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ABSTRACT
Cryptocurrencies that are based on Proof-of-Work often rely on

special purpose hardware (ASICs) to perform mining operations

that secure the system.

We argue that ASICs have been mispriced by miners and sellers

that only consider their expected returns, and that in fact mining

hardware should be treated as a bundle of financial options, that
when exercised, convert electricity to virtual coins.

We provide a method of pricing ASICs based on this insight, and

compare the prices we derive to actual market prices. Contrary to

the widespread belief that ASICs are worth less if the cryptocur-

rency is highly volatile, we show the opposite effect: volatility

significantly increases value. Thus, if a coin’s volatility decreases,

some miners may leave, affecting security. To prevent this, we

suggest a new reward mechanism.

Finally we construct a portfolio of coins and bonds that provides

returns imitating an ASIC, and evaluate its behavior: historically,

realized revenues of such portfolios have significantly outperformed

ASICs, showing that indeed there is a mispricing of hardware, and

offering an alternative investment route for would-be miners.

1 INTRODUCTION
The cryptocurrency boom was heralded in 2008 with the arrival

of Bitcoin [Nakamoto 2008], which introduced the idea of a fully

decentralized and distributed currency to the mainstream. Bitcoin’s

consensus protocol relies primarily on miners, who utilize Proof-

of-work (PoW) to secure the currency from double spending at-

tacks. Miners in turn are rewarded for their work via a form of

computation-based lottery, yielding additional rewards the more

they compute on behalf of the system. The ability to earn rewards

from mining has led to an arms race in which miners have pur-

chased increasingly efficient hardware that computes Bitcoin’s PoW

faster and at ever lower costs [Bedford Taylor 2017]. Today’s mining

is mostly performed in large industrial scale mining farms hosting

many machines, each consisting of ASICs (Application Specific In-

tegrated Circuits) tailor-made for mining. The profits miners derive

from their activity are highly volatile as they depend on Bitcoin’s

fluctuating exchange rate, on the amount of competition from other

miners (see Figure 1), and on many other costs. To stay competi-

tive, miners purchase mining rigs in advance, and at a significant

capital expenditure. These volatile returns make mining a high-risk

investment and may indirectly hurt the cryptocurrency if fewer

miners are there to secure it.

A naïve approach to pricing mining hardware takes into ac-

count future expected costs and gains. We emphasize, that such ap-

proaches, even if they account for future valuations of the currency,

and for increases in mining competition, are inherently flawed. We

claim that ASICs are functionally equivalent to a bundle of options

Figure 1: Bitcoin’s annual volatility, exchange rate to USD
and global hash-rate, as functions of time.

that allow their owners to exchange electricity for coins at different

points in time.

Our main contributions in the paper are to correctly model the

economics of ASICs and to apply option pricing theory to price

them. We thus properly account for risk which significantly affects

the value of mining hardware.

We provide an algorithm that computes the value of an ASIC

given its performance (power consumption and hash-rate), and

market parameters such as the current exchange rate, volatility,

electricity prices, the block reward and more.

Finally, we construct an imitating portfolio which consists of

coins and bonds, and would ideally provide identical returns to

an ASIC, and review its performance. Looking back at historical

data, we find that our imitating portfolios out-perform physical

ASICs, even when accounting for the fees required for portfolio

maintenance.

A novel insight arising from ourwork is the importance of volatil-

ity for miner profitability. At first glance, it may seem that higher

volatility in rewards implies a higher risk for miners, which may

devalue mining machines, but in fact, we show that said machines

increase in value if the cryptocurrency is more volatile, as shown

for example in Figure 9. This is because, like with conventional

options, if the exchange rate plummets, the losses of miners are

bounded (they can always shut off their machines and avoid paying

for electricity), but if exchange rates increase steeply their gains

can be significant.

Anecdotal evidence suggests mining hardware is usually priced

without taking volatility into full consideration, thus the inherent

risk is ignored. Instead, the hardware’s expected returns are used;
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so, it is not surprising that our valuation method produces results

that are different from actual market prices, as shown in Figure 6.

Paper Structure. The remainder of the paper is structured as

follows: we begin by reviewing related work, and then present

additional background on mining and option pricing in Section 2.

We go on to define the precise model for ASICs in Section 3. We

present our results on the correct methods for pricing ASICs in

Section 4, deferring some of the proofs to Section 6. We then employ

our theoretical results to perform an empirical evaluation using

real-world price data in Section 5. We conclude with a discussion

on the implication of our results in Section 7.

1.1 Related Work
Several papers explore economic and game theoretic models of

mining, butmost focus on thewillingness of newminers to enter the

market based on expected returns, and usually consider equilibria in

a single shot interaction, e.g., [Arnosti and Weinberg 2018; Dimitri

2017]. [Dwivedi et al. 2019] consider a myopic Nash equilibrium in

a dynamic game model of the bitcoin market.

Other works such as [Hayes 2014, 2017] look at mining dynamics

in an economic setting where different cryptocurrencies (altcoins)

co-exist. An analysis of mining in a model where miner rewards

are based only on transaction fees and block rewards are negligible

is carried out in [Tsabary and Eyal 2018]. An equilibrium of miners

in a bounded horizon setting is explored in [Fiat et al. 2019] and

[Goren and Spiegelman 2019]. Both show that miners may in fact

gain by turning ASICs on and off repeatedly, taking advantage of

difficulty adjustments. An economic analysis of the security aspects

of Bitcoin is performed by [Budish 2018], arguing that when the

currency is under attack, the value of Bitcoin drops and mining

hardware loses value.

Unlike our work, in all of the above the risk inherent in exchange-

rate fluctuations and its affect on ASIC pricing is not addressed.

Mining pools, which are coalitions of miners who perform PoW

together in order to get a steadier revenue-flow, are very popu-

lar [Gervais et al. 2014]; thus, risk-aversion is believed to be wide-

spread among miners. Pools were examined from an economic

perspective by [Rosenfeld 2011; Salimitari et al. 2017; Schrijvers

et al. 2017], but those again neglected risk. An analysis that does

take risk into consideration appears in [Athey et al. 2016], where

the price of bitcoin (and not the price of ASICs) is modeled based

on user adoption and friction due to exchange-rate uncertainty.

Lastly, works in the vein of [Anish Dev 2014; Hanke 2016; Suresh

et al. 2018] attempt to improve mining performance, thereby also

increasing mining hardware value, but do not directly analyze said

value.

2 PRELIMINARIES
2.1 Additional Details on Mining
In Bitcoin, a block is considered valid only if its hash, interpreted

as a number, is under some target value. The hash function used

is SHA-256, as standardized by NIST. Currently, the best known

method for finding a low hash is to simply try many different pre-

images by brute force.

The target value is automatically set by the protocol in order

to adjust the difficulty of creating blocks to keep the creation rate

constant even when more computational power is added to the

network. Thus, the probability that a single miner will create a

block decreases if more hash-rate is competing against it.

