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Abstract: Agro-climatic indicators (Agcls) provide a suitable tool to evaluate the implications of
climate change on agriculture by simplifying plant-climate interactions. However, developing
reliable Agcls requires high-quality historical climate datasets. Consequently, reanalysis products
(RPs) are frequently used as a potential reference dataset for observed climate in agricultural studies.
This study aims to compare five RPs (ERA5, ERA5-Land, SCOPE Climate, FYRE Climate, and RFHR)
at reproducing observed Agcls over France. The RPs are evaluated against the SYNOP meteorological
data over the 1996-2012 period, focusing on six Agcls specific to apple, maize, and vine crops. The
findings show that RPs perform well in reproducing temperature-based Agcls, with some slight
discrepancies in areas with complex topography. However, all RPs tend to overestimate precipitation
amounts and to underestimate dry days, leading to a poor performance in reproducing precipitation-
based Agcls. This study emphasizes the need for a thorough evaluation of the RPs in developing
both temperature-based and precipitation-based Agcls, especially if findings are intended to support
operational agricultural decision-making.
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1. Introduction

The agricultural sector is extremely vulnerable to climate change due to its sensitivity
to meteorological parameters and its direct dependence on natural resources [1]. The altered
precipitation patterns, warmer temperatures, and the increasing frequency of extreme
weather events, including heatwaves, droughts, and floods, are already impacting crops
worldwide. This not only affects yields and farming practices but also disrupts phenological
events and compromises the overall quality of crops [2-5]. With a growing population, this
raises urgent food security concerns at both local and global scales [6].

The assessment of how the current (and future) climate is suitable for agriculture is
essential for many users in the agricultural community (planners, land managers, farmers, plant
breeders, etc.). For this purpose, Agro-climatic Indicators (Agcls) have been developed [7-12].
Derived from climate variables, Agcls characterize plant—climate interactions, such as the
impact of temperature on plant growth and productivity, and the response of plants to water
stress and drought conditions. They provide synthetic information regarding climate influence
on crop functioning. Over the last years, Agcls were extensively used to better understand and
manage climate-related risks in agriculture [7-10]. In addition to being understandable to the
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agricultural users, Agcls are effective in encouraging stakeholders to consider the potential
impacts of climate change on their land-use systems and in adapting to this issue [13].

High-quality historical weather datasets are a crucial component for developing reli-
able Agcls. This implies having access to long observational meteorological variables with
appropriate spatiotemporal resolution to describe local climate variability [14]. However,
access to such high-quality historical weather datasets is often challenging due to the
issues of missing data, temporal coverage, and spatial extent. Therefore, climate reanalysis
products (RPs) are particularly attractive as they provide a comprehensive description of
the observed climate as it has evolved during recent decades [15]. They combine past obser-
vations with forecast models to generate consistent time series of climate variables. Climate
RPs are used in a wide range of applications including climate research, environmental
monitoring and sectoral impacts assessments [16-20].

Even though the climate RPs provide the most complete numerical description of
the climate, they inevitably contain some systematic biases (errors) from observations
and imperfect forecast models, thus affecting their temporal and spatial consistency [21].
In addition, the data assimilation schemes used to adjust the weather model integration
to actual observations is an additional source of uncertainty in the climate RPs. Many
studies have evaluated and compared different climate RPs with observations in different
parts of the world, at the global [22,23], continental [24-27], and regional [28-31] scale.
Such studies have been conducted for traditional climate parameters, such as temperature
and precipitation [28-31] and for extreme weather events [22-24,26] from a single or a few
climate RPs for climate and hydrological applications. The findings of these studies are
mixed, as differences in study regions, variables, and time scales result in inconsistency in
the evaluation of the climate RPs performance, thus implying that a site-specific analysis is
required. To date, few studies have evaluated the suitability of climate RPs for agricultural
applications [32-34], including for the development of specific crops-related Agcls [11,12].
However, to our knowledge, there is a notable gap in the literature associated with the
evaluation of the accuracy of multiple climate RPs in the development of specific Agcls for
French crops.

The aim of this study is to evaluate five climate RPs with respect to observations,
and to assess their reliability for constructing specific Agcls to French crops. For this,
five RPs (ERA5, ERA5-Land, SCOPE Climate, FYRE Climate, and the gridded dataset
RFHR) are compared to multiple synoptic meteorological stations over the 1996-2012
period. The evaluation is made for six Agcls, which encompasses both precipitation- and
temperature-related indicators for three leading crops grown in France (apple, maize,
and vine). Some implications for the agro-climatic studies are brought regarding the
reliability of climate RPs at providing robust local Agcls, which is a critical aspect that
needs to be considered in the agriculture sector.

