

Rotokauri North Sub-Catchment ICMP

Stormwater and MUSIC Modelling Report Technical Appendix to Sub-Catchment Integrated Catchment Management Plan

> PREPARED FOR: Green Seed Consultants Ltd

DOCUMENT CONTROL RECORD

PROJECT:			Rotokauri North Sub-Catchment ICMP			
CLIENT:			Green Seed Consultants Ltd			
PROJECT LOCATION:			Burbush Rd and Te Kowhai Rd, Rotokauri North			
FILE PATH:			C:\12d\Synergy\data\MCKSQL01\1693 Rotokauri_323\Documents and Communications\Reports\MUSIC Modelling Report\1693-Stormwater MUSIC Modelling.docx			
Revision	Date	Originator	Checker	Approver	Description	
DRAFT	11/18	BJR	AJSH	AJSH	Draft for client review	
1	12/18	BJR	AJSH	AJSH	Draft for HCC	
2	2/19	BJR	AJSH	AJSH	Addressed HCC comments from draft; added sensitivity analysis for WRC	
3	3/19	BJR	AJSH	AJSH	Addressed WRC and Morphum comments	

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Site Description	2
3.0	Stormwater Background	3
4.0	Water Quality Requirements1	0
5.0	Stormwater Strategy1	2
6.0	Runoff Model Comparison1	6
7.0	MUSIC Methodology2	0
8.0	Catchment Result and Statistics2	9
9.0	Swale Network Hydraulics1	7
10.0	Low Impact Design (LID) Assessment2	1
11.0	Downstream Ohote Catchment Options2	3
12.0	Conclusion4	3
13.0	References	4

TABLES

Table 1: Strategic Objectives (All ICMPs)	3
Table 2: Strategic Objectives (Applicable to this ICMP)	3
Table 3: Existing and Proposed Catchment Areas	6
Table 4: Peak ED Flows	7
Table 5: Upstream Ohote Catchment Peak Flows	8
Table 6: Water Quality Requirements	10
Table 7: Swale/Channel Designs (10% AEP _{cc})	13
Table 8: Wetland Designs	14
Table 9: MUSIC vs TP108 vs WRC Peak Flows	
Table 10: MUSIC vs TP108 vs WRC Sensitivity Analysis	19
Table 11: Average Lot Runoff Sources	21
Table 12: Analysis 1 - Design Rainfall Depths	23
Table 13: Contaminant Loading Rates	26
Table 14: Wetland Modelling Parameters	27
Table 15: Detention Volumes	27
Table 16: MUSIC Hydraulics Summary	0
Table 17: Detention Basin Volumes	0
Table 18: Limiting Catchment Discharges	0
Table 19: Predicted Peak Discharges	1
Table 20: WQV Design Rainfall Water Quality Performance – TSS	2
Table 21: Long Term Rainfall Water Quality Performance – TSS	4
Table 22: WQV Design Rainfall Water Quality Performance - TP	7
Table 23: Long Term Rainfall Water Quality Performance - TP	9
Table 24: WQV Design Rainfall Water Quality Performance - TN	11
Table 25: Long Term Rainfall Water Quality Performance - TN	13
Table 26: Soil Storage Capacity Sensitivity Hydraulics Summary (WQV)	15
Table 27: Low Impact Design Assessment	21
Table 28: Pro Rata Flows	27
Table 29: Existing Downstream Ohote Stream Results	29
Table 30: Anova Results	35
Table 31: Downstream Works Ohote Stream Results	37
Table 32: Downstream Works Anova Results	41

FIGURES

Figure 1: ICMP Area and Rotokauri North Catchment1
Figure 2 Site Location2
Figure 3: Current Catchment Boundaries4
Figure 4: Proposed Catchment Boundaries5
Figure 5: Upstream Ohote Catchments8
Figure 6: Ohote A Subcatchment Reaches17
Figure 7: Schematic Lot Arrangement21
Figure 8: Analysis 1 - Design Rainfall Hyetographs (Including Climate Change)
Figure 9: Analysis 2 – Long Term Historical Rainfall Hyetographs (Source: Morphum Environmental)
Figure 10: TSS Reduction – WQV Rainfall Event
Figure 11: TSS Reduction - Long Term Rainfall6
Figure 13: Total Phosphorus Reduction - WQV Design Rainfall8
Figure 14: Total Phosphorus Reduction - Long Term Rainfall10
Figure 15: Total Nitrogen Reduction - WQV Design Rainfall12
Figure 16: Total Nitrogen Reduction - Long Term Rainfall14
Figure 17: Ohote A Wetland Swale Network17
Figure 18: Te Otamanui Wetland Swale Network18
Figure 19: Ohote A Critical Hydraulic Path – 1%AEP _{cc} Results
Figure 20: Te Otamanui Critical Hydraulic Path – 1%AEP _{cc} Results
Figure 21: Ohote Storage Requirements23
Figure 22: Downstream Ohote Stream 1D Model (Aerial)24
Figure 23: Downstream Ohote Stream 1D Model (Digital Elevation Model)
Figure 24: DEM Adjustment26
Figure 25: Duck Road Culvert
Figure 26: Existing Ohote Stream Water Profiles28
Figure 27: Existing Stream Velocity Variance29
Figure 28: Existing Stream Shear Stress Variance
Figure 29: Existing Stream Froude Number Variance
Figure 30: Exisitng Stream – Velocity Box Plot
Figure 31: Existing Stream – Shear Stress Box Plot
Figure 32: Existing Stream – Froude Number Box Plot

Figure 33: Most Sensitive sections of Ohote Stream	34
Figure 34: Stream Erosion and Upper Bank Stability (Source: Morphum Environmental)	34
Figure 35: Ohote Stream Water Profiles After Downstream Works	36
Figure 35: Downstream Works Stream Velocity Variance	37
Figure 36: Downstream Works Stream Shear Stress Variance	38
Figure 37: Downstream Works Stream Froude Number Variance	38
Figure 38: Downstream Works – Velocity Box Plot	40
Figure 39: Downstream Works – Shear Stress Box Plot	40
Figure 40: Downstream Works – Froude Number Box Plot	41

APPENDICES

- Appendix A Catchment Extent Plans
- Appendix B Primary Network
- Appendix C Wetland Design
- Appendix D Default MUSIC Parameters
- Appendix E Design Rainfall Hyetographs
- Appendix F Wetland Hydrographs
- Appendix G –Swale Hydraulic Results
- Appendix H Ohote Stream Model Figure
- Appendix I Existing Ohote Stream Hydraulics
- Appendix J Downstream Works Ohote Stream Hydraulics

1.0 INTRODUCTION

McKenzie & Co. Consultants (McK) have been engaged by Green Seed Consultants Ltd (GSCL) to prepare a stormwater modelling report to assess pre-development stormwater flows for the Rotokauri North Sub-Catchment Integrated Catchment Management Plan (ICMP). This report has been prepared alongside a Private Plan Change (PPC) to rezone 133 ha (within the ICMP area) for medium density housing and a neighbourhood centre.

The full extent of modelling (including that in this report) covers the extent of land identified in Figure 1, based on existing topographical catchments. However, the ICMP covers approximately 203 hectares as shown in Figure 1 below, and is only based on land falling inside the HCC Territorial Authority Boundary.

