes through imputation. This pro-
cess is important for harmonizing large-scale datasets, especially when they have been genotyped
on multiple GWAS arrays. Because SNP ascertainment on GWAS arrays is often biased (often
toward variants most common in European ancestry populations), low-coverage sequencing has
been proposed and used as an unbiased strategy with a similar cost to GWAS arrays (32–34).

ASSOCIATING COMMON VARIANTS WITH PHENOTYPES

A mainstay of human genetics is determining the extent to which genetic versus environmental
factors contribute to a phenotype, i.e., its heritability (35). After inferring a trait’s heritability, a
typical next step involves identifying genetic variants responsible for diseases or trait differences.
However, natural selection decreases the frequency of high-impact deleterious variants, altering
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Population structure can be inferred from genetic data. (a) Principal components analysis (PCA) across the Human Genome Diversity
Panel reflects global genetic diversity (99). The first two principal components are shown. (b) Ancestry karyogram illustrates ancestry
mosaic in chromosome 1 in a recently admixed Peruvian individual sequenced in the 1000 Genomes Project (62, 63). (c) PCA across
PopRes (Population Reference Sample) reflects genetic diversity within Europe. Panel c adapted with permission from Reference 26;
copyright 2008 Springer Nature.
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the spectrum of disease-associated variation. In particular, common variants typically have small
effects on disease risk and thus large sample sizes are needed to robustly identify associations. De-
spite small effects identified in common variant studies, the effect of drugs that target genes with
significant associations need not be small. For instance, PCSK9 inhibitors can dramatically de-
crease LDL (low-density lipoprotein) cholesterol in families with familial hypercholesterolemia,
even though common variant associations with PCSK9 identified in GWAS modulate LDL by a
modest amount (Table 1).

In contrast to common variant association studies, large effect sizes are typically difficult to
detect due to their low frequency (Figure 7a). The relationship between effect size and allele
frequency has been explored across many traits and diseases and follows a predictable relationship
in which common variants tend to have smaller effect sizes than rare variants.Combining concepts
of effect size and allele frequency, common variants together tend to explain more of the heritable
variation in a population, with few exceptions (36) (Figure 7b), while rare variants can be more
impactful especially to smaller numbers of individuals. For example, the genetic basis underlying
type II diabetes risk for the vast majority of the population arises primarily from common variants.
However, for some individuals, high-impact rare variants cause subtypes or other types of the
disease, such as maturity onset diabetes of the young.

GWAS have been highly successful in identifying an abundance of genotype-to-phenotype as-
sociations. In GWAS, a large number of individuals with quantitative, binary (i.e., case/control),
or other phenotype information are genotyped, phased, and imputed. Typically, millions of sta-
tistical association tests are performed between each variant and phenotype using an appropriate
statistical test. Because variants in the genome are linked (in LD), many of the variants analyzed
in GWAS are not independent. Previous works assessing the number of independent tests have
shown that there are approximately one million independent tests in the genome. Thus, variants
in GWAS that pass multiple test corrections and thus meet a p-value threshold less than 5 × 10−8

(0.05/106) are considered genome-wide significant. Following laws of statistical power,GWAS are
better powered for common variants, as many individuals with a given variant are observed.

Methods and Applications of Genome-Wide Association Studies

Depending on the nature of the trait and sample set, different statistical tests are warranted when
conducting a GWAS. Linear regression is commonly used for quantitative traits, and logistic re-
gression is used for binary traits; in both scenarios, covariates that may confound or stratify results
should be included, such as sex, age, principal components for ancestry, and potentially combina-
tions of or interactions between these factors. Across all GWAS models, the modeled outcome
is the phenotype, while the covariates and SNPs are predictors of the phenotype, each with an
effect size coefficient. Each SNP is tested separately. Mixed models, which incorporate a genetic
relatedness matrix between all pairs of individuals, can provide additional power, especially when
related samples and heterogeneous populations are included, although at an additional computa-
tional efficiency cost. Fortunately, novel approaches have recently been developed that improve
the efficiency of these methods and enable their use for biobank-scale GWAS (37, 38).