This paper is organized as follows. Section 2, presents the experimental design,
including the study crops, the datasets, the Agcls and the method used for the evaluation.
Section 3 presents the relevant results of the evaluation of different climate RPs-Agcls.
The reliability of the climate RPs in constructing the Agcls and the implications for agro-
climatic studies are discussed in Section 4. Section 5 provides the concluding remarks.

2. Materials and Methods
2.1. Study Area

With around 812,000 hectares devoted to vines, France is the world’s second-largest
wine producer and third-largest exporter in 2022 [35]. The main threats to vine include
increasing temperatures and repeated droughts, resulting in premature grape ripening
and altering the balance of sugars and acids. Extreme weather events, such as frost and
hail, are also becoming major concerns, often leading to significant harvest damage or
complete loss.

France is the leading producer of grain maize and the second largest producer of silage
maize in Europe [36]. Maize is a summer crop; its growth and development are primarily
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influenced by temperature. In France, maize is the main irrigated crop, representing around
one third of irrigated areas [37]. This is due to maize’s high sensitivity to drought and
water deficit, particularly during the stages of reproductive development.

France is Europe’s third largest producer of apples [38]. Apple cultivation covers approx-
imately 40,000 hectares, making it the dominant fruit species (22% of orchard surfaces) [37].
Typically cultivated in temperate climates, apple trees adapt to different temperature ranges,
requiring a sufficient cold period and well-distributed rainfall throughout the growing season
for optimum growth.

In this study, a total of 22 sites (10 for each crop, where 1 site can represent up to 2 crops)
were selected, providing broad coverage, including varying climates and representing the
main agricultural regions for each crop (Figure 1, Table Al).
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Figure 1. Location map of the weather stations used in the study.

2.2. Data Sources
2.2.1. Observational Data

The observational meteorological data comes from the SYNOP network, provided by
Météo France [39]. This consists of temperature and precipitation time series, recorded at
3-h intervals from January 1996 to present. The SYNOP data is considered as the reference
dataset for the purpose of this study.

2.2.2. Reanalysis Datasets

The following section provides an overview of the five climate RPs used in this study,
which are summarized in Table 1.

ERADS is the fifth generation of the ECMWEF’s atmospheric reanalysis dataset [40]. It
provides a comprehensive record of the global atmosphere, land surface, and ocean waves
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since 1950. ERA5-Land is an improved extension of the land component of ERA5 with an
enhanced spatial resolution of around 9 km [41].

SCOPE Climate is a 25-member ensemble of 142-year daily high-resolution reconstruc-
tions of precipitation, mean temperature, and evapotranspiration over France. It results
from the statistical downscaling of the global extended reanalysis 20CR [42], by the SCOPE
method [43]. FYRE Climate results from the hybridization of the reanalysis FYRE Daily and
FYRE Yearly, which results from assimilating historical station observations of temperature
and precipitation into SCOPE Climate reconstructions [44].

RFHR (Reanalysis France High Resolution) is a high resolution (daily and 1 km) ad-
vanced climate reanalysis over France. It is built upon the ERA5-Land dataset to provide
more accurate climate estimates available from 1979 to 2021. It results from a statisti-
cal downscaling followed by a bias correction according to the CDF-t method [45] using
the ERA5-Land dataset and observed data available since 2012 on a 1 km grid cover-
ing all of France. The observed data are obtained from Météo-France’s radar network
PANTHERE [46] for precipitation and Météo-France’s numerical weather forecast model
AROME [47] for temperature. They are then reconstructed to achieve a spatial resolution of
0.01° and an hourly temporal resolution.

Table 1. Details of the climate reanalysis products (RPs) datasets used in this study.

Resolution Coverage
Dataset
Spatial Temporal Spatial Temporal
ERA5 0.25° x 0.25° Hourly Global 1950-Present
ERA5-Land 0.1° x 0.1° Hourly Global 1950-Present
SCOPE Climate 0.08° x 0.08° Daily France 1871-2012
FYRE Climate 0.08° x 0.08° Daily France 1871-2012
RFHR 0.01° x 0.01° Daily France 1979-2021

2.3. Agro-Climatic Indicators

To represent the potential effects of weather conditions on crop productivity and man-
agement, a set of six Agcls were chosen based on the two common climate variables among
the datasets: daily mean temperature and daily total precipitation. The Agcls, summarized
in Table 2, were selected to cover various aspects of climate impact on agriculture.

The concept of growing degree days (GDD) is first introduced before briefly describing
the Agcls below. GDD measures heat accumulation, assuming that plant and insect
development largely depends on heat exposure during the growing season, rather than
calendar days. It is calculated as the accumulated sum of the difference between daily
mean temperature and a species-specific base temperature, below which growth is limited.