To encourage the creation of valid blocks, i.e.mining, even in the

face of the ever-mounting computational effort required, Bitcoin

rewards miners by allowing the creator of a block to add a coinbase
transaction to it. This transaction creates money out of "thin-air"

and transfers it to an address specified by the miner, in addition to

other fees collected from each of the transactions included in the

block.

Single miners do not expect to find a block often, thus the ma-

jority of bitcoin mining is done in mining pools, where miners split

rewards from blocks they find jointly. For this reason, miners can

expect small and constant returns from mining over time, and our

model will rely on this fact.

2.2 Option Pricing
A European call-option is a form of contract involving two parties

and an underlying asset. By purchasing a call-option, the buyer re-

ceives from the seller the right to buy the asset at some agreed-upon

price, the strike price, at an agreed-upon future date, the expiration
date. As this is a right and not an obligation, the buyer need not

exercise it if deemed unprofitable. Specifically, it might be the case

that by the date of expiry the underlying asset’s price is lower than

the strike price, thus it is preferable to buy the underlying asset

directly and discard the option.

In 1973, Black and Scholes have published what is now called the

Black-Scholes model of option valuation [Black and Scholes 1973],

a seminal work using the no-arbitrage argument, which argues that

options should be priced such that no arbitrage possibility involving

the underlying asset exists.

Using option pricing as a foundation, various financial decisions

have been cast as options, for example the decision of whether to

delay or abandon a project [Dixit and Pindyck 1994], and even valu-

ing patents and patent protected research and development projects

[Schwartz 2004]. This technique is called real option valuation and

it underlies this work.

3 THE MODEL
Our model divides time into discrete mining opportunities (turns).
The model assumes a miner can either activate its hardware or

leave it off for the whole duration of a single turn t . If the ASIC has

a hash-rate of h hashes-per-second and the total hash-rate active

on the network excluding the ASIC is H (t), activation of the ASIC

allows the miner to receive a fraction
h

H (t )+h of the block-reward,

which is bt coins. This is a highly accurate approximation of the

reward a participant in a mining pool would receive [Rosenfeld

2011].

Denote the ASIC’s efficiency, measured in the Watt-hours re-

quired for the computation of a single mining opportunity, as φ,
and the cost of electricity as et , measured in dollars per Watt-hour.

To model hardware failures, assume the ASIC "decays" gradually.

We model this via a mortality distribution: letM(t) be the fraction
of ASICs that "remains" after t time units.
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Figure 2: Coin’s exchange rate as a multiplicative random
walk, with a start value of C0, a q probability to increase by
a factor of ∆, and a 1 − q probability to decrease by δ .

Following [Cox et al. 1979], we model the change in Bitcoin’s

exchange rate as a multiplicative random walk. We denote the

Bitcoin-to-USD exchange rate at turn t by Ct , the probability for

its value to rise to ∆Ct in the next turn by q, and to fall to δCt in
the next turn by 1 − q, resulting in the price tree shown in Figure 2.

While it may seem simplistic to assume that the price at every

time unit can either increase or decrease by a factor, using suffi-

ciently small time intervals yields a highly granular price model

for longer periods. Indeed, this distribution is commonly used in

finance to model the value of assets such as currencies and stocks.

Denote the annual interest rate in the economy as η > 0, and

let r = 1 + η. We assume 0 < δ < 1 < r < ∆, otherwise, risk-less
arbitrage opportunities emerge, which our model assumes do not

exist.

Definition 1 (The no-arbitrage assumption). The freemarket
adjusts asset prices such that it is impossible to outpace market gains
without exposure to more risk. If such an arbitrage opportunity arises,
market forces would quickly use it until a pricing equilibrium is found,
thus closing the opportunity.

We mainly deal with the following types of assets:

i. The underlying cryptocurrency.

ii. A mining opportunity, denoting its value as V (·).
iii. A risk-free asset. An asset with a future return which is

independent of the state of the world that is reached. Its mul-

tiplicative return is denoted as the risk-free rate. An example

of such an asset is a government-issued bond, the value of

which is denoted by B .

In addition, we will create portfolios holding combinations of

the above assets, and denote a portfolio’s value by Φ (·).
We assume that all these assets are traded with sufficient liquid-

ity, a clearly defined price and that it is possible to hold a “short”

position on each one of them (owing the asset to another party,

equivalent to holding a negative amount of it).

Pricing a Single Immediate Mining Opportunity. Owning an ASIC

gives the owner an option to activate it for each of the mining

opportunities available during its lifetime; thus an ASIC’s value is

exactly the sum of the values of all these opportunities. Therefore,

by pricing a single opportunity we can price an ASIC.

An opportunity is similar to a European call option - an ASIC’s

owner has the option of paying the electricity cost of activating the

ASIC for the duration of the opportunity (or, in option terminology,

pay the strike price), which is h · φ · et , and in return receive the

partial reward of
h

H (t )+h · bt ·Ct .
This opportunity can never be worth strictly less than zero, as a

miner is not obliged to turn on its ASIC. In total, the value at time

t of the t-th mining opportunity is:

V (t , t ,Ct ) ≜ max

(
h

H (t) + hbtCt − hφet , 0
)

(1)

This is the immediate value of an opportunity offered by the

ASIC. But, pricing a future opportunity is trickier, as the future

exchange-rate is unknown; this will be demonstrated by Example 1.

We shall denote the value of the t-th opportunity in relation to some

time k ≤ t , where the coin’s exchange rate at k isCk asV (t ,k,Ck ).

Total ASIC Value. Assumingwe have successfully evaluated ASIC

activation for a single turn, we can proceed to calculate the value

of an "entire" ASIC received at time s relative to t ≤ s:

VASIC (s, t ,Ct ) =
∞∑
t=s

M (t − s) ·V (t , t ,Ct ) (2)

Reception Delay. A method for evaluating an ASIC’s price could

allow us to estimate the potential decrease in price associated with

receiving hardware farther in the future.

Often, ASIC manufacturers are backlogged and either deliver

ASICs to customers in the "far" future, or charge a premium for

early deliveries. Assuming ASICs do not decay while in transit, the

loss of receiving the ASIC at time s ′ instead of s is:

VASIC
(
s ′, t ,Ct

)
−VASIC (s, t ,Ct ) (3)

Example 1. A vendor offers the option of using its ASIC tomorrow
for a single round. The vendor assures that if the ASIC is turned on,
it will earn exactly 1 Bitcoin (henceforth denoted as BTC or B), and
will require $250 worth of electricity. To simplify the example, let the
multiplicative interest-rate r be 1.

For this toy example, assume bitcoin’s value starts at $400 today,
and will either double or halve tomorrowwith equal probability, giving
an expected exchange-rate of 1

2
· $200 + 1

2
· $800 = $500.

At a $200 rate, activating the ASIC will result in a loss of $50, as
$250 is paid and only $200 is received; thus, rational agents will not
activate the ASIC, and will lose nothing. On the other hand, if the rate
increases to $800, it is possible to earn $800− $250 = $550 by turning
the hardware on. In total, the expected return is 1

2
·$0+ 1

2
·$550 = $275.

It is tempting to say that this is the correct price for the option, but
such considerations do not take risk into account. In fact, the correct
price for the mining opportunity is $183 1

3
, as will be shown later.