GWAS for thousands of traits and diseases have now yielded hundreds of thousands of associa-
tions with variants across the genome (39).The larger the sample size, the better powered the study
(Figure 7c), and thus many of the most successful GWAS efforts have resulted from consortia that
have aggregated very large quantities of data. These efforts have uncovered new biology impor-
tant for understanding themolecular basis of disease, including schizophrenia (40), type II diabetes
(41–43), inflammatory bowel disease (44, 45), and coronary artery disease (46), along with its asso-
ciated traits such as triglyceride and cholesterol levels (47, 48). Additionally, large-scale biobanks

www.annualreviews.org • Analytic and Translational Genetics 227

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
:2

17
-2

41
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
04

/0
8/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



BD03CH10_Karczewski ARjats.cls June 25, 2020 21:3

Table 1 Genetic studies inform therapeutic discoveries and development

Gene
target Disease/indication

Genetic model and
phenotype Drug/candidate References

PCSK9 Familial
hypercholesterolemia,
primary or secondary
prevention of ASCVD

GoF mutations cause
autosomal-dominant familial
hypercholesterolemia; LoF
mutations cause low LDL,
reduced ASCVD

Praluent (alirocumab)
Repatha (evolocumab)

80, 82

CFTR Cystic fibrosis In-frame deletions cause cystic
fibrosis

Kalydeco (ivacaftor)
Trikafta (elexacaftor/
ivacaftor/tezacaftor)

102–104

HBB Sickle cell GoF mutations (β6Glu→Val)
cause red blood cells to form
a sickle shape and clump
together

Adakveo (crizanlizumab) 105, 106

CCR5 HIV/AIDS Naturally occurring genetic
variants protect against HIV
infection

Selzentry (maraviroc) 107, 108

LRRK2 Parkinson’s disease GoF mutations cause
Parkinson’s disease

DNL201 and DNL151
(phase I)

109, 110

APOC3 Familial chylomicronemia
syndrome; familial partial
lipodystrophy

LoF mutations cause reduced
TG, higher HDL, reduced
CHD risk

Waylivra (volanesorsen) 111, 112

SGLT2 Type II diabetes LoF mutations cause familial
renal glucosuria, decreased
glucose

Invokana (canagliflozin)
Farxiga (dapagliflozin)
Jardiance (empagliflozin)
Steglatro (ertugliflozin)

113–116

SMN1 Spinal muscular atrophy LoF mutations cause spinal
muscular atrophy

Zolgensma (onasemnogene
abeparvovec-xioi); uses AAV
to deliver new SMN1

Spinraza (nusinersen); restores
a functional copy of SMN1
by regulating SMN2

68

NLRP3 Cryopyrin-associated
periodic syndromes

GoF mutations cause increased
IL-1β, autoimmune disorders

Arcalyst (rilonacept)
Ilaris (canakinumab)

117, 118

TYK2 Immunologically mediated
diseases (psoriasis, lupus,
IBD)

Variants are associated with
immune diseases via GWAS
(reviewed in Reference 119)

BMS-986165 (phase II) 120, 121

In this noncomprehensive list, there is an increasingly well-characterized set of genetic factors that lead to the disease state. The genetic model provides a
mechanism to modulate or perturb via therapeutic avenues, many of which are currently approved or under development. Abbreviations: AAV,
adeno-associated virus; ASCVD, atherosclerotic cardiovascular disease; CHD, congenital heart disease; GoF, gain of function; GWAS, genome-wide
association study; HDL, high-density lipoprotein; HIV/AIDS, human immunodeficiency virus/acquired immunodeficiency syndrome; IBD, inflammatory
bowel disease; LDL, low-density lipoprotein; LoF, loss of function; TG, triglyceride.

increasingly share GWAS summary statistics for a breadth of phenotype measures across tens to
hundreds of thousands of individuals, including electronic health record information, which in
turn enables novel genetic discoveries in an untargeted manner (49). Among seemingly disparate
phenotypes, many of the associations that have been identified appear to overlap across multi-
ple traits and diseases. This phenomenon highlights the pervasive nature of pleiotropy, in which
genetic variants influence two or more seemingly unrelated traits (50).
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Figure 7