1. Winkler Index (WI), also known as the Winkler Scale or Winkler Regions, is commonly
applied to classify the climate of wine growing regions based on daily temperature
converted to GDD during the growing season (1 April to 31 October in the Northern
Hemisphere) [48]. The regions are classified into five climate regions, characterized
by increasing temperature levels: from Region I (<1390 °C, for example Champagne)
to Region V (>2220 °C, for example Palermo);

2. Hydrothermic index of Branas, Bernon, and Levadoux (Hyl) developed by [49] consid-
ers both precipitation and temperature regimes to estimate the risk of downy mildew
for grapevines. An Hyl value below 2500 °C mm represents a low risk of infection,
whereas a value above 5100 °C mm is considered as a high risk of infection;

3. Flowering date (FD) for maize, also known as R1 or silking stage, begins when female
flowers (i.e., silks), first appear outside the husk leaves [50]. It is reached when at
least 50% of a field’s plants show visible silks. This stage initiates the reproductive
phase and is crucial to monitor as it determines the harvest date and therefore its
quality and yield. It can be estimated using a modified GDD method, using a 6 °C
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base temperature, with an upper temperature threshold of 30 °C, starting from the
date of planting;

4. Dry days (DDs) Maize is a water-demanding crop and its water requirements vary by
growth stage [51]. Peak demand occurs in early reproductive stages; around the pre-
and post-flowering stage (June to August). During this period, water stress should be
avoided as the drought negatively impacts plant and grain development, ultimately
reducing yield [52]. One way to measure dry conditions is by counting dry days;

5. Dormancy breaking (DB) To break dormancy and initiate flowering, most fruit trees
need to accumulate a certain amount of cold [53], referred to as chilling requirement
(CR) and measured in chilling units (CU). For apple trees, cold needs are satisfied
by daily mean temperatures between —20 °C and +20 °C, with temperatures close
0 °C being the most effective. To estimate CU, various models are available. Here,
a triangular function inspired by the FIGOLD1 model is used, which has been pre-
viously applied to the “Golden Delicious” apple [54]. CR is then satisfied when the
cumulative CU, starting from 30 October, reaches a specific threshold;

6.  Water requirements (WR) Apple trees have a high-water content and require more wa-
ter during the fruit production season, approximately June through August. Finding
a balance between rainfall and crop water demand during this time is necessary, not
only to help conserve water but also to avoid yield losses and to produce high-quality
fruits [55].

Table 2. Details of the agro-climatic indicators (Agcls) used in this study.

Crop Indicator Equation
31/10
Winkler Index Y max(T; — 10, 0)
© 01/04
Vine (WL “C) /
Hydrothermic index of 31/08
Branas, Bernon, and Levadoux Z T X Py
(HyI, mm °C) 01/04
Z min(max(T; — 6, 0), 30)
Flowering date 15704
Maize (FD, day of the year) Date on which the threshold of 850 °C is reached
Dry days 31/08 1
(DDs, number of days) o766 Pa<1
Y. CU(Ty)
30/10 | |
T-T, .
1- £ fT,.—I.<T<T:.+1
Dormancy breaking CU(T) = { ( L ) e 'c <h<letl
Aopl (DB, day of the year) 0 otherwise
ppie T, = 0 and Ic = 20.
Date on which the threshold of 56 CU is used
. 31/08
mgr I;ig;nrements Z P,
’ 01/06

Py and Py, are respectively daily and monthly total precipitations (mm). T; and T, are respectively daily and
monthly mean temperature (°C).

2.4. Comparison Approach

To ensure a consistent comparison, the spatial coverage of climate RPs is matched to
that of the reference data by extracting grid values at the coordinates of the selected SYNOP
stations. For each station location, climate RP and, if necessary, ensemble members, daily
time series of precipitation and mean temperature is calculated using bilinear interpolation
of the four nearest neighbors (grid cells). In cases where bilinear interpolation is not suitable
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within the gridded land dataset, nearest neighbor interpolation is used. The Agcls were
then calculated for each year using the interpolated data. The period of comparison is
1 January 1996 to 29 December 2012; this 17-year period is common among all the datasets.

In the following, X;, = (xip, e xt ) will represent RP-derived values and X,, f =

ref f

X1 seees Xy ) will represent the observed values from the reference dataset. The perfor-

mance of the climate RPs was evaluated based on three metrics:

1.  Lin’s concordance correlation coefficient (LCCC), first introduced by [56], quanti-
fies the agreement between two continuous measures made by different observers/
methods of the same variable by measuring the variation of their linear relationship
from the 45° line through the origin. The degree of concordance between X = X,¢
and Y = X is estimated using:

A 2 Sxy
pc_sz 2 T _v\2'
¥ +Sy+H(X=Y)
~ 12 ) 12 5 12 ~ _
whereX:Ein, SX:EZ(xi_X) , and SXy:EZ(xi—X)(yi—Y).
i=1 i=1 i=1

p will represent the degree of agreement between the climate RP and the reference
dataset, with values ranging from —1 to 1. A value of 1 indicates perfect agreement,
0 indicates no agreement, and —1 indicates perfect disagreement.