To show why $275 is incorrect, note that this price creates an
arbitrage opportunity. Assume there is at least one rational buyer for
the opportunity, willing to pay $275. If so, that buyer will surely prefer
purchasing it for the lower price of $274! We can sell the opportunity
for the lower price without actually owning it, all the while promising
the buyer that no matter the world state the same exact profits will
be earned. Essentially, we are performing a short on the opportunity.

As summarized in Table 1, to fulfill the promise we will do the
following: immediately upon selling the opportunity we will borrow
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# Step Cash Debt Coins Opportunities
0 Start of day. $0 $0 0 0

1 Sell opportunity. $274 $0 0 −1
2 Borrow $183

1

3
. $457

1

3
$183

1

3
0 −1

3 Buy 11

12
coins. $90

2

3
$183

1

3

11

12
−1

Table 1: Balance of all assets on the first day of Example 1.
Regarding step #1: when selling the opportunity we have a
−1 quantity of it, essentially performing a short (selling it
without actually owning it).

# Step Cash Debt Coins Opportunities
0 Start of day. $90

2

3
$183

1

3

11

12
−1

1 Get activation fee. $340
2

3
$183

1

3

11

12
−1

2 Pay loan back. $157
1

3
$0

11

12
−1

3 Buy 1

12
coins. $90

2

3
$0 1 −1

4 Pay buyer 1 coin. $90
2

3
$0 0 0

Table 2: Balance of all assets on the second day of Example 1,
if the exchange-rate has doubled. Regarding step #4: giving
the buyer 1 coin covers the short on the opportunity.

# Step Cash Debt Coins Opportunities
0 Start of day. $90

2

3
$183

1

3

11

12
0

1 Sell all coins. $274 $183
1

3
0 0

2 Pay loan back. $90
2

3
$0 0 0

Table 3: Balance of all assets on the second day of Exam-
ple 1, if the exchange-rate has halved. Note that there is a
0 amount of the opportunity at the start of the day because
a rational buyer will not choose to activate the ASIC, thus
our short on the opportunity is closed.

$183
1

3
from the bank, giving us a total of $183 1

3
+ $274 = $457

1

3
. We

will buy 11

12
BTC, which under the current exchange-rate are worth

11

12
·$400 = $366

2

3
. After this, we remain with $457 1

3
−$366 2

3
= $90

2

3
,

which we will pocket as a profit.
If the value of bitcoin goes up, our rational buyer will want to turn

on the (imaginary) ASIC and receive the promised 1 BTC reward in
exchange for the $250 activation fee, which is paid to us. We will use
the fee to pay back the loan, leaving us with $250 − $183 1

3
= $66

2

3
,

exactly enough to buy 1

12
BTC, that together with our existing 11

12
BTC

can be given to the buyer as the mining reward, thus covering our
short. Note we have also paid back all debt, while our pocketed $90 2

3

profit was untouched, as shown in Table 2.
On the other hand, if the value goes down, the rational buyer will

not want to pay the activation fee as it is more expensive than the
1 BTC (= $200) profit; even if the buyer is interested in receiving a
single bitcoin, buying it on the free market is cheaper than activating
the ASIC. So, we have covered our short without having to pay the
mining reward. We will still need to repay our $183 1

3
debt, and luckily

our coins are worth exactly 11

12
· $200 = $183

1

3
. Again, we keep our

pocketed profit. Table 3 presents all changes in our holdings.

Although we have started with no money, we have made a riskless
profit of $90 2

3
due to the incorrect pricing of the ASIC. In the rest

of the paper we show how to correctly price it, and prove that when
using our method no arbitrage opportunities arise.

4 RESULTS
In this section we tackle the problem presented in the previous

example more generally – pricing the t-th mining opportunity in

relation to turn t − 1. To do so, we shall borrow a technique from

option-pricing theory (as in [Black and Scholes 1973] and [Cox et al.

1979]) where in order to price a mining opportunity, a portfolio of

mining opportunities and coins is constructed and purchased at at

turn t − 1. The portfolio is crafted to yield identical valuations at

turn t regardless of the change in the exchange-rate (we do this

in Claim 1), and as such is termed a risk-free portfolio. Thus, its
exact value at turn t − 1 will be known by properly discounting

and accounting for the interest rate (We show this in Claim 2).

We consider a portfolio that consists of the t-th mining opportu-

nity and a short on (a yet to be chosen amount of) at−1 coins, thus
its value at turn t − 1 is:

Φ (t − 1) = V (t , t − 1,Ct−1) − at−1Ct−1 (4)

And at turn t :
Φ (t) = V (t , t ,Ct ) − at−1Ct (5)

Claim 1. A portfolio holding the t ’th mining opportunity and a
short on the following amount of coins:

at−1 =
V (t , t ,∆Ct−1) −V (t , t ,δCt−1)

Ct−1 (∆ − δ )
Is a risk free-portfolio for the single turn between time t − 1, t , and its
value in all possible states at t is:

Φ (t) = V (t , t ,∆Ct−1) − at−1∆Ct−1
The proof is given in Section 6; its main idea is that there is

one degree of freedom (choosing the short amount, at−1) and we

must satisfy an equation equating the value of the portfolio in both

possible world states, yielding the same return in both.

Now that we have a risk-free portfolio, we proceed to evaluate

its return, and use it to price the mining opportunity.

Claim 2. If no arbitrage opportunities exist, the multiplicative
return of holding the risk-free portfolio constructed in Claim 1 between
turns t − 1 and t is equal to the risk-free rate.

The proof is given in Section 6; briefly, every other possible return

is examined and shown to contradict the no-arbitrage assumption.

Just as in Example 1, we can make a risk-free profit whenever such

arbitrage opportunities arise.

We then end up with the following expression for pricing the

mining opportunity:

Corollary 1. The value of the t-th opportunity at t − 1 is:

V (t , t − 1,Ct−1) =
V (t , t ,∆Ct−1)

r
+

+
V (t , t ,∆Ct−1) −V (t , t ,δCt−1)

∆ − δ

(
1 − ∆

r

)
In the above expression, all factors are known and can be calculated
at time t − 1.
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The proof is given in Section 6. It consists of using the return of

the portfolio together with its values at turns t − 1 and t to extract

the value of the opportunity at t − 1.
For the sake of completeness, let us revisit the scenario in Exam-

ple 1 and derive the correct price for the opportunity, as implied by

Corollary 1.

Example 2. Surprisingly, the price given by Corollary 1 for the
mining opportunity presented in Example 1 is even lower than the
naïve estimate.

The immediate value of the mining opportunity if the exchange
rate has gone up is:

V (1, 1, 800) = max (1 · 800 − 250, 0) = $550 (6)

And for the down state it is:

V (1, 1, 200) = max (1 · 200 − 250, 0) = $0 (7)

When using the above with Corollary 1 we can obtain the value of
the opportunity at turn 0:

V (1, 0, 400) = 550

1

+
550 − 0
2 − 1

2

(
1 − 2

1

)
= $183

1

3

As the proof for Claim 2 shows, any price different than this one, for
example the naïve price, creates an arbitrage opportunity.