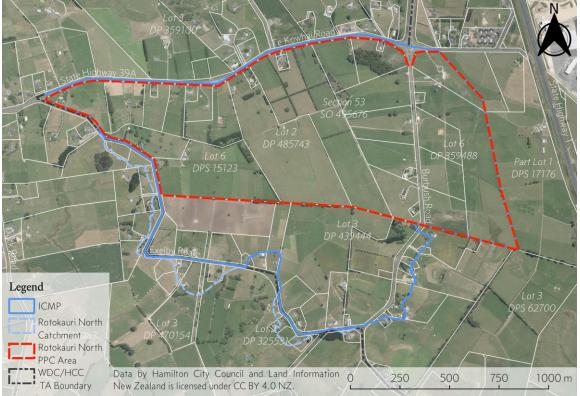


Figure 1: ICMP Area and Rotokauri North Catchment

This report outlines the methodology and results of stormwater analysis including MUSIC modelling for the Plan Change area. The design within this report is to a feasibility level to support the Private Plan Change application.

2.0 SITE DESCRIPTION

The site is located at the edge of Hamilton City's urban limit toward the northwest corner of the city. The site is bounded to the north by State Highway 39 (Te Kowhai Road), and generally on the west and south by Exelby Road. The Waikato Expressway lies to the east and Burbush Road passes through (North – South) the middle of the site – see Figure 2.

The site is comprised of farmland pastures, with a small number of farmhouses/residential dwellings, and farm utility buildings present.

The landform is generally very flat with around 2 m fall across the site. Burbush Road is elevated some 10 m above the site to the south. The total elevation range across the ICMP catchment is from RL 27m to RL 47m.

Figure 2 Site Location

3.0 STORMWATER BACKGROUND

3.1 ICMP Objectives

The Subcatchment ICMP objectives have been summarised in the following tables (Table 1 and Table 2). For detailed objective descriptions please refer to Section 2 of the ICMP.

Tabl	e 1: Strategic Objectiv	es (All ICMPs)
	Reference Number	Strategic Objective
	SO1	Protect freshwater systems - Ma

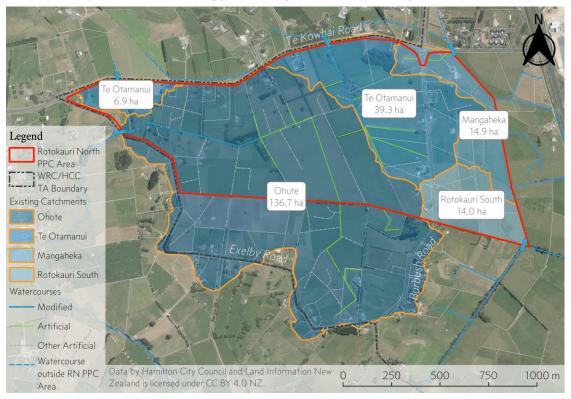
SO1	Protect freshwater systems - Maintain, protect and enhance freshwater ecosystems and natural drainage systems.
SO2	Protect terrestrial systems - Maintain, protect and enhance indigenous biodiversity values and functions.
SO3	Kaitiakitanga - Give effect to the relationship of tangata whenua as kaitiaki of receiving water bodies and including the relationship of Waikato-Tainui with the Waikato River.
SO4	Stormwater Management - Stormwater management related to land use and development shall encourage and enable low impact design and incorporate best practicable mitigation measures to minimise actual and potential adverse effects
SO5	Wastewater Management - Wastewater management shall incorporate best practicable options
SO6	Potable Water Management - Water supply is planned and provided for in a way that meets existing and future requirements
SO7	Three Waters Management - Three waters networks are planned, managed and operated in an integrated manner to meet existing and future development requirements

The following strategic objectives are specific to the Rotokauri North Subcatchment ICMP. As the site falls within both the Mangaheka and Rotokauri ICMPs the strategic objectives of both of these catchments have been considered and are incorporated below.

Table 2: Strategic Objectives (Applicable to this ICMP)

Reference Number	Strategic Objective
CS1	Alignment with the Rotokauri North Structure Plan - manage
	stormwater in a manner that minimises the effects of development on
	downstream receiving waters.
CS2	Provide flood protection and downstream level of service.
CS3	Protecting water quality - Require the stormwater network to
	incorporate a treatment train approach to improve water quality of
	onsite watercourses.

3.2 Existing Catchment Overview


The Rotokauri North area falls at the intersection of the Ohote, Te Otamanui, Mangaheka and Rotokauri South catchments. Modelling and reporting on these catchments were undertaken by external consultants for Hamilton City Council (HCC) previous to the consideration of the Rotokauri North Plan Change Area. Previous reports have been referenced in Section 13.0.

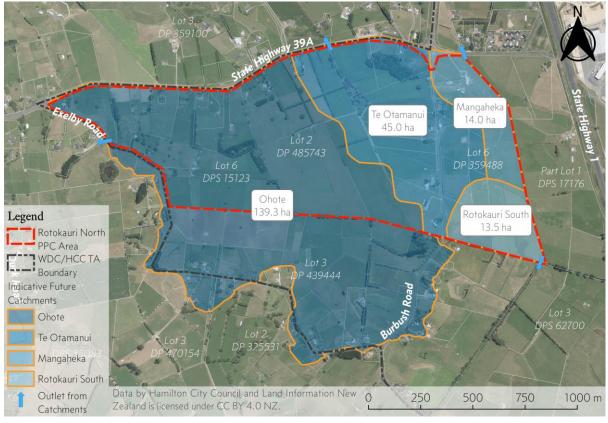
The majority of stormwater catchment discharge is via the Ohote catchment, which runs predominantly east-west through Rotokauri North. The Ohote catchment ultimately discharges to the Waipa River approximately six kilometres downstream. The catchment drains through a culvert located at Exelby Road, which is also the western boundary of the Rotokauri North catchment.

The Te Otamanui catchment within Rotokauri North (portions south of Te Kowhai Road) also falls within the HCC territorial authority boundary. The remainder of the Te Otamanui catchment (downstream of the Rotokauri North Plan Change area) is within Waikato District Council's jurisdiction. Two culverts under Te Kowhai Road convey flow from the southern to northern portions of the Te Otamanui catchment. The Te Otamanui catchment discharges north westerly to the Waipa River approximately eight kilometres to the west northwest of Rotokauri North.

The Mangaheka catchment flows from south to north along the eastern edge of Rotokauri North. The upper portion of the Mangaheka catchment within HCC jurisdiction falls within Rotokauri North. The catchment eventually discharges to the Waipa River approximately 2.5 kilometres south of Ngaruawahia. This catchment has an approved Integrated Catchment Management Plan (ICMP) (Adams, 2018a), for which the stormwater management requirements have been confirmed.

The Rotokauri South sub-catchment has a higher level of detail within the approved Integrated Catchment Management Plan (Hart, 2017). As such, the stormwater management requirements have been confirmed for that portion of the Rotokauri North area. The portion within the Rotokauri North area covers the upper reach of the Rotokauri South sub-catchment. The catchment flows south westerly to Rotokauri Lake approximately 1.5 kilometres away.

Figure 3: Current Catchment Boundaries


Refer to Appendix A – Catchment Extent Plans for larger figure.

3.3 Proposed Catchment Overview

The Rotokauri North Plan Change area will have catchment boundaries amended to suit the proposed master plan development and topography. The amendment will direct the western Te Otamanui 6.9 ha catchment area into the Ohote catchment, thereby increasing the overall size of that catchment. The eastern portion of Te Otamanui catchment has a revised boundary primarily with Ohote.

The Mangaheka and Rotokauri North catchments have only minor adjustments.

Amendments and adjustments to the catchment boundaries would be expected to occur based on changes to topography through earthworks and stormwater conveyance systems following road networks.

Figure 4: Proposed Catchment Boundaries

Refer to Appendix A – Catchment Extent Plans for a larger figure.