2. Percent Bias (PBias) quantifies the average tendency of the RP-derived values to be
larger or smaller compared to the observed values.

. 1& X —xf
PBias =100 x — 2(!@3 :

=1\ X

A value close to zero indicates that the Agcl have similar average values, a positive
value means that the evaluated product tends to overestimate the reference values,
and a negative bias shows an underestimation against the reference values.

3. The integrated quadratic distance (IQD), introduced by [57], is defined as the inte-
gral over the squared difference between the corresponding cumulative distribution
functions (CDFs).

- () - F,ef(x))2 dx.

Specifically, d is a distance that compares the corresponding empirical cumulative
distributions Fp and F,s and returns a positive numeric value summarizing their
differences with IQD = 0 if F,p = F,f. More generally, a lower value indicates a
smaller difference between Fr, and Fy.

1QD = d(Fyy, Fuy) = /

—00

3. Results

The Agcls derived from the climate RPs are compared to those calculated with the
reference dataset over the 1996-2012 period using the three metrics (PBias, IQD and LCCC).
This assessment was conducted by considering all stations together (Table 3, referred to
as the ‘global scale evaluation’) and by taking each station individually (referred to as
the local scale evaluation’). For FYRE Climate and SCOPE Climate, which are both a
25-member ensemble, the metrics are calculated for each member independently and the
performance is evaluated on the ensemble mean.
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Table 3. Metrics between the reference dataset and RPs over the 1996-2012 period across all study
sites for each Agcl.

Temperature-Based Agcls Precipitation-Based Agcls  Mixed Agcls
Metric Dataset
WI FD BD DDs WR Hyl
ERA5 0.97 0.84 0.9 0.45 0.75 0.67
ERA5-Land 0.95 0.82 0.94 0.49 0.75 0.64
LCCC SCOPE Climate 0.95 0.91 0.94 0.61 0.58 0.57
FYRE Climate 0.99 0.97 0.97 0.9 0.94 0.92
RFHR 0.98 0.96 0.98 0.71 0.69 0.61
ERA5 —-1.71 0.46 14.61 —16.59 22.23 19.35
ERA5-Land —3.08 1.36 6.27 —15.51 22.35 18.98
PBias SCOPE Climate —4.07 1.2 4.871 —6.57 9.74 1.9
FYRE Climate 2.33 -0.6 —0.98 —2.95 4.55 3.5
RFHR 0.63 0.21 —3.37 —7.43 12.69 21.11
ERAS5 21 0.14 0.12 3.64 0.78 88.45
ERA5-Land 3.55 0.36 0.02 3.34 0.69 75.63
1QD SCOPE Climate 5.09 0.18 0.13 0.8 0.64 15.52
FYRE Climate 2.04 0.05 0.06 0.16 0.08 8.86
RFHR 1.16 0.02 0.03 0.99 0.1 80.24

3.1. Evaluating the RPs for Vine Crop Indicators

On a global scale, all RPs show a high agreement with the reference dataset in repro-
ducing WI, with LCCC values greater than 0.95 (Table 3). For most of the stations (40%,
70%, 80%, 90%, and 90% for SCOPE Climate, ERA5-Land, ERA5, FYRE Climate, and RFHR,
respectively), RPs exhibit high correlations (LCCC values > 0.8), showing their reliabil-
ity at reproducing WI (Figure 2d). RFHR has the lowest IQD value, indicating a closer
match with the reference dataset, followed by FYRE Climate and ERAS5, which exhibit
similar levels of agreement. Meanwhile ERA5-Land and SCOPE Climate show relatively
higher dissimilarity (Table 3). The spatial distribution of IQD values reveals varying levels
of agreement with the reference dataset across the study sites (Figure 2f). Furthermore,
as shown in Table 3 and Figure 2b, FYRE Climate and RFHR slightly overestimate WI
values (the kernel density estimation (KDE) curve is right-shifted), while the other RPs
tend to underestimate WI values. Figure 2e further confirms that the performance of the
RPs varies across the study sites.

Overall, RPs are able to reproduce the observed WI values. However, some dis-
crepancies are seen at the Bordeaux-Mérignac station, where SCOPE Climate shows poor
performances, and at Montelimar, where a significant dissimilarity compared to the refer-
ence dataset is seen for ERA5-Land.