4.1 Pricing Relative to an Arbitrary Time
By extending the previous method, it is possible to evaluate the

t-th opportunity relative to any previous point in time k , as shown
in Algorithm 1.

Algorithm 1:MiningOpportunityValue

Output :value of t-th opportunity at turn k .

for Ct ∈ {∆t−k ·Ck ,∆t−k−1 · δ ·Ck , . . . ,δ t−k ·Ck } do
V (t , t ,Ct ) ← h ·max

(
bt ·Ct
H (t )+h − φ · et , 0

)
end
for τ ∈ t − 1, . . . ,k do

for Cτ ∈ {∆τ ·Ck ,∆τ−1 · δ ·Ck , . . . ,∆ · δτ−1Ck ,δτ ·Ck }
do

aτ ← V (t,τ+1,∆ ·Cτ )−V (t,τ+1,δ ·Cτ )
Cτ ·(∆−δ )

Φ (τ + 1) ← V (t ,τ + 1,∆ ·Cτ ) − aτ · ∆ ·Cτ
V (t ,τ ,Cτ ) ← aτ ·Cτ + Φ(τ+1)

r
end

end
return V (t ,k,Ck )

The idea behind the algorithm is to apply the same methods

of Section 4 on every possible world-state, starting from turn t
and going back, one step at a time, until reaching k . We will now

proceed to explain the method in depth:

The random-walk describing the coin’s exchange rate for the

period between turns k and t forms a tree with root Ck and leaves

∆τ δ t−k−τCk , for every τ ∈ [0, t − k].
The leaves represent the trivial cases for evaluation, each one

of them corresponds to a possible world state at turn t and as the

opportunity expires at that turn, its value can be calculated directly

from the definition given in Equation 1.

Proceeding inductively, let τ ∈ [k, t − 1]. We will want to eval-

uate the opportunity at one of the vertices of the (τ − k)-th level,

assume it is Cτ . Note it points to exactly two vertices from level

(τ − k + 1), specifically ∆Cτ ,δCτ . The method laid down in Sec-

tion 4 suggests that given that the opportunity values for these two

vertices have already been calculated, the opportunity’s value at

Cτ ’s world-state can be obtained. Claim 3 covers this case.

Claim 3. Let τ < t . Given that the opportunity’s valuations at
τ + 1 are known, it is possible to evaluate V (t ,τ ,Cτ ), which is equal
to:

V (t ,τ ,Cτ ) =
V (t ,τ + 1,∆Cτ )

r
+

+
V (t ,τ + 1,∆Cτ ) −V (t ,τ + 1,δCτ )

∆ − δ

(
1 − ∆

r

)
The proof is given in Section 6; the result is achieved by using

the valuations at τ + 1 to create a risk-free portfolio at turn τ that

holds the t-th opportunity. The return of the portfolio at τ + 1 can
then be used to retrieve the value of the opportunity, similarly to

Corollary 1.

By applying Claim 3 on every vertex of the current level and

continuing in a dynamic manner to previous levels, it is possible to

reach our goal and finally derive the value at the root of the tree,

which corresponds to turn k .

Deriving a formula for the mining opportunity’s value. Looking
closely at the algorithm and performing the necessary substitutions,

one is able to derive an expression for the value of the t-th mining

opportunity.

Theorem 1. The value of the t-th mining opportunity at to turn
k < t is:

V (t ,k,Ck ) =
t−k∑
τ=τ0

(t−k
τ

)
γ τ↑(

−γ↓
)k+τ−t V (

t , t ,∆τ δ t−k−τCk
)

Where γ↓ =
1− ∆

r
∆−δ , γ↑ = γ↓ +

1

r , and:

τ0 =


log

((
bt δ t−kCk
H (t )+h

)−1
φet

)
log

(
∆
δ

) 
The proof is given in Section 6. It involves recursively applying

Claim 3 on V (t ,k,Ck ) until reaching a sum that only includes

values of immediate opportunities. Then, the sum is shortened by

looking only at opportunities that have a value that is greater than

0.

Example 3. Assume that bitcoin’s exchange-rate can either double
or halve with an equal probability, with the random walk starting
from a value of $200 at turn 0. Extending the walk to two turns
produces the recombining tree depicted in Figure 3.

Assume the vendor from Example 1 offers you the option of using
its ASIC at the second turn for 10 minutes, under the same conditions
as before. By following Algorithm 1, the value of the opportunity at
each state can be calculated, as shown in Figure 4. The algorithm
proceeds as follows:
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$200

$400

$800 $200

$100

$50

0.5 0.5

Figure 3: Example 3’s equiprobable two turn random walk.

$
550

9

$
550

3

$550 $0

$0

$0

Figure 4: The value of Example 3’s mining opportunity at
each state, according to Algorithm 1.

We start from the leaves and evaluate the immediate value of the
opportunity at each one. At the leaf where the exchange-rate is $800,
the opportunity is worth $550. On the other hand, if the rate is either
$200 or $50, the opportunity is worth $0. We have determined the
value of the opportunity at all possible states of turn 2.

Now, by using Claim 3 on each of the two possible states at turn
1, we get that the value of the opportunity can be either $ 550

3
(if the

exchange rate is $400) or $0 (if it is $100).
Finally, we take one step back and look at turn 0. By employing

Claim 3 again together with our previous results, we find that the
opportunity is worth $

550

9
at the first turn.

4.2 Imitating Portfolio
Buying physical mining hardware can sometimes entail difficulties:

cooling, storing and maintaining it is costly, and receiving ordered

ASICs promptly requires paying a hefty premium when there is

high demand.

Imitating an ASIC’s revenue using a portfolio that does not in-

clude the ASIC might be better – it can start to produce revenue

immediately, without waiting, and avoids the aforementioned ex-

penses. We show such a portfolio can be constructed using coins

and bonds.

The portfolio will imitate the t-th opportunity between turns

τ ,τ + 1, for τ < t . Denote by aτ ,Bτ the respective amount of coins

and risk-free bonds in the imitating portfolio at time τ . Thus, the
portfolio’s value at time τ is:

Φ (τ ) = Bτ + aτCτ (8)

And, at τ + 1 it is

Φ (τ + 1) = rBτ + aτCτ+1 (9)

Claim 4. Assuming there are no fees for trading bonds and coins, a
portfolio can be constructed at turn τ to be worth exactly the same as
the t-th mining-opportunity in all possible world-states at turn τ + 1:
Φ (τ + 1) = V (t ,τ + 1,Cτ+1). The portfolio is obtained by setting:

aτ =
V (t ,τ + 1,∆Cτ ) −V (t ,τ + 1,δCτ )

Cτ (∆ − δ )

Bτ =
∆V (t ,τ + 1,δCτ ) − δV (t ,τ + 1,∆Cτ )

r (∆ − δ )
The proof is given in Section 6, and is similar to the proof of

Claim 1.