Power in GWAS is informed by allele frequency, effect size, and sample size. (a) The relationship between frequency and effect size in
genetic studies. Panel a adapted with permission from Reference 98 (CC BY). (b) A cumulative plot of SNP heritability as a function of
allele frequency. Common variants tend to explain most of SNP heritability (36). (c) The number of independent genome-wide
significant SNPs from GWAS increases with sample size across many complex diseases. The discovery curve varies with the genetic
architecture of the disease. Panel c adapted with permission from Reference 100 (CC BY). Abbreviations: AN, anorexia nervosa; ASD,
autism spectrum disorder; CD, Crohn’s disease; GWAS, genome-wide association studies; MDD, major depressive disorder; SCZ,
schizophrenia; SNP, single-nucleotide polymorphism; T2D, type II diabetes.

Post–Genome-Wide Association Study Analysis

After GWAS have been conducted, analyses are often undertaken to make use of summary statis-
tics, along with LD or functional information to better understand biology. A major consider-
ation for all of these analyses is that while GWAS can robustly identify associations, the most
significant associations are not necessarily causal variants. Thus, some examples of post-GWAS
analyses include pinpointing causal variants through fine-mapping (51, 52), understanding the
causal relationships between genetic instruments for a given exposure and disease via Mendelian
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randomization (53), identifying functional signatures in the genome enriched in cell types and
pathways that explain more or less of the heritable variation (54), and assessing how predictive
these genetic studies are in new cohorts via polygenic prediction (55–58). Relatedly, thousands
of phenotypes have now been analyzed in large-scale biobanks, but these traits and diseases are
not independent. Thus, genetic correlation enables a data-driven assessment of how genetically
similar two phenotypes are (59, 60). Additionally, these approaches can take the conjecture or spe-
cialty out of phenotype precision and certainty, while potentially informing new epidemiological
considerations.

Caveats

An ongoing challenge with the interpretation of GWAS and downstream analyses is the effect of
study bias and stratification (Figure 8a). GWAS are currently vastly Eurocentric, limiting many
insights into non-European ancestry populations. For example, a recent genetic study in Africans
focusing on Ugandan populations recently conducted a GWAS (61); despite the fact that sample
sizes in this study were smaller than several European studies, they found thatmore than half of the
fine-mapped genome-wide significant associations in their study had previously been missed due
to their low or invariant frequencies in European ancestry populations. Similarly, because GWAS
are best powered to discover variants most common in the population studied, the frequencies of
variants in the GWAS catalog tend to be most common in European ancestry populations and less
common elsewhere (62, 63). When GWAS are underpowered, effect sizes can be overestimated
due to winner’s curse.

A pragmatic approach to the data privacy concerns in the genetics consortium model, which
has allowed genetic studies to become increasingly large, is for each contributing researcher to
share GWAS summary statistics after correcting for age, sex, and ancestry covariates. These sum-
mary statistics are then meta-analyzed to aggregate results, thereby increasing power. With this
approach, however, residual stratification is likely to remain because principal components from
smaller cohorts cannot sufficiently control for population structure (Figure 8b). This has resulted
in overestimated signals of polygenic differences in height, cardiovascular disease, body mass in-
dex, waist–hip ratio, and other traits and diseases (63–66). While currently there are not clear
approaches to removing stratification effects that arise from aggregating small cohorts when in-
vestigating polygenic differences geographically, vigilance about how these effects may impact
interpretations is critical.

RARE VARIANT–DISEASE ASSOCIATIONS

In addition to GWAS, which are best powered for identifying common variant associations with
disease (often with small effect sizes), different conceptual approaches must be taken for rare vari-
ants. Due to their low frequency, it is more difficult to ascribe function to rare variants; however,
theymay have very strong influences on severe diseases. In particular, analyses of exome or genome
data from patients with severe Mendelian diseases have identified hundreds of causal gene effects.
For more common diseases, rare variants can be aggregated using various association methods,
but very large sample sizes are required to achieve statistical power.