The changes to the contributing catchment areas have been summarised as per the following table (Table 3).

Table 3: Existing and Proposed Catchment Areas

Catchment Reference	Existing Area (ha)	Proposed Area (ha)	Comments
Ohote	136.7	139.3	Catchment area was the area upstream of Exelby Road culvert
Te Otamanui West	6.9	0.0	Area to be redirected to Ohote catchment
Te Otamanui East	39.3	45.0	Boundary adjusted with Ohote catchment
Mangaheka	14.9	14.0	Minor adjustment with Te Otamanui and Rotokauri North catchments
Rotokauri South	14.0	13.5	Minor adjustment with the Mangaheka catchment
TOTAL	211.8	211.8	

3.4 Consents

Stormwater discharge consents will form part of the future Qualifying Development (under HASHAA) and resource consent applications (under RMA).

3.5 Ecological Assessment

Two ecological reports were completed for the Rotokauri North Plan Change area:

- 1. Rotokauri North Sub-Catchment, Receiving Environment and Rapid Erosion Assessment (Morphum, 2018 Draft); and
- 2. Rotokauri North Development Area: Technical review of stream classifications (Miller, 2018 Draft)

A key stormwater management opportunity for the Plan Change area will be the ecological enhancement of the receiving environments as per the reports above.

3.6 Geotechnical and Hydrogeology

A geotechnical desktop assessment has been documented within:

1. Rotokauri North SHA, Geotechnical Assessment Report (Alder, 2018).

The key risk identified within the report was the moderate to high risk of liquefaction at the site. It is expected that this risk can be mitigated for residential development, subject to further detailed investigation and analysis.

Hydrogeological assessment has been documented in:

2. RNDA ICMP: Desktop Review of Hydrogeological Conditions Influencing Stormwater Design (Nutsford, 2018).

The report noted two specific soil types across the Plan Change area:

- Sandy CLAY low hydraulic conductivity, typical layer thickness of 0.5m.
- SAND moderate to high hydraulic conductivity, anisotropic, typical layer thickness of 3.75m.

Groundwater levels ranged across the site from 0.1 m to 1.5 m below ground level and were noted to be much shallower than those recorded for the adjacent Rotokauri South area.

Using the water table method on limited monitoring results estimated that rainfall recharge was ~100%, indicating a very direct connection between ground water levels and rainfall.

3.7 Existing Hydrology and Hydraulics

The existing hydrology of the site, and the related hydraulics have been documented in the following reports and correspondence:

- 1. Rotokauri North Private Plan Change, Catchment Modelling (Rudsits, 2019b)
- 2. Ohote Catchment 2D Modelling Sensitivity (Rudsits, 2018a)
- 3. Rotokauri North Catchment Stormwater Modelling, Ohote Stream Capacity Assessment Model Build Report (Vajlikova, 2018)
- 4. Rotokauri ICMP Major Drainage Options (AECOM, 2016)

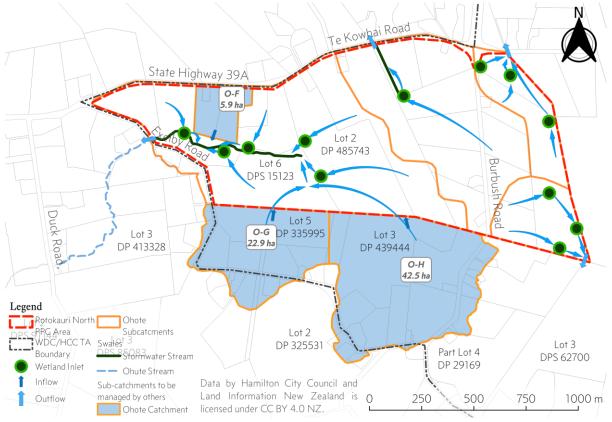
The modelling analysis and reports have estimated the Existing Development (ED) flows relevant to the Plan Change area. The peak flow predictions were for the locations at the interface of development area and receiving environments. The peak flow predictions were for the whole of the contributing catchment, including areas outside of the Plan Change area.

Peak flow predictions were based on 24-hour 50%, 10% and 1% Average Exceedance Probability design rainfall events excluding climate change factors.

Due to the differences in modelling software and input datasets used by AECOM and McKenzie & Co. it was recommended that the peak value of 0.7m³/s be adopted as per the previous Rotokauri ICMP for the 1% AEP design rainfall event. The final value to be used for ED flows can be further refined in the future during Resource Consenting, subject to additional information being gathered (topography) and runoff analyses agreed between all relevant parties (GSCL, HCC, WRC).

Location	50% AEP (m³/s)	10% AEP (m³/s)	1% AEP (m³/s)
Exelby Road Culvert (Ohote)	0.331	0.501	0.70
Te Otamanui - Te Kowhai Road (West)	0.10	0.11	0.12
Te Otamanui - Te Kowhai Road (East)	0.85	1.50	1.81
Mangaheka	1.49	2.38	3.21
Rotokauri South	0.46	0.18	1.77

Table 4: Peak ED Flows


 The AECOM modelling was acknowledged as providing a catchment level assessment primarily for assessing flooding for 1% AEP. The model was not configured as a detailed planning tool for the 50% and 10% AEP flows, as per correspondence between AECOM and HCC¹.

Additionally, as per comments in Section 3.3, the Te Kowhai Road (West) catchment will be directed towards the Exelby Road culvert. The flow values for the Exelby Road culvert will form the limiting ED flows for this catchment regardless of any redirection.

¹ Email Chris Hardy (AECOM) to Jackie Colliar (HCC), 19 November 2018, "Rotokauri North Hydrology".

3.8 Upstream Catchments

Catchments outside the Plan Change area but included within subcatchment ICMP boundary area were analysed as part of the catchment modelling. These areas (O-G and O-H, refer to Figure 5) will contribute to flows within the Ohote catchment.

Figure 5: Upstream Ohote Catchments

These upstream catchment areas (identified as 'O-G' and 'O-H) 'have been assumed to provide water quality treatment and detention within their catchments. The Plan Change area has allowed for the stormwater flows from these areas to be conveyed through to the green corridor by dedicated conveyance channels. Dedicated conveyance channels were proposed as the stormwater from the upstream catchments can be considered 'clean' when it discharges to the green corridor.

If the upstream catchment flows were combined with the local swale/conveyance channels, this would result in the receiving wetland being considerably larger to treat the increased catchment area. This was not considered acceptable as the Plan Change area would need to have additional land allocated for stormwater management from catchments external to the Plan Change area.

The flow estimates for these upstream catchments were based on the McK modelling results, as they were more conservative than the AEOCM modelling results.

Location	50% AEP (m³/s)	10% AEP (m³/s)	1% AEP (m³/s)	80% of 1% AEP (m³/s)
Area 'O-G'	0.23	0.43	0.78	0.62
Area 'O-H'	0.68	0.79	0.87	0.70

Table 5: Upstream Ohote Catchment Peak Flows

The dedicated conveyance channels were sized for the 10% AEP peak flows, with flows in excess to managed through overland flow paths along/within road reserves. The 1% AEP peak flow to be

accommodated within the Plan Change areas was based on 80% of peak flow for the 1% AEP storm event as per HCC requirements.

4.0 WATER QUALITY REQUIREMENTS

The post development water quality requirements have been summarised as per Table 6.