Claim 5. At turn τ , a portfolio constructed as in Claim 4 is worth
exactly the same as the t-th mining-opportunity:

Φ (τ ) = V (t ,τ ,Cτ )

The proof is given in Section 6; it relies on showing that at turn

τ the risk-free portfolio of Claim 3 is equal in value to Bτ . Then,
algebraic manipulations are made on the definitions of both the

risk-free portfolio and the portfolio of Claim 4 to conclude that the

claim holds.

Combining Claims 4 and 5 immediately gives the following:

Corollary 2. The portfolio constructed in Claim 4 is an imitating
portfolio for the t-th mining opportunity between turns τ , τ + 1,
meaning the portfolio is equal in value to the opportunity at both
turns.

Similarly to Section 4.1, the imitating portfolio can be evaluated

at multiple time periods by dynamically moving backwards in time.

The portfolio can change between turns, costing additional fees

to perform the necessary adjustments; these are included in the

empirical evaluation performed in Section 5.

Note that under the assumption that there are no fees, Claims 4

and 5 imply that at turn τ+1, selling the imitating portfolio for turns

τ ,τ + 1 generates enough money to buy the imitating portfolio for

turns τ + 1,τ + 2, meaning that after the initial investment is made,

no new influx of funds is required to adjust the portfolio between

turns. In addition, the initial purchase of the portfolio costs exactly

the same as the opportunity that it imitates.

Let us proceed by demonstrating how to use these results to

construct an imitating portfolio:

Example 4. Figure 5 shows the portfolios imitating the mining
opportunity offered in Example 3 for all possible world states. The
portfolios were constructed in the following manner:

First, evaluate the opportunity’s value at all the states, as in Ex-
ample 3. Next, apply Claim 4 on each possible state at turn 1. The
imitating portfolio for the state where the exchange-rate equals $400
is comprised of 550−0

400·(2−0.5) =
11

12
coins, and 2·0−0.5·550

1·(2−0.5) = −$
550

3
worth

of bonds. On the other hand, if the exchange-rate is $100 then the
portfolio has 0−0

100·(2−0.5) = 0 coins and 2·0−0.5·0
1·(2−0.5) = 0 bonds.

Now, we will construct an imitating portfolio for the first state; it

will hold
550

3
−0

200·(2−0.5) =
11

18
coins, and bonds valued at

2·0−0.5· 550
3

1·(2−0.5) =

−$ 550
9
.
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B 11

18
,−$ 550

9

B 11

12
,−$ 550

3

B0, $0 B0, $0

B0, $0

B0, $0

Figure 5: The imitating portfolio for each state of Example 4.
The portfolio is represented as a tuple, where the left num-
ber (prefixed by B) is the amount of coins, and the right num-
ber is the bonds’ value in USD (prefixed by $). The portfolios
should always be sold on the last turn, thus all final portfo-
lios hold no assets.

To show that these portfolios are indeed imitating, we will analyze
their returns on the final turn. If an imitating portfolio is sold on the
final turn, by construction its return should equal the one given by
the actual mining opportunity.

If the exchange-rate is $800, the portfolio we constructed is worth
800 · 11

12
− 550

3
= $550, thus selling it produces exactly the same profits

as the opportunity at this state. If the exchange-rate is $200, look at
the two possible cases: if the previous turn’s exchange-rate was $400,
our portfolio is comprised of 11

12
coins and bonds worth −$ 550

3
, thus

selling the portfolio results in a profit of 400 · 11
12
− 550

3
= $0, again

equal to the opportunity’s. Conversely, if the previous rate was $100,
our portfolio holds no assets, so there is nothing to sell - and as before,
the profit is $0, the same as the opportunity’s.

5 EMPIRICAL EVALUATION
We now turn to employ our analysis on real world data, deriving

prices for an ASIC, specifically the Bitmain Antminer S9, a single

hardware platform that has dominated the ASIC market for an

extended period of time, and has lately been replaced. We compare

these prices to historical market prices.

ASIC prices and specifications (hash-rate and power consump-

tion) are taken from Amazon. We assumed ASICs have a 2-year

expected lifetime; in fact, hash-rate considerations usually imply

that their profits vanish even faster.

For the following evaluations, the annual interest rate in the

economy was set to 2%, and electricity cost to $0.035, consistent

with reported prices that large miners pay. We assume that mining

pool fees are 2%, and bond and BTC-to-USD trading fees are 1%

each.

The BTC-to-USD exchange-rate and global hash-rate were taken

from blockchain.com. Volatility was evaluated according to all his-

torical data points starting at 2013 and ending at the value esti-

mation date, and future global hash-rate growth was evaluated

according to the 2 year window preceding the estimation date.

Volatility is the standard deviation of log-returns, and the hash-

rate’s growth was assumed to be exponential (which fits historical

data well according to the literature [Bowden et al. 2018]).

Estimation of ∆,δ . The estimation of the random-walk’s multi-

plicative factors is outside the scope of this paper, and was done

using the same method presented in [Cox et al. 1979].

Denote the annual volatility of the coin’s exchange-rate by σ ,
and byn the actual ("calendar") time until the mining opportunity to

evaluate. Assuming that there are t turns until n, the multiplicative

factors are:

∆ = exp

(
σ

√
n

t

)
(10)

δ = exp

(
−σ

√
n

t

)
(11)

All code used to generate our results is available at <Removed

due to blind review>.

Value Comparison. Figure 6 compares ASIC valuations obtained

by ourmethod to the historical Amazon prices of Bitmain’s Antminer

S9, and to a naïve evaluation method anecdotally used by miners.

In addition, the total cost of an imitating portfolio, including the

average-case fees paid for all necessary adjustments, is shown (la-

beled "Imitating").

The naïve evaluation method assumes that the future BTC-USD

exchange-rate will continue its recent rate of growth (labeled “Ex-

pected” in the figure). This corresponds to an evaluation that ignores

risk and uses only expected values, as shown in Example 1.

The figure shows that Amazon prices for hardware are closer

to the value obtained using the fixed-growth assumption, and are

higher than our estimate, suggesting that they do not fully account

for risk.

Figure 6: ASIC value according to different valuation meth-
ods.

Revenue Comparison. An imitating portfolio’s accuracy increases

with the granularity of its time-steps. On the other hand, portfolio

adjustments which are made at every such step potentially increase

its cost.

Figure 7 compares the realized revenue obtained from investing

$1, 000 in an imitating portfolio with an equivalent investment in
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real mining hardware that is received and activated immediately
after the investment was made, which is far from the typical case as

usuallyminerswait a long time to receive hardware. The revenue for

both is after deducting all maintenance costs, meaning electricity for

ASICs and cryptocurrency and bond trading fees for the portfolio.

The imitating portfolio allows each mining opportunity 25 portfolio

adjustments, which empirically produces accurate results.

Figure 8 aggregates realized revenue and initial costs of ASICs

and the corresponding imitating portfolios, constructed according

to our method. As before, the revenue for both is after deducting all

maintenance costs. The figure shows that in recent history imitating

portfolios produce higher revenues than ASICs. The reason our

imitating portfolio’s revenue is not exactly the same as an ASIC’s is

that there is a gap between the realized and projected growth rates

of the network’s total mining power.