Mendelian Disease

Mendelian diseases, such as sickle cell disease and cystic fibrosis, are single-gene disorders that
are inherited in a dominant or recessive manner. These are typically more severe than complex
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Figure 8

Population stratification is an important consideration in genome-wide association studies (GWAS).
(a) Failing to account for population structure can result in spurious associations when population and
case/control sampling are imbalanced. Here, ascertaining more cases from Population 2 and controls from
Population 1 would result in a spurious association of the “a” allele with case status. Panel a adapted with
permission from Reference 101; copyright 2004 Springer Nature. (b) Due to differences in GWAS design
and control, inferred polygenic differences in height applied to various populations (shown as a color
gradient) are markedly different based on the GWAS discovery cohort from which the scores are derived
(64). Panel b courtesy of Robert Maier.
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diseases and are more likely to elicit effects early in life. Within a family, these diseases can be
mediated by a single variant, and identifying the causal variants among the background set of
variants found in every individual remains a significant challenge.

Decades of linkage studies have successfully identified genetic factors for recessive and domi-
nant diseases (reviewed in Reference 67). For example, spinal muscular atrophy (SMA) is a group
of neuromuscular diseases that are genetically caused by mutations in SMN1 (68). Recently, two
therapeutic approaches have been developed to restore the function of SMN1 in SMA patients
(Table 1).More recently, approaches using exome and genome sequencing (69) have been applied
to affected individuals and unaffected family members to accelerate Mendelian gene discovery
(70, 71).

As patients continue to have their exomes and genomes sequenced, knowledge bases of causal
genes and variants such as ClinVar (72) are invaluable for the diagnosis of patients; these diagnoses
are beneficial for ending time-consuming and challenging diagnostic odysseys, and potentially for
informing therapeutic avenues. Large reference panels of genetic data that are depleted for rare
disease patients, such as ExAC and gnomAD, can also aid in variant interpretation. Specifically,
they provide accurate estimates of the allele frequency of each variant, which, as a result of the
population genetics forces discussed above, is one of the most informative features of a variant’s
function or deleteriousness. Thus, these databases provide a mechanism by which to filter variants
in patients (8), as variants that are at a significantly higher frequency in the general population than
the disease prevalence cannot be causal for the disease (73). For syndromes where multiple genes
have been previously implicated, filtering to these genes can reduce the search space; however, for
previously undescribed phenotypes, further functional experiments such as enzymatic assays on
biologically plausible genes can be informative. Overall, exome sequencing typically yields diag-
nostic rates of 30–50% depending on the specific ascertainment strategy and phenotype, which
can be further improved with functional information (74).

A Continuum Between De Novo and Rare Variants

Similarly, in disorders where rare high-impact variation is expected to have amajor influence, scans
for de novo damaging missense or predicted loss-of-function (pLoF) variants have been successful
in identifying causal genetic factors, including ARID1B and PPM1D for developmental disorders
(75) and SCN2A and CHD8 for autism spectrum disorder (ASD) (76). A crucial observation from
these studies is that even in the absence of genome-wide significant signals, there is an excess bur-
den of de novo variation in cases (Figure 9), particularly in constrained genes (see below) (77).The
genes and pathways that are damaged by these de novo signals can inform disease etiology andwar-
rant additional sample sizes to pinpoint causal factors. For instance, a recent study showed that the
burden of de novo pLoF variation was similar in cases of ASD and attention-deficit/hyperactivity
disorder, and that the patterns of genes harboring these variants were generally indistinguishable,
suggesting a shared etiology in the genetic makeup of these disorders (78). Further, combining
analyses of de novo variants with inherited variants, the same authors implicated over 100 risk
genes for ASD and showed that these genes are involved in specific neuronal lineages (79). Pre-
liminary analyses of de novo variation in regulatory regions have shown an overall enrichment
in cases with developmental disorders, but larger sample sizes and improved annotation methods
will be required to pinpoint individual causal elements (13).