 Table 6: Water Quality Requirements

Water Quality Parameter	Limit	Comment
Suspended Solids	Increase in concentration <10% of existing	WRC Regional Plan Section 3.2.4.6
	Concentration shall not exceed 100 g/m ³	WRC Regional Plan Section 3.2.4.6
	75% removal of post development load	Waikato Local Authority Shared Services Regional Infrastructure Technical Specifications (Waikato Local Authority, 2018) (Waikato LASS RITS)
Temperature	No more than 3°C change in water temperature AND not greater than 23°C	Waikato LASS RITS (Waikato Local Authority, 2018)
Turbidity	No greater than 25 NTU in the stormwater discharge in a water quality storm (1/3rd of a 2-year 24-hour storm).	Waikato LASS RITS (Waikato Local Authority, 2018)
Dissolved Oxygen	Greater than 80% of saturation concentration - however if the If the concentration of dissolved oxygen in the receiving environment is below 80 percent saturation concentration, any discharge into the water shall not lower it further.	Waikato LASS RITS (Waikato Local Authority, 2018)
Ammoniacal Nitrogen	<0.88 g/m ³	Waikato LASS RITS (Waikato Local Authority, 2018)
	<0.03 mg/L (<0.03 g/m³) annual mean	National Policy Statement - Freshwater Management, Attribute State 'A' (Ministry for the Environment, 2017)
	<1.30 mg/L (<1.30 g/m³) annual mean	National Policy Statement - Freshwater Management, Attribute State 'D' (Ministry for the Environment, 2017)
Total Nitrogen	Maximum practical removal possible	Waikato LASS RITS (Waikato Local Authority, 2018)
Total Phosphorus	Maximum practical removal possible	Waikato LASS RITS (Waikato Local Authority, 2018)

Water Quality Parameter	Limit	Comment
Total Metals	Maximum practical removal possible	Waikato LASS RITS (Waikato Local Authority, 2018)
Colour/Visual Clarity	No conspicuous change in colour or clarity (1/3rd of a 2-year 24-hour storm).	Waikato LASS RITS (Waikato Local Authority, 2018)
Hydrocarbons	No visible sheen	Waikato LASS RITS (Waikato Local Authority, 2018)
Gross Pollutants	No gross pollutants	Waikato LASS RITS (Waikato Local Authority, 2018)
Other Contaminants	Removal in accordance with the RITS.	Waikato LASS RITS (Waikato Local Authority, 2018)

The analysis and reporting within this document were related to design rainfall events. It is recommended that an annualised time series be completed as part of a future application for stormwater discharge consent. That would allow assessment of annual performance of the water quality devices for consideration and comparison with the National Policy Statement – Freshwater Management.

5.0 STORMWATER STRATEGY

The stormwater management strategy for Rotokauri North will implement the objectives of the Rotokauri North Sub-catchment ICMP and will meet the Hamilton City Council (HCC) requirements for a Greenfields development which follow Water Sensitive Design considerations. This includes the following:

- Quality;
- Retention and Detention;
- Conveyance for 10-yearcc and 100-yearcc rainfall events; and
- Application of Water Sensitive urban design for road reserves.

The flow effects will also be mitigated by applying at source stormwater management.

5.1 Conveyance

The limited topographic change across the Plan Change area limited the use of a piped gravity network, therefore swales and conveyance channels were preferred. Swales would be planted with high growing vegetation to reduce flow velocities to aid water quality outcomes. The conveyance channels would primarily be used for moving flow through the network, with water quality outcomes a secondary benefit.

The conveyance of the 10-year_{cc} rainfall event will be via a swale network which will discharge into wetlands and detention basins (via high-flow bypass) prior to the outlet of each catchment to the receiving environment. Details of the proposed primary network for the development are provided in Appendix B.

The conveyance system in the Plan Change area was based on upper sub-catchment reaches using the road/carriageway for conveyance of stormwater flows, for maximum catchment area of 1.5 ha. The carriageways used for conveyance are expected to generally be local roads with a fixed 6.0m width. The maximum flow depth of 100mm was based on conveying the 10% AEP_{cc} within the carriageway.

Conventional vegetated swales would be used for catchments up to 4.0 ha. Conveyance channels are proposed for conveyance within subcatchments with contributing areas exceeding 4.0 ha. The swales and channels within the Ohote catchment will discharge to the green corridor where wetlands and a naturalised stream section (green corridor) are located.

Swale/Channel Reference	Max. Upstream Catchment Size (ha)	Base width (m)	Top Width (m)	Side Slopes
A (Swale)	<4.0	0.6	3.75	1:3
B (Channel)	4.6	0.85	4	1:3
C (Channel)	6.4	1	4.5	1:3
D (Channel)	17.3	3	7.5	1:3
E (Channel)	25.7	3.8	9	1:3

Table 7: Swale/Channel Designs (10% AEP_{cc})

Manning's n Values

RITS (Waikato Local Authority, 2018) recommends a Manning's *n* values of 0.25 for design of planted swales, which was adopted for the Type 'A' swales above. However, the larger swales and conveyance channels within the Plan Change area are primarily for conveyance. These swales and conveyance channels are expected to comprise cobbled bases and grassed sides, with planting proposed above the 10% AEP_{cc} water level. Subsequently the hydraulic analyses have used an equivalent Manning 'n' value of 0.05 for design of those swales.

Should planted treatment swales be adopted during future detailed design for swales other than Type 'A', the RITS value of 0.25 should be adopted.

Planting to be used as part of the swales/channels shall be selected from RITS Table 4-35 based on hydraulic and landscaping requirements.

5.2 Quality

The proposed development will include Single Housing, Duplex Housing and Terrace housing urban typologies. These residential typologies are considered to be a comparatively low contaminant producing activity. The majority of roads are designed to have water sensitive design elements included, such as swales.

The development proposes to apply at-source (on site/on lot) treatment systems for the Single and Duplex Housing. The remaining lot typologies and roads are expected to achieve water quality outcomes via communal systems. Several practical treatment options have been considered for the Plan Change area, which include the following options, and can be applied in a treatment train approach that includes but is not limited to:

- Minimisation of impervious surfaces as far as practically possible;
- Inert or low contaminant generating cladding material for buildings;
- Proprietary treatment devices;
- Bioretention devices;
- Detention basins;
- Swales;
- Wetlands; and
- Permeable paving in shared spaces, car parking bays and driveways.

The proposed catchment has relatively shallow surface gradient zones which can accommodate atsource treatment within the residential lots, shared spaces, and road reserves.

Wetland Design

Wetlands were proposed for the treatment of stormwater flows downstream of the conveyance system. The wetlands have been designed for the water quality volume (WQV) as calculated using Auckland Council TP10 (Auckland Regional Council, 2003) design information, in addition to providing extended detention volume (EDV) as per RITS. Rainfall design depth values used were based on local (Waikato) values, excluding adjustments for initial abstraction, were:

- WQV = 23.6mm (Auckland Regional Council, 2003 Chapter 3)
- EDV = 28.3mm (Auckland Regional Council, 2003 Chapter 5), adjusted for local conditions including additional 20% for unstable receiving environment.

When the extended detention volume within the wetland is reached, the flows will bypass at the forebay. This ensures higher flows bypass the wetland with minimal effect on wetland operating levels.

The wetlands are expected to be designed based on an assumption of banded wetlands with the following levels relative to Normal Water Level (NWL):

- PSZ Macrophyte zone 0m 0.2m deep from NWL
- PSZ Macrophyte zone 0.2m 0.35m deep from NWL
- PSZ Inlet Pool 0.35m 1.5m deep from NWL
- PSZ Outlet Pool 0.35m -2.0m deep from NWL

Wetland area has been taken as the area at Normal Water Level with EDV water depth set at 0.5m.