(a) ASIC and portfolio revenue if purchased on July 2016

(b) ASIC and portfolio revenue if purchased on June 2017

Figure 7: Realized revenues (minusmaintenance costs) of an
ASIC and the corresponding imitating portfolio bought for
an initial sumof $1000 and received at the same time, as func-
tions of time.

The Effect of Volatility. As intuitively explained in Section 1, Bit-

coin’s volatility starkly affects miner revenue, and thus also should

affect an ASIC’s price. Figure 9 depicts our method’s evaluation of

ASIC prices as functions of volatility, where each line represents a

different purchase date. Bitcoin’s annual volatility, as estimated on

December 21st, 2019, and its peak annual volatility, which occurred

in the year preceding April 29th, 2018, are depicted as vertical lines.

As can be seen, our method gives higher prices for ASICs if the

annual volatility is higher. For example, an ASIC bought on June

2019 could have cost %16 more if the volatility was at its historical

peak.

The Effect of Reception Delay. Applying Equation 3 on historical

data from specific periods of Bitcoin’s short-term history, we learn

that even a brief delay in the reception of an ASIC can severely

decrease its value; for example, a month’s delay can decrease value

by 30%, as seen in Figure 10.

Figure 8: Realized revenue (minus maintenance costs) and
initial cost for a 2-year operation of an ASIC and the corre-
sponding imitating portfolio, as functions of the purchase
date. An ASIC’s initial cost is its Amazon price, and the port-
folio’s is the initial sum of money required for buying the
portfolio.

Figure 9: The increase in an ASIC’s value, in percent, as a
function of volatility.

6 PROOFS
Proof of Claim 1. There are only two possible future world

states: one where the coin’s exchange-rate will up relative to t − 1
and will be ∆Ct−1, and the other where it will go down to δCt−1.
Denote the immediate value of the mining opportunity in the up

state as:

V (t , t ,∆Ct−1) = max

(
hbt∆Ct−1
H (t) + h − hφet , 0

)
(12)

And of the down state as:

V (t , t ,δCt−1) = max

(
hbtδCt−1
H (t) + h − hφet , 0

)
(13)

Given that t is in the future, our model assumes that there is

some estimation for H (t); Section 5 elaborates on the way such

estimates were made. Thus, the sole difficulty in evaluating Φ (t) is
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Figure 10: The decrease in an ASIC’s value, in percent, as a
function of delay.

that although at t − 1 we know what the value ofCt−1 is, we do not
yet know the realization ofCt . To circumvent this, we will construct

the portfolio such that its value at t will be the same no matter if

Ct is equal to ∆Ct−1 or δCt−1, yielding a risk-free portfolio.
The portfolio’s value at the up-state is:

Φ (t) = V (t , t ,∆Ct−1) − at−1∆Ct−1 (14)

And, at the down-state:

Φ (t) = V (t , t ,δCt−1) − at−1δCt−1 (15)

So, we require that the following property would hold:

V (t , t ,∆Ct−1) − at−1∆Ct−1 = V (t , t ,δCt−1) − at−1δCt−1 (16)

Everything but at−1 is known, thus it is possible to derive at−1 by
isolating it, producing the following short amount:

at−1 =
V (t , t ,∆Ct−1) −V (t , t ,δCt−1)

Ct−1 (∆ − δ )
(17)

Note that there is no probability in the equation, meaning that this

shorting strategy is not dependent on the probability of an upward

or downward change in the coin’s price.

From Equations 14, 15, 16 we get that by performing this short,

our portfolio’s value at turn t is equal to:

Φ (t) = V (t , t ,∆Ct−1) − at−1∆Ct−1 (18)

The equation holds in all possible world state, so the portfolio is

indeed risk-free. By substituting for the short amount the following

explicit form is obtained:

Φ (t) = V (t , t ,∆Ct−1) −
V (t , t ,∆Ct−1) −V (t , t ,δCt−1)

∆ − δ ∆ (19)

□

Proof of Claim 2. The proof mainly relies on the no-arbitrage

assumption. First, we will define the multiplicative return of our

portfolio between t − 1 and t as:

ρ (t) ≜ Φ (t)
Φ (t − 1) (20)

Thus, we want to prove that ρ (t) = r . Assume by contradiction

that ρ (t) , r . We will now show how to make risk-free profit in

every world state by dividing to cases:

Case 1. If Φ (t − 1) > 0.

Make a further sub-division to two sub-cases:

Case 1.a. If ρ (t) > r .
It is possible to "make money out of nothing" by borrowing

enough money at the risk-free rate to buy the portfolio at time t −1,
and selling it after a single turn.

Buying the portfolio is simply purchasing the mining oppor-

tunity and shorting the coins as specified by the portfolio, and

selling it is the "reverse" - selling the opportunity and delivering the

shorted asset. A reminder: shorting an asset means borrowing it

and immediately selling it, thus the same asset should be returned

to the loaner.

Borrowing at the risk-free rate means that there is interest to

be paid for the loan, but as this case assumes that the return of the

portfolio is higher, a profit has been made even after taking interest

into account, a contradiction to the no-arbitrage assumption.

Case 1.b. If ρ (t) < r .
Risk-less profit can be made by shorting the portfolio and invest-

ing the resulting money in a risk-free instrument at time t − 1, and
by returning the short at the next turn.

Shorting the portfolio entails shorting the mining opportunity

and buying the coins, as specified by the portfolio. Returning this

short is simply returning the mining opportunity and selling the

coins.

By the current case’s assumption, the return on the coins and risk-

free investment is large enough make a profit, even after delivering

the short, and we have reached a contradiction.

Case 2. If Φ (t − 1) = 0.

ρ (t) is undefined, thus a split to different cases than before is

required:

Case 2.a. If Φ (t) > 0.

Buy the portfolio at turn t − 1. According to the assumption

of the current case, at t − 1 the portfolio is priced at 0, meaning

that shorting the required number of coins as specified in Claim 1

produces exactly enough money to buy the mining opportunity.

By selling the portfolio after a single turn, a risk-less profit can be

made, as according to our assumptions: Φ (t) > 0 = Φ (t − 1).
Case 2.b. If Φ (t) < 0.

Short the portfolio at turn t − 1 and return it after a single turn.

Combining this case’s assumptions we get:

Φ (t − 1) = 0 > Φ (t) (21)

After a single turn the portfolio has made a loss; thus the short has

made a profit, which is again risk-less.

Case 2.c. If Φ (t) = 0.

From our assumptions we get:

Φ (t) = 0 = rΦ (t − 1) (22)

Case 3. If Φ (t − 1) < 0.

Proceeding as in Case 1.:
Case 3.a. If ρ (t) > r .

Borrow enough money at the risk-free rate to short the portfolio

(this costs money in the current world state). After a single turn,
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return the short, receive −Φ (t), and pay back −rΦ (t − 1) to repay

the loan.