Sequencing studies that identify rare pLoF variants in healthy individuals have also fundamen-
tally informed therapeutic development (Table 1). In some cases, gain-of-function variants result
in a disease phenotype; in these genes, pLoF variants may be protective for the same disease. For
instance, gain-of-function variants in PCSK9 are causal for hypercholesterolemia (80); accordingly,
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Figure 9

Increased burden of de novo variants in rare disease. Patients with ID/DD have a 2.61-fold higher burden of
ultrarare pLoF variants than unaffected siblings (1.83-fold for ASD). This enrichment is higher for pLoF
variants in highly constrained genes. Abbreviations: ASD, autism spectrum disorder; ID/DD, intellectual
disability/developmental delay; pLI, probability of loss-of-function intolerance; pLoF, predicted loss of
function. Figure adapted with permission from Reference 77; copyright 2017 Springer Nature.

individuals with pLoF variants in PCSK9 have lower LDL cholesterol (81, 82). Because the loss of
PCSK9 is known to be tolerated and protective for coronary heart disease, pharmaceutical inhibi-
tion of PCSK9 is likely to be a safe and effective strategy, respectively, for controlling lipid levels.
Similarly, individuals with LRRK2 gain-of-function variants are at increased risk for Parkinson’s
disease (80, 81), and therefore, inhibition of LRRK2may be a viable therapeutic strategy.Recently,
we showed that pLoF variant carriers of LRRK2 who have a lifelong 50% reduction of the gene
do not appear to have any adverse phenotypes (83). This suggests that inhibition of LRRK2 is
unlikely to result in any major on-target toxicity. These and other examples (Table 1) represent
a new generation of drug targets with genetic support: Indeed, such drugs are more likely to be
approved than those without (84). This has led to calls for a human knockout project to identify
new druggable targets. Given the rare nature of these variants and phenotypes, large sample sizes
are required to ascertain these phenotypic effects or lack thereof. In some cases, sequencing in-
dividuals from consanguineous matings or bottlenecked populations can enrich for homozygous
pLoF variant carriers.

Gene-based tests that combine multiple variants, including burden tests and variance tests, can
boost signal for intermediate frequency variants, where an individual variant may not have sta-
tistical power to be implicated with a given disease. In burden tests, we consider the aggregate
burden of variants in a gene (e.g., the sum of minor alleles weighted by inverse allele frequency)
in a statistical test against a phenotype. These tests are most effective under the assumption that
all variants in the gene contribute signal in the same direction, but they are generally underpow-
ered at current sample sizes. Indeed, a recent study of rare pLoF variants in highly constrained
genes identified an aggregate burden of these variants in height, psychiatric disorders, and educa-
tional attainment, but it was not powered to detect signals at individual genes (85). Alternatively,
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variance tests, including C-alpha (86) and SKAT (sequence kernel association test) (87), relax this
assumption by modeling the shift in the phenotypic variance rather than the mean. For instance,
the overdispersion of rare variation among individuals with extreme levels of triglycerides pro-
vided support for APOB’s influence on lipid levels (86). Recent optimizations of gene-based tests
(38) have enabled their use in biobank-scale datasets, including the UK Biobank (88). For both
GWAS and sequencing analyses, the high cost of sample recruitment and data generation makes
the use of public reference datasets as control cohorts a tempting proposition. However, technical
stratification from a variety of sources (e.g., differences in sequencing depth, variant calling, etc.)
is a major confounder, limiting the robustness of these studies.

INFERENCE OF VARIANT AND GENE DELETERIOUSNESS

Large datasets of exome and genome sequence data can provide not only information about the
levels of current standing variation but also insight into regions of the genome where there are
significant depletions of variation. Different methods have been developed to detect depletions
of deleterious variation, including the Residual Variation Intolerance Score (RVIS) and a method
known as constraint. Both approaches model an expectation of deleterious variation based on
neutral variation and compare this expectation to the observed number of variants. RVIS models
the number of common deleterious (missense or truncating) variants as a function of the total
number of variants in a given gene, and the residuals for each gene are transformed into the
RVIS score (89). This score was applied to data from 6,503 individuals with exome sequence data
from the Exome Sequencing Project to provide an unbiased predictor of haploinsufficient and
developmental genes, which could thus prioritize new disease genes.