Discharge from the wetlands to the receiving green corridors will be through flow limiting orifice so as to maximise treatment and detention time.

Design specifics of the wetlands are as per the following summary table (Table 8), with detailed information included in Appendix C – Wetland Design.

Subcatchment Reference	WQV (m³)	EDV (m³)	Inlet Pond / Forebay (m ³)	Wetland Area (m²)	Max Release Rate (m ³ /s)
Ohote A	1640	3230	370	4860	0.08
Ohote B	1730	3410	390	5130	0.08
Ohote D	800	1570	180	2360	0.04
Ohote E	670	1330	160	1990	0.03
Te Otamanui	3280	6480	740	9750	0.15
Mangaheka A	160	300	40	410	0.01
Mangaheka B	390	760	90	1050	0.03
Mangaheka C	460	910	110	1260	0.03
Rotokauri South A	210	410	50	560	0.01
Rotokauri South B	80	160	20	210	0.01
Rotokauri South C	80	160	20	220	0.01
TOTAL	9500	18 720	2170	27 800	-

Table 8: Wetland Designs

Consideration of wetland liner requirements has not been undertaken as long-term hydrogeological monitoring and analysis has not been completed. Plant selection and planting plans have not been considered. These two items are considered matters for design at Resource Consent stage.

The WQV values above include 33% additional volume allowance for vegetation and planting.

5.3 Treatment

The Rotokauri North catchment will consist of predominantly residential land use, which is generally a comparatively low contaminant producing activity. Road runoff would be collected by road swales and related water sensitive devices.

The overarching principle of the development is to consider treatment of runoff. Several practical at source treatment options have been considered for this catchment, which include the following:

- Rainwater tanks
- Permeable paving in shared spaces, car parking bays and driveways; and
- Swales
- Wetlands
- Detention basins.

5.4 Retention, reuse and detention

Stormwater management options for retention, reuse and detention must achieve the ICMP objectives by utilising a combination of at-source retention and detention with centralised detention facility for areas that cannot apply at-source solutions.

The application of retention and reuse within residential lot is limited by space available onsite. Residential lots will provide onsite retention through the provision of retention tanks, permeable pavement and sheet flow to an equivalent pervious area. Detention from Single lots and Duplex lots will be detained by detention tank and released over 24 hours. The detention volume from affordable, terraced and duplex lots will be directed off site to downstream detention devices, which will hold and release the detention volume over 24 hours, this being a measure to manage affordability of said lot types within the Plan Change area.

No retention requirements for road reserves are required. Detention shall be managed within road corridor swales and downstream detention devices.

An analysis of the application of the best practical option with respect to retention and detention has been undertaken with the outcomes documented within the Rotokauri North Sub--catchment ICMP.

6.0 RUNOFF MODEL COMPARISON

Previous runoff analysis for the project by others was undertaken using Auckland Council TP108 methodology. Additionally the Waikato Regional Council "Waikato stormwater runoff modelling guideline' (SRM) (Shaver, Wood, & Grant, 2018) would also be an applicable methodology for estimating runoff.

The swale network analysis was modelled using MUSIC, with some amendments to replicate local conditions. The results from of the MUSIC modelling were compared with the estimated runoff using TP108 and WRC SRM.

A sample sub-catchment from within the overall MUSIC model was interrogated to determine the peak flows predicted for the 1% AEP_{cc} design rainfall event. The MUSIC model was initially configured with variables such as effective storage as per WRC Stormwater Modelling methodology. Further the primary links were configured with no routing values, as the differential for flow transferring between modelled elements such as roofs and rainwater tanks was considered to be minimal. Rainfall threshold was set as 0 mm/day so as to provide volume conservation.

Effective storage calculation was based on Group B soils with CN = 69. The effective storage calculation was applied with this CN value to the pervious area within the MUSIC catchment. It is noted that the TP108 and SRM calculation uses the effective CN value of the whole catchment, i.e., factored based on impervious and pervious CN values. For a sample sub-catchment draining to the Ohote A wetland as used within Rotokauri North MUSIC model:

- MUSIC Effective Storage = 114mm
- TP108/SRM = 24.67mm

A TP108 analysis was undertaken on sample sub-catchment of Ohote A wetland to determine the peak flows for the same rainfall event. The differences in the analysis of TP108 vs MUSIC predicted flows are summarised in the following table (Table 9). This analysis was also undertaken using stormwater runoff calculations as per SRM for the sample sub-catchment. The sample sub-catchment was analysed for four reaches each with decreasing contributing catchment area.

For the rainfall depth, HIRDS V4 DCP6.0 was adopted as per previous project modelling, rather than the values within WRC methodology.

The WRC methodology involved greater consideration for time of concentration calculations in comparison to TP108.

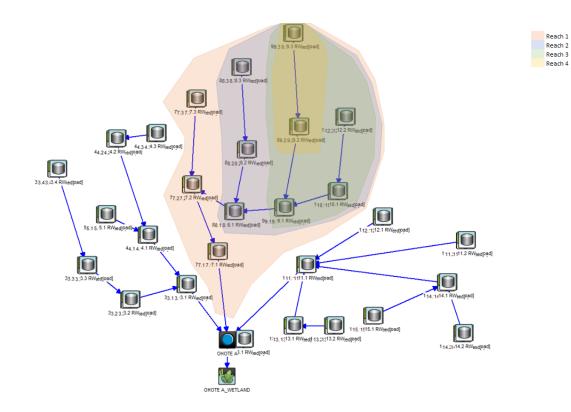


Figure 6: Ohote A Subcatchment Reaches

The results and differences have been noted in the following tables (Table 9 and Table 10).

Item	Whole of Ohote A	Reach 1	Reach 2	Reach 3	Reach 4
Catchment Size (ha)	18.33	6.89	5.09	1.65	0.75
Catchment Size (km ²)	0.183	0.069	0.051	0.016	0.007
Catchment Imp Area (km²)	0.137	0.052	0.038	0.012	0.006
Catchment Length (m)	680	680	464	252	73
Effective Curve Number	90.6	90.68	90.7	90.6	91.15
TP108 Flow (m ³ /s)	3.32	1.25	1.04	0.39	0.20
WRC Flow (m ³ /s)	2.60	0.98	0.82	0.30	0.17
MUSIC Flow (Base)(m ³ /s)	6.04	2.06	1.74	0.81	0.36
% Diff. (TP108)	182%	165%	168%	153%	179%
% Diff. (WRC)	232%	211%	213%	198%	210%

Table 9: MUSIC vs TP108 vs WRC Peak Flows

The MUSIC model overestimated peak flow compared to TP108 and WRC methodologies. It is noted that TP108 estimated higher peak flows than WRC due to the differences in calculation of time of concentration.

Due to the overestimation of the MUSIC peak flows, the following amendments were made to the MUSIC model to reflect the runoff factors as per TP108:

- Change 1 Effective storage for all catchments set to 25mm, with field storage set to 20mm.
- Change 2 Rainfall threshold set to 1.26 mm, based on effective curve number of 90.7 as per TP108.
- Change 3 All primary links configured with routing value of 10 minutes (as per TP108 minimum time of concentration.
- Change 4 All of the above changes.
- Change 5 All primary links configured with routing value of 17 minutes (as per WRC minimum time of concentration for sheet flow on the example sub-catchment.

These sensitivity results have been presented in the table below (Table 10).

Based on the results above, amending the primary link routing values was the largest contributor to change in the predicted peak flows.