As r > 1, we get that ρ (t) > r > 1, thus from our assumption

that Φ (t − 1) < 0 and from the return’s definition in Equation 20:

Φ (t) = ρ (t)Φ (t − 1) < rΦ (t − 1) < Φ (t − 1) < 0 (23)

Conversely:

− Φ (t) = −ρ (t)Φ (t − 1) > −rΦ (t − 1) > −Φ (t − 1) > 0 (24)

Meaning that a risk-less profit has been made.

Case 3.b. If 0 ≤ ρ (t) < r .
Buy the portfolio at the first turn. As the portfolio cost is negative,

buying it generates money; invest it at the risk-free rate for a single

turn.

At the next turn, sell the portfolio. This costs a positive amount,

according to the current world state, specifically−Φ (t). From the as-

sumptions and the definition of the return as given by Equation 20:

rΦ (t − 1) < ρ (t)Φ (t − 1) = Φ (t) ≤ 0 (25)

So:

− rΦ (t − 1) > −ρ (t)Φ (t − 1) = −Φ (t) ≥ 0 (26)

−Φ (t) was lost by selling the portfolio, but the risk-free invest-

ment is worth −rΦ (t − 1), enough to make a profit even after sell-

ing.

Case 3.c. If ρ (t) < 0.

As before, by buying the portfolio at the beginning, money is

earned, and it can be invested at the risk-free rate. By the next turn,

the portfolio is already worth a positive amount of money, thus

selling it earns even more money. So, a risk-free profit was made.

All in all, if the return of the portfolio is not exactly the risk-free

rate, there is an arbitrage opportunity and it is possible to make a

sure profit in every world state, in contradiction to the no-arbitrage

assumption; thus, the return has to equal the risk-free rate. □

Proof of Corollary 1. According to Claim 2:

Φ (t) = rΦ (t − 1) (27)

Rearranging we get:

Φ (t − 1) = Φ (t)
r

(28)

Substituting by the definition of Φ (t − 1) given in Equation 4:

V (t , t − 1,Ct−1) − at−1Ct−1 =
Φ (t)
r

(29)

We are interested in V (t , t − 1,Ct−1), so we will isolate it:

V (t , t − 1,Ct−1) = at−1Ct−1 +
Φ (t)
r

(30)

By using Equation 18 to substitute for Φ (t):

V (t , t − 1,Ct−1) = at−1Ct−1+

+
1

r
(V (t , t ,∆Ct−1) − at−1∆Ct−1) (31)

Slightly rearranging:

V (t , t − 1,Ct−1) = at−1Ct−1

(
1 − ∆

r

)
+
V (t , t ,∆Ct−1)

r
(32)

Finally, substituting for at−1 as given in Claim 1, an explicit form

is reached:

V (t , t − 1,Ct−1) =
V (t , t ,∆Ct−1)

r
+

V (t , t ,∆Ct−1) −V (t , t ,δCt−1)
∆ − δ

(
1 − ∆

r

)
(33)

Note that all factors are known and can be calculated at time

t − 1. Specifically,V (t , t ,∆Ct−1) andV (t , t ,δCt−1) can be obtained

by substituting for the correct exchange-rate in the definition given

in Equation 1. □

Proof of Claim 3. At turn τ it seems the uncertainty regarding

the coin’s exchange rate at turn t is larger because there are t −τ +1
possible "final" future values instead of only 2, as shown in Figure 2

for the case where t = 2.

But, luckily, we are given V (t ,τ + 1,∆Cτ ) ,V (t ,τ + 1,δCτ ). We

will use both values to construct a risk-free portfolio such that its

value at τ +1will be the same no matter if the exchange-rate will go

up or down. Similarly to Claim 1, it will hold the t-th opportunity,

and a short on aτ coins.

At turn τ + 1 the portfolio’s value is defined by:

Φ (τ ) = V (t ,τ ,Cτ ) − aτCτ (34)

And at τ + 1 it is:

Φ (τ + 1) = V (t ,τ + 1,Cτ+1) − aτCτ+1 (35)

If the coin’s exchange-rate has moved upwards between τ ,τ + 1,
the portfolio will be worth:

Φ (τ + 1) = V (t ,τ + 1,∆Cτ ) − aτ ∆Cτ (36)

Similarly for the down-state:

Φ (τ + 1) = V (t ,τ + 1,δCτ ) − aτ δCτ (37)

So, to make it risk-free the following property should hold:

V (t ,τ + 1,∆Cτ ) − aτ ∆Cτ = V (t ,τ + 1,δCτ ) − aτ δCτ (38)

Solving for aτ gives the following short:

aτ =
V (t ,τ + 1,∆Cτ ) −V (t ,τ + 1,δCτ )

Cτ (∆ − δ )
(39)

In exactly the same manner as in the proof for Claim 2, the return

of the portfolio at turn τ + 1 is equal to r :

Φ (τ + 1) = rΦ (τ ) (40)

Thus, by employing similar reasoning to Corollary 1 it is possible

to derive the result:

V (t ,τ ,Cτ ) =
V (t ,τ + 1,∆Cτ )

r
+

+
V (t ,τ + 1,∆Cτ ) −V (t ,τ + 1,δCτ )

∆ − δ

(
1 − ∆

r

)
(41)

□

Proof for Theorem 1. Let k < t . We will start by applying

Claim 3 on V (t ,k,Ck ):

V (t ,k,Ck ) =
V (t ,k + 1,∆Ck )

r
+

+
V (t ,k + 1,∆Ck ) −V (t ,k + 1,δCk )

∆ − δ

(
1 − ∆

r

)
(42)
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Note thatV (t ,k + 1,∆Ck ) appears in multiple places, by gathering

all occurrences we get:

V (t ,τ ,Cτ ) =
(
1 − ∆

r
∆ − δ +

1

r

)
V (t ,τ + 1,∆Cτ )

−
(
1 − ∆

r
∆ − δ

)
V (t ,τ + 1,δCτ )

(43)

Denote γ↓ =
1− ∆

r
∆−δ , and γ↑ = γ↓ +

1

r . So:

V (t ,k,Ck ) = γ↑V (t ,k + 1,∆Ck ) − γ↓V (t ,k + 1,δCk ) (44)

The opportunity’s value is now represented as a recursive formula.