According to Table 3 and Figure 3d, FYRE Climate shows strong similarity with the
reference dataset when reproducing Hyl values; FYRE Climate consistently shows the
highest level of agreement, when considering all study sites collectively (with LCCC = 0.92)
and for each individual location (LCCCs > 0.8). ERA5, ERA5-Land, RFHR, and SCOPE
Climate, however, have weaker correlations with the reference dataset, with SCOPE Climate
displaying the lowest agreement with the observations. IQD values affirm the earlier
finding (Table 3 and Figure 3f); FYRE Climate consistently displays superior agreement
with the reference dataset for when reproducing Hyl values. However, SCOPE Climate
demonstrates a closer match with the reference dataset, in terms of IQD, compared to ERA5,
ERA5-Land, and RFHR. The three latter exhibit similar results, suggesting a comparable
level of agreement with the reference dataset. All RPs tend to overestimate the Hyl values
(Table 3 and Figure 3e), with FYRE Climate and SCOPE Climate showing a low degree
of overestimation compared to the other RPs. However, a significant variability in the
bias values is seen which suggests a different level of agreement between the RPs and the
reference dataset across the study period and sites.
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Overall, the results highlight the consistent outperformance of FYRE Climate com-
pared to other RPs; a similar performance between ERA5 and ERA5-Land is seen. RFHR
shows an overall similar performance compared to ERA5-Land, with an improvement in
reproducing Hyl values for 60% of the stations.
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Figure 2. Results for the WI indicator over the 19962012 period between the reference dataset and
each reanalysis product (RP): (a) Lin’s Concordance Correlation Coefficient (LCCC) plots, with the
black line representing the 45-degree line (perfect agreement). (b) Kernel density estimation (KDE) of
percent bias values. (¢) Cumulative Distribution Function (CDF) of the reference dataset (in black) and
each RP. For (a—c) the results concern all the studied sites collectively and the linestyles distinguish the
RPs. (d) LCCC values separately for each study site. Idem for (e,f) with percent bias and integrated
quadratic distance (IQD) values, respectively. For (e,f) the shapes distinguish the RPs.
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Figure 3. Same as Figure 2, with the indicator Hyl.

3.2. Evaluating the RPs for Maize Crop Indicators

The correlations between observed and RP-derived values of FD are relatively strong
for all products, with RFHR and FYRE Climate showing the highest correlations with the
reference dataset (Table 3). Good agreement between RPs and the reference dataset is
also seen for the study sites, with LCCCs greater than 0.7 for 86% of cases (considering
all stations and all RPs) (Figure 4d). IQD values further confirm the previous results.
A comparable agreement between the RPs and the reference dataset is seen on both global
and local scales (Table 3 and Figure 4c,f). Overall, RPs display minimal biases (Figure 4b).
Figure 4e illustrates that, on a local scale, the bias values remain insignificant, with values
ranging between —2% and 2%, in most cases (considering all stations and RPs).

Overall, the results show a good level of precision in reproducing the FD values by
the RPs, with no significant overestimation or underestimation. None of the RPs stands
out as best for all stations; the most notable differences are seen for the Clermont-FD and
Tarbes-Ossun stations, where ERA5 and ERA5-Land perform rather poorly at reproducing
the FD values compared to the other RPs.
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Figure 4. Same as Figure 2, with the indicator FD.

Regarding the DDs indicator, FYRE Climate displays the highest correlation with the
reference dataset with a global coefficient of 0.9 and coefficients greater than 0.8 for 90% of
stations (Table 3 and Figure 5d). The rest of the RPs exhibit relatively weaker correlations,
with RFHR performing slightly better in reproducing DDs values. LCCC values for RFHR
remain quite acceptable, with a global value of 0.71 and correlations greater than 0.6 for
70% of the stations—a notable improvement compared to ERA5, ERA5-Land, and SCOPE
Climate, where only 10% of stations exhibit similar correlations. The same findings are
shown by IQD values (Figure 5¢,f). FYRE Climate is the closest to the reference dataset,
with a global IQD of 0.16, followed by RFHR and SCOPE Climate. ERA5 and ERA5-Land
show poor performances with an IQD greater than 3 in most cases.

For each RP, the CDF curve is consistently and systematically shifted downward
(i.e., towards the lower values) of the reference line, indicating an underestimation of
DDs values (Figure 5c). Results in (Table 3, Figure 5b,e) further confirm this assumption,
where bias values are always negative. Although RFHR still underestimates the DDs
indicator, a slight improvement is seen compared to ERA5-Land at reproducing the DDs
values; the KDE curve is shifted toward the right (zero) and the average bias is reduced by
approximately half.
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Figure 5. Same as Figure 2, with the indicator DDs.