Item	Whole of Ohote A	Reach 1	Reach 2	Reach 3	Reach 4
TP108 Flow (m ³ /s)	3.32	1.25	1.04	0.39	0.20
WRC Flow (m ³ /s)	2.60	0.98	0.82	0.30	0.17
MUSIC Flow (Base)(m ³ /s)	6.04	2.06	1.74	0.81	0.36
Difference	182%	165%	168%	206%	179%
	Chan	ge 1 – Effective	e Storage		
MUSIC Flow (m ³ /s)	6.81	2.3	1.95	0.66	0.39
% Dif (TP108)	205%	184%	188%	168%	194%
% Dif (WRC)	262%	235%	239%	218%	227%
	Chan	ge 2 – Rainfall T	hreshold		
MUSIC Flow (m ³ /s)	6.06	2.06	1.74	0.6	0.36
% Dif (TP108)	182%	165%	168%	153%	179%
% Dif (WRC)	233%	211%	213%	198%	210%
	Change 3 –	Primary Links F	Routing (TP108)	
MUSIC Flow (m ³ /s)	3.22	1.19	1.10	0.44	0.28
% Dif (TP108)	97%	95%	106%	111%	139%
% Dif (WRC)	124%	122%	134%	144%	163%
	Cł	nange 4 - All Ch	anges		
MUSIC Flow (m ³ /s)	3.6	1.31	1.22	0.47	0.31
% Dif (TP108)	108%	105%	118%	120%	152%
% Dif (WRC)	138%	134%	149%	155%	178%
	Change 5 –	Primary Links	Routing (WRC)		
MUSIC Flow (m ³ /s)	2.5	0.87	0.84	0.38	0.27
% Dif (TP108)	75%	69%	81%	97%	132%
% Dif (WRC)	96%	88%	103%	125%	155%

The Change 3 sensitivity scenario was adopted for sizing of the swale network, wetland sizing and detention basin sizing. This scenario was considered suitable based on following:

- Minor under estimation compared with TP108 flows for larger catchments, but over estimation when compared with WRC methodology.
- Over estimation compared with TP108 and WRC for smaller catchments.

Based on the predictions typically being over estimated in comparison to TP108 and WRC, the predictions can be considered conservative. As such they were considered suitable for the purpose of stormwater infrastructure sizing at the current level of design.

7.0 MUSIC METHODOLOGY

With the range of different water sensitive measures across the development, a MUSIC (eWater, 2012) (Model for Urban Stormwater Improvement Conceptualisation) model was developed. MUSIC (eWater, 2012) offered the advantage of modelling both the on-lot measures, the swale and channel conveyance system, wetlands and ponds. It provided hydraulic and water quality predictions for the Plan Change area of the Rotokauri North sub-catchment ICMP.

The model was configured with 12 catchments, modelling the locations where swales and conveyance channels would be connected with green corridors or wetlands. The 12 catchments were named after the overall catchment for which they contribute:

- Ohote A, B, D, E.
- Te Otamanui
- Mangaheka A, B, C.
- Rotokauri South A, B, C.

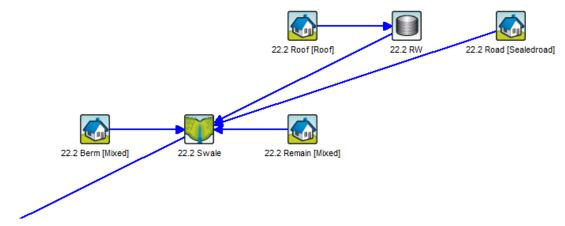
7.1 Model Resolution

With the large number of lots proposed within the development, modelling each lot individually was not considered appropriate. Grouped catchments were developed based on the number of probable lots that would discharge to stormwater infrastructure.

Lots

The impervious and pervious areas of the lots were separated into two catchments:

- Roof area = Single lot housing roofs have been assumed to discharge to rain water tanks. Imperviousness was assumed at 100%, draining to rain water tank node.
- Remain Area = This catchment area covered the impervious area of single lots, excluding roof area, and the area of all other lots (duplex, terrace). The percentage pervious/impervious was based on addition of roof areas, not serviced by rain water tanks, plus an allowance for outdoor paving, driveways. entranceways etc. This area was configured to discharge to the swale node.
- Based on 50% of the resultant lot area (Lot area less roof area) draining to an infiltration device such as well liner or soakage pit. Imperviousness was estimated at 54 %
- Front of Lot = Based on 50% of the resultant lot area (Lot area less roof area) draining to the conveyance swale. Imperviousness was estimated at 54 %


Road carriageway

The road carriageway was modelled as a specific catchment with 100% impervious surface draining to the swale node.

Berm

The berm was modelled as a catchment area with variable impervious/pervious split based on area of the road reserve less the road carriageway area.

Schematically the arrangement for a grouped catchment has been presented in Figure 7.

Figure 7: Schematic Lot Arrangement

Typical lot parameters have been summarised in Table 11 below for the different lot/housing typologies. These parameters are based on generalised lot information, derived from a maximum of 80% impervious surfacing. Individual lot areas and roof sizes will vary across the development, however the average values presented below are considered appropriate for the catchment wide modelling.

Lot Typology	Single	Small Lots	Duplex (parent lot)	Terrace
General Lot Dimensions (m)	14 x 28	10 x 28	12.5 x 28	6 x 28
Lot Area (m ²)	392	280	350	168
Roof Area (m ²)	196	140	175	92
Other Impervious Area (m²)	118	84	105	50
Impervious (%)	80	80	80	85
Pervious Area (m²)	78	56	70	34
Pervious (%)	20	20	20	20

Table 11: Average Lot Runoff Sources

Two additional potential subcatchments types were identified – Neighbourhood Parks and Neighbourhood Centre. These subcatchments types were modelled as combinations of the lot typologies in Table 11 above. While the individual flows from these sub-catchment types may differ, at a conceptual level they were not considered to be sufficiently different to necessitate specific parameters.

7.2 Rainfall Runoff Parameters

Default MUSIC (eWater, 2012) rainfall runoff parameters have been included within Appendix D. The parameters amended for this modelling were as per the following adjustments:

Rainfall Threshold

All catchments have rainfall threshold of 0.0mm/day.

Soil Storage Capacity

The Waikato Regional Council (WRC) Stormwater Runoff Modelling (SRM) Guideline (2018)was used to determine the soil storage capacity. For impervious areas a Curve Number (CN) of 69 was assumed based on Table 5-2 of the WRC SRM (2018). The CN value was based on assumption of "Open Space, Fair Condition (grass cover 50%-75%), Group B soils". The resultant soil storage capacity was 114 mm based on Equation 5-2 WRC SRM (2018), as applied to the pervious surfaces only.

Field Capacity

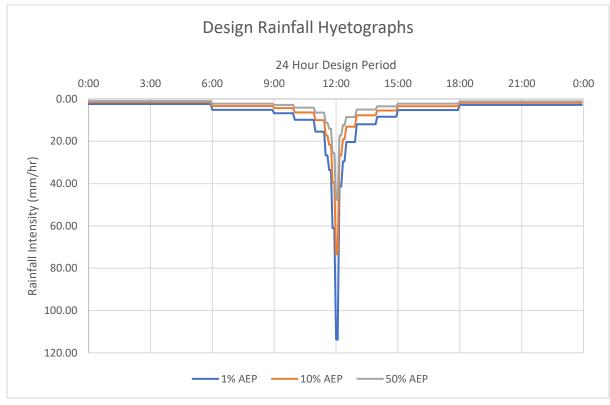
Based on high level comments within the BECA hydrogeological report (Nutsford, 2018), the soils within the development area were predicted to have low permeabilities. The field capacity value was adjusted to 91mm corresponding to 80% of the Soil Storage Capacity.