Let us repeat the previous steps recursively onV (t ,k + 1,∆Ck ) and
V (t ,k + 1,δCk ):

V (t ,k,Ck ) = γ↑
(
γ↑V

(
t ,k + 2,∆2Ck

)
− γ↓V (t ,k + 2,δ∆Ck )

)
− γ↓

(
γ↑V (t ,k + 2,∆δCk ) − γ↓V

(
t ,k + 2,δ2Ck

))
(45)

Note that V (t ,k + 2,δ∆Ck ) and V (t ,k + 2,∆δCk ) are equal, so:

V (t ,k,Ck ) = γ 2↑V
(
t ,k + 2,∆2Ck

)
− 2γ↑γ↓V (t ,k + 2,∆δCk )

+ γ 2↓V
(
t ,k + 2,δ2Ck

)
(46)

We can inductively continue with the recursion until reaching the

exercise time of the opportunity, resulting in:

V (t ,k,Ck ) =

=

t−k∑
τ=0

(
t − k
τ

)
γ τ↑

(
−γ↓

)t−k−τ
V

(
t , t ,∆τ δ t−k−τCk

)
(47)

Slightly rearranging:

V (t ,k,Ck ) =
t−k∑
τ=0

(t−k
τ

)
γ τ↑(

−γ↓
)k+τ−t V (

t , t ,∆τ δ t−k−τCk
)

(48)

Note that the sum potentially goes over states where the oppor-

tunity’s value is equal to zero, which is unnecessary. This can be

avoided by starting the summation only from τ where:

V
(
t , t ,∆τ δ t−k−τCk

)
> 0 (49)

By the definition given in Equation 1 this is the same as requiring:

max

(
hbt∆

τ δ t−k−τCk
H (t) + h − hφet , 0

)
> 0 (50)

As the opportunity’s value is strictly greater than 0, the max can

be dropped, resulting in:

btδ
t−kCk

H (t) + h

(
∆

δ

)τ
> φet (51)

By isolating τ we can find the minimal turn where this condition is

held. First, let us isolate
∆
δ :(

∆

δ

)τ
>

φet(
bt δ t−kCk
H (t )+h

) = (
btδ

t−kCk
H (t) + h

)−1
· φet (52)

Now, take the logarithm of both sides:

τ · log
(
∆

δ

)
> log

©«
(
btδ

t−kCk
H (t) + h

)−1
φet

ª®¬ (53)

Finally, we can isolate τ :

τ >

log

((
bt δ t−kCk
H (t )+h

)−1
φet

)
log

(
∆
δ

) (54)

So, the minimal turn for which the opportunity’s value is greater

than 0 is:

τ0 ≜


log

((
bt δ t−kCk
H (t )+h

)−1
φet

)
log

(
∆
δ

)  (55)

Starting the summation from τ0 gives the following equation:

V (t ,k,Ck ) =
t−k∑
τ=τ0

(t−k
τ

)
γ τ↑(

−γ↓
)k+τ−t V (

t , t ,∆τ δ t−k−τCk
)

(56)

As noted before, thanks to summing only strictly positive values it

is possible to drop the max, resulting in the following equation:

V (t ,k,Ck ) =
t−k∑
τ=τ0

(t−k
τ

) (
γ↑

)τ
h(

−γ↓
)k+τ−t

(
btCkδ

t−k

H (t) + h

(
∆

δ

)τ
− φet

)
(57)

□

Proof of Claim 4. This is done similarly to the proof of Claim 1.

We want the portfolio to be worth the same as the underlying asset

in the next turn, no matter the realization of the coin’s exchange-

rate.

If the exchange-rate has went up, the portfolio’s value is:

Φ (τ + 1) = rBτ + aτ ∆Cτ (58)

If it went down, the value is:

Φ (τ + 1) = rBτ + aτ δCτ (59)

So, to find the correct values for Bτ ,aτ we will need to solve the

following system of linear equations:

∆Cτ aτ + rBτ = V (t ,τ + 1,∆Cτ ) (60)

δCτ aτ + rBτ = V (t ,τ + 1,δCτ ) (61)

The only solution is:

aτ =
V (t ,τ + 1,∆Cτ ) −V (t ,τ + 1,δCτ )

Cτ (∆ − δ )
(62)

Bτ =
∆V (t ,τ + 1,δCτ ) − δV (t ,τ + 1,∆Cτ )

r (∆ − δ ) (63)

□

Proof of Claim 5. According to Claim 4 and the definition given

in Equation 9, the value of the portfolio at time τ + 1 is:

Φ (τ + 1) = rBτ + aτCτ+1 = V (t ,τ + 1,Cτ+1) (64)
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Recall that the risk-free portfolio constructed in Claim 3 has the

following value at τ + 1:

Φ (τ + 1) = V (t ,τ + 1,Cτ+1) − aτCτ+1 (65)

By isolating the opportunity’s value we get:

V (t ,τ + 1,Cτ+1) = Φ (τ + 1) + aτCτ+1 (66)

Thus, by substituting the above in Equation 64:

Φ (τ + 1) = rBτ + aτCτ+1 = Φ (τ + 1) + aτCτ+1 (67)

Note that the amount of coins in both the portfolio of Claim 4 and

the risk-free portfolio of Claim 3 is identical:

aτ =
V (t ,τ + 1,∆Cτ ) −V (t ,τ + 1,δCτ )

Cτ (∆ − δ )
= aτ (68)

So both can be eliminated from Equation 67, resulting in:

rBτ = Φ (τ + 1) (69)

As the proof of Claim 3 shows, specifically Equation 40, the return

of risk-free portfolio is equal to the risk-free rate:

rBτ = rΦ (τ ) (70)

From the assumption that r , 0, it is possible to divide by it:

Bτ = Φ (τ ) (71)

This equality can be used to replace Bτ in Equation 8, giving:

Φ (τ ) = Φ (τ ) + aτCτ (72)

Substituting for Φ (τ ) by using Equation 34:

Φ (τ ) = V (t ,τ ,Cτ ) − aτCτ + aτCτ (73)

Finally, from Equation 68: aτCτ − aτCτ = 0. We can deduce:

Φ (τ ) = V (t ,τ ,Cτ ) (74)

□

7 CONCLUSIONS AND FUTUREWORK
In this paper we argued that widespread notions regarding ASIC

prices and their dependence on cryptocurrency volatility are flawed

and require a different analysis. We have presented a method of

ASIC valuation, and have shown mining hardware can be imitated

using bonds and the underlying cryptocurrencies.

Our evaluation shows that a decrease in Bitcoin’s volatility nega-

tively affects the value of mining hardware, while at the same time

making imitating portfolios cheaper to maintain (smaller adjust-

ments are needed); combined, both negate the financial incentives

put in place to encourage mining. Popular opinion holds that as

Bitcoin becomes more widely used, its volatility will decrease. As

Bitcoin’s security relies on miner participation, lower miner rev-

enues hurt security and undermine Bitcoin’s usage as a currency.

Future Work. To address the security risk inherent in lower

volatility, one possibility is artificially increasing volatility. This

can be done by adopting a random block-reward mechanism: if,

for example, the block reward is made to follow a random walk,

the returns of miners become more volatile thus increasing miner

profits and, as a consequence, participation. By determining re-

wards randomly post-hoc, miners cannot foresee future profits; but,

according to the analysis presented in this work, miners can know

that they have the potential to earn more.

This work has assumed that the global hash-rate is exogenous

to the model, a possible extension could be to endogenize this.

Miners may purchase hardware as long as it remains profitable to

do so. Another interesting extension is to consider mining hardware

capable of mining multiple currencies.

These two additions could allow using our model to estimate

cryptocurrency parameters such as the global-hash rate (and thus,

security relative to other coins) as dependent on the reward and

difficulty adjustment mechanisms of the coin and its competitors,

potentially helping to design better ones that avoid pitfalls like

oscillations and "hash-wars". Additionally, the hash-rate could be

analyzed in relation to the coin’s exchange-rate and electricity price.

As anecdotal evidence shows (see Figure 1), there is a correlation

between these parameters.
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