3.3. Evaluating the RPs for Apple Crop Indicators

For DB indicator, strong correlations between all RPs and the reference dataset are
observed (LCCC values > 0.9, Table 3). For most stations, the LCCC values between the
RPs and the reference dataset are high. The ratio of stations with LCCC values greater than
0.9 is 30%, 70%, 80%, 80%, and 100% for SCOPE Climate, ERA5, FYRE Climate, ERA5-Land,
and, RFHR respectively (Figure 6d). Regarding the PBias, RPs exhibit, on average across
all sites, values ranging between —3% and 15% (Table 3). Compared to RFHR, the KDE
curves of the other RPs show a large spread, suggesting a higher variability (Figure 6b).
For example, ERA5 overestimates the DB date by more than 370%. (Figure 6¢) shows
good agreement between the cumulative probability distributions of RPs and the reference
dataset. The IQD values also suggest a similarity between the RPs and the reference dataset,
with values below 0.3 in most cases (considering all stations and RPs) (Figure 6f).

While RPs lead to satisfactory and similar results for most of the stations, the Embrun
site presents an exception. All RPs perform rather poorly for this station except for RFHR,
which returns satisfactory results (LCCC = 0.9, PBias = 3.77, and IQD = 0.07).
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Figure 6. Same as Figure 2, with the indicator DB.

As illustrated in Table 3 and Figure 7d, FYRE Climate displays the best agreement with
the reference dataset for the WR indicator. Despite the lower LCCCs, the agreement between
ERAS5, ERA5-Land, RFHR, and the reference dataset can be considered as acceptable.
In contrast, SCOPE Climate consistently shows a lower agreement with the observations
(on a global scale and for 80% of stations), with LCCCs below 0.6. Regarding the IQD,
FYRE Climate gives the lowest values (Table 3 and Figure 7c), indicating a closer similarity
to the reference dataset compared to the other RPs. ERA5 and ERA5-Land have relatively
close values, indicating comparable performance. Despite the lower IQD value, RFHR
still displays higher values compared to ERA5 and ERA5-Land for 60% of the stations
(Figure 7f). This discrepancy between RFHR and the reference dataset is particularly
notable at the Brest-Guipavas station, where the IQD value is three times higher compared
to ERA5 and ERA5-Land. In addition, all RPs exhibit positive biases on average, suggesting
a tendency towards an overestimation of WR (Table 3). Except for the Brest-Guipavas
station, for which all the RPs show an underestimation of WR compared to the reference
dataset, the overestimation of WR is still noticeable in most cases (considering all the
stations and RPs) (Figure 7e).
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Figure 7. Same as Figure 2, with the indicator WR.

4. Discussion

Crop modeling studies rely on various input factors, such as soil characteristics, crop
management practices, and climate data to simulate crop growth, development, and yield.
However, one of the major limitations to the application of such studies is the absence
of accurate observational climate data with high temporal and spatial resolutions. Even
in data-rich countries like France, limitations persist due to issues such as the hetero-
geneity of observation station networks, incomplete spatial coverage, and uncertainties
in measurements. One way to overcome these challenges is by using climate reanalysis
datasets [3,16,17]. However, it is important to note that climate RPs have some limita-
tions. These include errors in numerical models, uncertainties introduced during data
assimilation, and homogeneity issues due to changes in observing systems.

The ability of RPs to reproduce observed Agcls has been investigated here. Five RPs
were compared based on a set of six Agcls specific to vine, maize and apple. The study
focuses on 22 synoptic meteorological stations in France over the 1996-2012 period.

4.1. Reliability of the Climate RPs for Developing Agcls

The findings reveal a satisfactory degree of agreement among the climate RPs in
reproducing temperature-based indicators. The five RPs considered in this study exhibit a
satisfactory level of consistency with the observations with significant correlations (LCCC)
and low differences (PBias). Overall, FYRE Climate and RFHR show the best performances
at reproducing all temperature-based indicators, while SCOPE Climate consistently exhibits
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the lowest performance. Nonetheless, it is worth noting that some discrepancies among
the RPs become evident when reproducing temperature-based indicators in sites with
challenging topography (e.g., high altitudes or complex terrain), such as for the Embrun
or Clermont-FD stations. High-resolution RPs, such as RFHR, provide the best results
for the temperature-based indicators for specific mountainous stations, highlighting their
advantage for a more detailed representation of complex terrain and microclimates. Simi-
larly, various studies reported the difficulties of accurately representing temperature within
coarse spatial resolution RPs in areas under a complex topography [25,31,58].