Potential Evapotranspiration

The value for daily potential evapotranspiration (PET) was based on NIWA's (Chappell, 2014) "The Climate and Weather of Waikato 2nd Edition". Table 21 for the report has mean yearly PET of 807 mm at Hamilton, Ruakura.

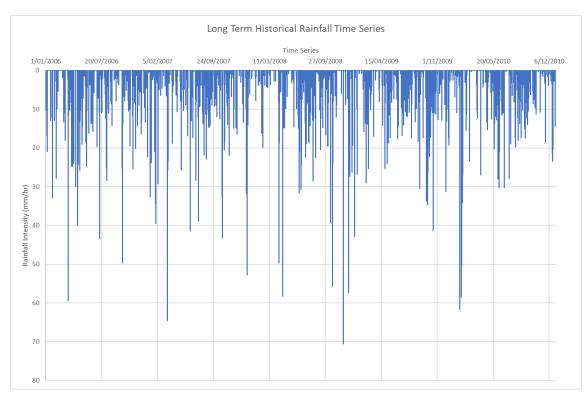
The daily PET values were derived by averaging the Mean value in Table 21 by number of days in each month.

Design Rainfall


The modelling was based on two separate analyses:

- Analysis 1 nested design rainfall events over a 24-hour simulation period as per the normalised 24-hour pattern in Table 4-1 of WRC SRM (2018). The rainfall event depths were as per HIRDS V4 (NIWA, 2017), including climate change scenario RCP6.0 (2081-2100). This climate change scenario had the best correlation with the HIRD V3 rainfall allowing for climate change increase as per in Table 4-3 of WRC SRM (2018). Refer Table 12 and Figure 8.
- Analysis 2 Long term rainfall record from 1 January 2006 to 31 December 2010, based on 5-minute increments. This rainfall record was supplied by Morphum Environmental to ensure modelling is comparable to other Hamilton City Council stormwater quality improvement projects.

Design Rainfall AEP (%)	HIRDS V3 Depth (mm)	HIRDS V3 Depth + Climate Change (mm)	HIRDS V4 RCP6.0
50%	64.5	70.5	70.7
10%	92.6	104.9	109.0
1%	145.3	169.7	169.0


Table 12: Analysis 1 - Design Rainfall Depths

The design rainfall hyetographs as per the following have been included within Appendix E – Design Rainfall Hyetographs.

Figure 8: Analysis 1 - Design Rainfall Hyetographs (Including Climate Change)

Long term rainfall record from historical data was based on the hyetograph in Figure 9 below.

7.3 Swale Parameters

Bed Slope

All swales were modelled with Bed Slope of 0.4% based on the conceptual road design. While specific future road design may have steeper slopes, adopting a standardised value was considered suitable for the conceptual modelling.

Carriageway Swales

Parts of the Plan Change area were designed to use the road/carriageway for conveyance of stormwater flows. The carriageways used for conveyance were local roads with a fixed 6.0m wide carriageway.

As the carriageway cannot be modelled as a channel within MUSIC it was modelled as swale with equivalent area to the carriageway with assumed maximum depth of 100mm. A further limitation was vegetation height value within MUISC which cannot be reduced below 0.005m. Therefore, the carriageways modelled as swales had a Manning N of 0.052, higher than typically asphaltic concrete value of 0.016.

Based on typical slope of 0.4% and cross-sectional area of 0.3m², the maximum flow through modelled swale was 48 l/s, compared with an asphalt road of 157 l/s.

The water quality parameters for carriageway swales were all set zero, i.e., no treatment benefits.

Vegetated Swales

Vegetation height was adjusted for vegetated swales so as to achieve Manning's *n* as per Section 5.1.

Water quality parameters were unchanged from the default values within MUSIC. These should be verified during future modelling for consistency with rates achieved by similar HCC devices.

7.4 Rain Water Tanks

Volume Below Overflow Pipe

Modelling was based on providing 5.0m³ to the single lots. Detention and retention storage for the other lots would be provided within the communal downstream devices (ponds, wet lands etc).

Surface Area

Tanks were assumed to have a diameter of 2.2m and corresponding area of 3.8m².

Depth above overflow

The maximum depth above the overflow was set at 2.0m, a height considered sufficient to force overflow through the overflow orifice rather than predicting tank overflow using weir estimation.

Overflow Pipe Diameter

All overflow pipes were modelled as 100mm diameter.

Reuse – Daily Demand

Set to 0.225 kL/day based on assumptions within HCC Three Waters Practice Notes (Hamilton City Council, 2016c, 2016b, 2016a).

Water quality parameters were unchanged from the default values within MUSIC (eWater, 2012). These should be verified in future modelling for consistency with rates achieved by similar HCC devices.

Primary Drainage Links

All primary drainage links within the MUSIC model were configured using a 10-minute translation, as per analysis in Section 6.0.

7.5 Contaminant Loading Rates

The contaminant loading rates for roof, residential and road surfaces were updated to match the values within Table 12-5 of Waikato Stormwater Management Guidelines TR2018/01 (Shaver, 2018) – see Table 13. Annual rainfall of 1,300mm was used to calculate the average mg/l loading rate for Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorus (TP). The conversion from kg/ha/year within Table 12-5, to mg/l was based on unit area (hectare) assumption.

All roofs were assumed to be either galvanised steel or zinc/aluminium coated; roads supporting 5,000-20,000 vehicles per day category; and remaining subcatchments as paved residential areas.

No distinction was made between base or storm flows within the modelling. Therefore, these modelling values were comparable to the converted WRC SMG values. The *log* values were calculated for each contaminant loading rate for inclusion within MUSIC.

The default values within MUSIC (eWater, 2012) have been included within Table 13 for reference. Note that the values presented are the *log* values.

The performance of the treatment train to reduce contaminant values should be verified during future modelling for consistency with rates achieved by similar HCC devices.

Values	Roof	Roads	Residential			
	WRC SGM Valu	es (kg/ha/year) ¹	I			
TSS	54.2	574.2	346.7			
TN	16.3	21.7	15.2			
ТР	1.2	2.1	6.0			
Rainfall (I/ha/year)		13,000,000				
	Contaminant Loading Rates (mg/l)					
TSS	4.2	44.2	26.7			
TN	1.3	1.7	1.2			
ТР	0.09	0.4	0.5			
	Contaminant Load	ing Rates (<i>log</i> mg/l)				
TSS	0.62	1.65	1.43			
TN	0.1	0.22	0.07			
ТР	-1.04	-0.41	-0.34			
MUSIC Default Contaminant Loading Rates (log mg/l) Base Flow / Storm Flow						
TSS	1.1 / 1.3	1.2 / 2.43	1.1 / 2.2			
TN	0.32 / 0.30	0.22 / 0.30	0.07 / 0.15			
ТР	-0.82 / -0.89	-0.85 / -0.30	-0.82 / -0.45			

Table 13: Contaminant Loading Rates

1. Adjusted from Table 12-5 (Shaver, 2018) values with assumed 1,300mm rainfall.

7.6 Wetlands

Wetlands were initially sized based on application of Auckland Regional Council TP10 (2003). The wetland designs have been documented in section 5.2. The relevant information for use within MUSIC (eWater, 2012) is summarised in Table 14.

Note, Te Otamanui has a single wetland servicing the western (Te Otamanui A) and eastern catchments (Te Otamanui B).

Contaminate treatment parameters were as per the MUSIC (eWater, 2012) default values. It is recommended that these treatment values be verified during future detailed wetland design with performance information from other similar HCC devices.