Constraintmethods use the underlyingmutation rate of each possible variant in a set of variants
of interest (for instance, missense variants in a gene) to compute the expected number of variants
in that set in a given cohort (90) (Figure 10a–c). A significant depletion (i.e., constraint) of ob-
served variation compared to this expectation indicates the presence of negative selection. This
framework was also applied to pLoF variants in the ExAC dataset to identify 3,230 genes with a
strong depletion of pLoF variants (∼9% observed/expected ratio), which were defined as having
a high probability of loss-of-function intolerance (pLI) (8). These genes are enriched for known
haploinsufficient disease genes, indicating their strong impact on human phenotypes. However,
approximately 70% of high-pLI genes have no known human disease association, suggesting
that they may be undiscovered disease genes, or possibly incompatible with human life when
inactivated.

Recently, we extended this framework, improving the mutational model and variant filtration
(9).We applied these extensions to the gnomAD dataset; these improvements and the larger sam-
ple size enabled the creation of a continuous score for pLoF depletion we termed LOEUF (loss-
of-function observed/expected upper bound fraction). This score is correlated with numerous
metrics of gene function (Figure 10d) and can be used to prioritize disease genes. Unlike the di-
chotomous nature of pLI, LOEUF provides more fine-grained resolution for assessing depletion
of deleterious variation across the whole genome.

Outside the exome, several efforts have begun to model the depletion of variation in noncod-
ing regions. However, the lack of a triplet code or boundaries on functional elements (as in exons
for coding regions) and, thus, the lower accuracy of annotation methods complicate functional
interpretation. Without accurate annotation methods, sample sizes that are orders of magnitude
larger than currently available datasets will be required to identify regulatory elements under-
going natural selection (13). However, some global patterns are beginning to emerge, including
the presence of redundancy in enhancers that regulate essential genes (91). Recently, we extended
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Figure 10

Identifying genes depleted of genetic variation. The observed and expected number of variants, as described by mutational models of
constraint, for (a) synonymous, (b) predicted loss-of-function (pLoF), and (c) missense variation in the Genome Aggregation Database
(gnomAD). (d) The depletion of pLoF variation is quantified using LOEUF (loss-of-function observed/expected upper bound fraction;
here binned into deciles), which is correlated with established gene lists based on their phenotypic severity. Figure adapted with
permission from Reference 9 (CC BY 4.0).

the MAPS approach described above to characterize variants that create upstream open reading
frames (92), suggesting that they are at least as deleterious as an average missense variant. Such
targeted approaches are likely to continue to be successful in identifying deleterious classes of
variation. Additionally, as much larger sets of WGS data become available along with functional
data, approaches that integrate these data types will provide valuable insight into the regulatory
processes of the genome and permit interpretation of disease variation in noncoding regions.

CONCLUSION

In humans, analysis of large-scale natural variation data can provide valuable insights into human
disease and gene function. Joint analysis of genotype and phenotype data is especially powerful,
but even in the absence of phenotype data, patterns of variation data across the genome can inform
population history, natural selection, and the biological function of genes.

Analyses of natural human variation data have numerous applications in translational settings.
From a rare disease perspective, the creation of databases such as gnomAD aids in the interpreta-
tion of rare variation: Sequencing the exomes and genomes of rare disease patients and providing
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a molecular diagnosis can have a profound impact by suggesting therapeutic avenues or ending
diagnostic odysseys. From a common disease perspective,GWAS enable the creation of polygenic
risk scores, which alongside other clinical factors can stratify patients into high- and low-risk bins
for a given disease. Relatedly, GWAS can identify regions of the genome where biological signal
is enriched and guide functional studies toward biological mechanisms.

Similarly, studies of naturally occurring pLoF variants can provide insights into gene function
and therapeutics in a very concrete way: If individuals who lack a gene are protected from a par-
ticular disease and are otherwise healthy, a drug that reduces expression of that gene may be both
safe and effective. Examples of genetically guided drug development are now available (Table 1),
and further genetic studies can help identify new drug targets (93, 94) or provide evidence of safety
(83, 95). Genetics already provides useful information about the organ systems impacted in retro-
spective analyses of clinical trial successes and failures (96). In this way, the genetic understanding
of human biology has ushered in a new era of drug discovery that is likely to continue for decades
to come (97).
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