For precipitation-based indicators, the results show poorer performances compared to
temperature-based indicators. RPs exhibit a lower level of agreement with the reference
dataset and more pronounced discrepancies among themselves. Several studies have
reported similar findings [22,28], highlighting the RPs’ challenges in accurately repre-
senting precipitation-based indices, regardless of their temporal scale. Additionally, the
results consistently demonstrate RPs’ tendency to overestimate the indicator linked to
precipitation amount WR while simultaneously underestimating the one associated with
precipitation occurrence DDs. This dual effect within the RPs can be primarily attributed
to the presence of a wet bias coupled with a tendency to underestimate the frequency of
dry days. This behavior is supported by multiple studies conducted in various regions of
Europe [27,29,30].

Regarding the mixed indicator (HylI), the findings reveal similar behaviors among the
RPs to that observed when reproducing precipitation-based indicators. All the scores are
lower compared to those of the temperature-based indicators. Additionally, a consistent
pattern of overestimating Hyl values by the RPs, resembling the case of WR, is also seen.
While the importance of temperature is unquestionable here, it appears that precipitation
has a more dominant influence on the performance of RPs in reproducing Hyl.

Overall, FYRE Climate provides the best reproduction of the precipitation-based indi-
cators. RFHR, ERA5, and ERA5-Land display similar performances in reproducing Agcls
based on precipitation amount, and a slight improvement is observed with RFHR'’s for the
representation of precipitation occurrence. Despite the well-marked accuracy of FYRE Climate
in representing Agcls, some limitations are noteworthy. One key constraint is the data’s
temporal extent until 2012, which constrain the climate simulations beyond 2012. Additionally,
only temperature and precipitation data are provided. Even though these two variables are
important, they do not capture the full complexities of agro-climatic interactions.

Considering these findings, further studies should extend their investigation to the
RPs reliability in reproducing Agcls, considering a larger set of climatic variables beyond
temperature and precipitation. While these two variables are fundamental, they do not
fully capture the complexities of agro-climatic conditions. This expansion is essential since
various climatic factors, such as humidity, wind, and solar radiation, significantly influence
agricultural outcomes.

4.2. Implications for Agro-Climatic Studies

Accurate reproduction of temperature-based Agcls through RPs provides valuable
insights into the complex interactions between temperature and crop. This enhances
the ability of assessing the effects of temperature on crops, soil conditions, and overall
agricultural productivity. This is crucial for providing informed decision-making, such as
planting schedules, crop selection, irrigation, and other agricultural practices. In addition,
this will improve the modeling and forecasting of plant growth, disease development,
and pest dynamics, and will ultimately lead to improved efficiency and yields of crops.

An accurate reproduction of Agcls based, solely or partly, on RPs precipitation is
challenging due to the dynamic and stochastic nature of precipitation, varying in inten-
sity and frequency. The uncertainties in such precipitation-related Agcls can influence
the assessments of agricultural productivity, water management, and decision-making.
For instance, underestimating the frequency of dry days could compromise the accurate
characterization of dry/wet spell lengths and drought periods [11,26]. Additionally, overes-
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timating precipitation amounts can result in an inaccurate evaluation of water availability,
underestimation of irrigation requirements, or exaggeration of potential crop yields. This
challenge extends to disease management decisions, as seen in the case of Hyl, where such
mismanagement can lead to unnecessary or excessive control measures, with potential
costs and environmental consequences. All these outcomes can lead to ineffective irrigation
scheduling and practices, inadequate drought preparedness, and, ultimately, negative
impacts on crop yield and quality.

In this study the need for critical evaluation in agro-climatic assessments is highlighted.
Understanding both the strengths and limitations of RPs holds significant implications for
agro-climatic studies. In a changing climate, where the increase in temperatures and shifts
in precipitation patterns are anticipated, precision in agriculture assessments is crucial.
Relying on inaccuracies could not only amplify uncertainties in climate change assessments
but also limit the ability to make the distinction between climate change impacts and
data errors. Therefore, a comprehensive understanding of RPs and their limitations is
crucial, along with validation against local observations, and cautious interpretation and
application. All these elements are essential for informed decision-making in agriculture
and climate change adaptation.

5. Conclusions

Climate RPs serve as valuable tools for climate research. Their ability to reproduce
observed Agcls has been investigated here. Five RPs were compared based on a set of six
Agcls specific to vine, maize, and apple. The study focuses on 22 synoptic meteorological
stations in France over the 1996-2012 period. This study offers a comprehensive assessment
of the reliability of climate RPs in reproducing some Agcls. The results reveal significant
variations among the different RPs when reproducing such indicators, with their performance
exhibiting distinct patterns linked to the underlying climatic variables. RPs have proven their
robustness in accurately replicating temperature-based indicators, despite some disparities
in challenging terrains, especially for coarse-resolution products. However, the complexities
surrounding the accurate representation of precipitation based Agcls remain. These findings
underscore the ongoing challenges in achieving precise representations of this crucial aspect
in agro-climatic assessments. The study provides valuable insights into the strengths and
limitations of climate reanalysis products (RPs), encouraging a more careful and context-
sensitive application in agricultural research and planning.

Author Contributions: Conceptualization, M.E.-R., M.T,, S.C., E.B., L.S. and N.A.; Data curation,
M.E.-R.; Formal analysis, M.E.-R.; Funding acquisition, M.T., S.C., E.B., L.S. and N.A_; Investigation,
M.E.-R., M.T,, S.C. and E.B.; Methodology, M.E.-R., M.T. and S.C.; Project administration, M.T., S.C.,
E.B., LS. and N.A_; Resources, M.E.-R., M.T,, S.C. and E.B.; Software, M.E.-R.; Supervision, M.T.,
S.C, EB.,, LS. and N.A.; Validation, M.E.-R.,, M.T., S.C., E.B., L.S. and N.A.; Visualization, M.E.-R.;
Writing—original draft, M.E.-R.; Writing—review and editing, M.E.-R., M.T,, S.C., E.B., L.S. and N.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is part of Mariam Er-Rondi’s PhD thesis, funded by the company Weather-
Measures and the National Association for Research and Technology ANRT under the CIFRE program
(grant number CIFRE N° 2021/1202).

Data Availability Statement: ERA5 and ERA5-Land datasets are publicly available and can be
downloaded from the Copernicus Climate data store https://cds.climate.copernicus.eu/cdsapp#!/
dataset (last accessed on 20 September 2022). ERA5 data are available online at https://doi.org/10
.24381/cds.adbb2d47 (Last accessed on 16 September 2022). ERA5-Land data are available online
at https:/ /doi.org/10.24381/cds.e2161bac (last accessed on 20 September 2022). SCOPE Climate
and FYRE Climate are available and can be downloaded as netcdf files on the Zenodo platform
https://zenodo.org/ (last accessed on 9 September 2022). For SCOPE Climate, data are available at
https://doi.org/10.5281/zenodo0.1299760 for precipitation (last accessed on 6 September 2022) and
at https://doi.org/10.5281/zenodo.1299712 for temperature (Last accessed on 6 September 2022).
For FYRE Climate, data are available at https://doi.org/10.5281/zenodo0.4005573 for precipitation
(last accessed on 9 September 2022) and at https:/ /doi.org/10.5281/zenodo.4006472 for temperature


https://cds.climate.copernicus.eu/cdsapp#!/dataset
https://cds.climate.copernicus.eu/cdsapp#!/dataset
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.e2161bac
https://zenodo.org/
https://doi.org/10.5281/zenodo.1299760
https://doi.org/10.5281/zenodo.1299712
https://doi.org/10.5281/zenodo.4005573
https://doi.org/10.5281/zenodo.4006472

Appl. Sci. 2024, 14, 1204 16 of 18

(last accessed on 9 September 2022). The observational station data were obtained from Météo France
and are available online at https://donneespubliques.meteofrance.fr/?fond=produité&id_produit=
90&id_rubrique=32 (Last accessed on 10 October 2022). RFHR is a collaborative effort between the
companies Hydroclimat and Weather Measures. The dataset is currently unavailable due to privacy.
Further inquiries can be directed to the corresponding author.

Conflicts of Interest: Mariam Er-Rondi’s PhD thesis is co-funded by the company Weather Measures.
Magali Troin co-founded Hydroclimat and is currently the Director of research and development
for the company. Sylvain Coly is employed by Weather Measures. Emmanuel Buisson co-founded
Weather Measures and is currently the Director of Product and Innovation for the company. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Appendix A

Table Al. Station name, coordinate and elevation of the weather stations used in this study.

Location Name Longitude Latitude Elevation (m)
Abbeville 50.136 1.834 69
Caen-Carpiquet 49.18 —0.456167 67
Rouen-Boos 49.383 1.181667 151
Brest-Guipavas 48.444167 —4.412 94
Rennes-ST Jacques 48.068833 —-1.734 36
Strasbourg-Entzheim 48.5495 7.640333 150
Nantess-Bouguenais 47.15 —1.608833 26
Tours 47 4445 0.727333 108
Bourges 47.059167 2.359833 161
Dijon-Longvic 47.267833 5.088333 219
Poitiers-Biard 46.593833 0.314333 123
Limoges-Bellegarde 45.861167 1.175 402
Clermont-FD 45.786833 3.149333 331
Bordeaux-Merignac 44.830667 —0.691333 47
Montelimar 44.581167 4.733 73
Embrun 44.565667 6.502333 871
Mont-De-Marsan 43.909833 —0.500167 59
Tarbes-Ossun 43.188 0 360
Toulouse-Blagnac 43.621 1.378833 151
Montpellier 43.577 3.963167 2
Perpignan 42.737167 2.872833 42
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