Table 14: Wetland Modelling Parameters

Subcatchment Reference	Inlet Pond Volume (m3)	Wetland Surface Area (m2)	Extended Detention Depth (m)	Permanent Pool Volume (m3)	Outlet Pipe Diameter (mm)	Overflow Weir Width (m)
Ohote A	370	4860	0.5	1640	260	3
Ohote B	390	5130	0.5	1730	280	3
Ohote D	180	2360	0.5	800	80	3
Ohote E	160	1990	0.5	670	180	3
Te Otamanui	740	9750	0.5	3280	170	3
Mangaheka A	40	410	0.5	160	160	3
Mangaheka B	90	1050	0.5	390	80	3
Mangaheka C	110	1260	0.5	460	100	3
Rotokauri North A	50	560	0.5	210	120	3
Rotokauri North B	20	210	0.5	80	90	3
Rotokauri North C	20	220	0.5	80	50	3

7.7 Initial Detention Basins

The requirements for buffering flows to meet the ED peak flow requirements was achieved by providing detention within the green corridors and areas immediately adjacent to the wetlands for the Ohote, Te Otamanui and Mangaheka catchments. Outflow from the detention basins would be achieved through use of hydraulic controls such as slotted weirs.

The sizing for the detention basins was based on initial HEC-HMS modelling results, to complement and verify the results of the MUSIC model. The HEC-HMS model used the MUSIC hydrograph output (before wetland) as the key boundary condition. For the Ohote catchment the upstream catchments were included as per Section 3.8.

The total required detention volumes to achieve the 1% AEP_{cc} peak flow values as per Table 4 based on HEC-HMS have been summarised below.

Table 15: Detention Volumes

Subcatchment Reference	1% AEP _{cc} Detention Volume (m ³)
Ohote	85,100
Te Otamanui	23,000
Mangaheka	8,400
Rotokauri South	Further modelling required

Within MUSIC, the detention basins have been modelled as "detention" nodes with maximum depth in the Ohote basin of 1.81m and 2.0m in all others. The area used within MUSIC was based on volume required divided by the maximum depth.

Custom outflow relationships were defined within MUSIC, based on separate analysis for slotted weirs to control the downstream discharge for the 1%, 10% and 50% AEP_{cc} peak flows.

Specific to the Ohote Catchment the discharges was limited to 0.7m³/s as per the existing Rotokauri ICMP. Further, the maximum depth of 1.81m was based on the elevation/storage relationship developed as a preliminary design topography for the basin. The elevation/topography was based on the available land area for the detention basin and maximum water level that would affect upstream infrastructure.

For the HEC-HMS model each stream catchment was modelled with the wetlands, detention storage and discharge reach configured as follows:

- Wetland storage basin with inflow limited to the volume of the wetland.
- Detention storage storage basin with outflow limited to a maximum as per Table 18.
- Bypass Bypass junction modelled such that flow initially directed to the wetland, and when the wetland design volume was reached, all flow then directed to detention storage.

For MUSIC the volumes will be iteratively adjusted such that maximum outflow from the detention basin will match the limiting catchment discharge.

8.0 CATCHMENT RESULT AND STATISTICS

The model results have been summarised from Table 16 through to Table 25 and Figure 10 through to Figure 15. The sub-catchment references were the locations where the stormwater conveyance network discharges to wetlands and green corridors.

8.1 Hydraulics

The catchment analysis was undertaken based on 24-hour design rainfall as per Section 7.2. The results for the 1% AEP_{cc} have been included for completeness. However, the MUSIC model was not configured specifically to model this hydraulic scenario, as the numerical engine assumes flow conservation. Therefore, any flows exceeding swale or channel capacity are assumed to pass through without attenuation to the downstream node. In practical application 1% AEP_{cc} flows would be expected to be conveyed through both the swale/conveyance channels and road reserves with a variable cross-sectional channel with different Manning's values. It would be expected that the peak flow rates would be lower due to the effect of the variable cross-sectional area and range of Manning's values.

Hydraulic analysis based on Long Term Historical Rainfall was limited to the maximum flow predicted over the 5-year time series.

The predicted peak flows from wetlands are based on summation of flow through orifice and overflow spillway.

Table 16: MUSIC Hydraulics Summary

Subcatchment Reference	WQV Peak Flow before Wetland (L/s)	WQV Peak Flow after Wetland (L/s)	50% AEP _{cc} Peak Flow before Wetland (m³/s)	50% AEP _{cc} Peak Flow after Wetland (m³/s)	10% AEP _{cc} Peak Flow before Wetland (m³/s)	10% AEP _{cc} Peak Flow after Wetland (m ³ /s)	1% AEP _{cc} Peak Flow before Wetland (m ³ /s)	1% AEP _{cc} Peak Flow after Wetland (m³/s)	Long Term Rainfall Peak Flow before Wetland (m³/s)	Long Term Rainfall Peak Flow after Wetland (m³/s)
Ohote A	71	17	0.83	0.24	1.56	1.05	3.59	3.14	0.61	0.40
Ohote B	86	21	0.74	0.25	1.35	0.98	3.10	2.75	0.58	0.39
Ohote D	47	6	0.34	0.09	0.68	0.40	1.46	1.22	0.26	0.20
Ohote E	39	6	0.35	0.11	0.70	0.59	1.60	1.54	0.25	0.19
Te Otamanui	185	18	1.14	0.48	2.13	1.62	5.15	4.19	0.98	0.77
Mangaheka A	17	4	0.13	0.09	0.24	0.23	0.53	0.53	0.097	0.065
Mangaheka B	33	6	0.31	0.15	0.57	0.49	1.37	1.26	0.26	0.16
Mangaheka C	27	7	0.26	0.14	0.48	0.46	1.18	1.14	0.21	0.14
Rotokauri South A	10	3	0.08	0.03	0.17	0.16	0.44	0.44	0.063	0.054
Rotokauri South B	4	1	0.05	0.02	0.09	0.09	0.25	0.25	0.047	0.025
Rotokauri South C	2	<1	0.05	0.02	0.10	0.10	0.22	0.22	0.035	0.032

Hydrographs for the design rainfall events for each wetland have been included in Appendix F – Wetland Hydrographs.

8.2 Detention Volume

A HEC-HMS model was created to complement and verify the results of the MUSIC model. The HEC-HMS model used the MUSIC hydrograph output (before wetland) as the key boundary condition.

The required 1% AEP_{cc} detention volume was based on the predicted maximum volume within the detention storage nodes as modelled in HEC-HMS.

Within MUSIC, the detention basin area was iteratively adjusted such that the detention basin was not predicted to overflow. The two sets of predictions have been summarised in Table 17 below.

Table 17: Detention Basin Volumes

Catchment Reference	Ohote	Te Otamanui	Mangaheka
1% AEP _{cc} MUSIC Volume (m ³)	79,900	24,300	8,720
1% AEP _{cc} HEC-HMS Volume (m ³)	85,100	23,000	8,400

The detention volumes between the two software packages were comparable and considered to be representative of the volumes need to achieve the development discharge requirements.

The final required area and depth of flow to achieve the detention volume would be determined through detailed design of hydraulic structures, final surface levels, landscaping and urban design.

With reference to Section 11.0, the detention volume for the Ohote catchment could be lowered subject to further analysis of the downstream system.

8.3 Post Development Discharge

The allowable development area discharge is based on the ED values and required adjustments as per HCC and WRC requirements. The ED flows have been summarised previously in Section 3.7.

Upstream catchments have been included in the cumulative values as per the flows in Section 3.8. Note that the Mangaheka values are the peak values for the total catchment which includes majority of catchment being external to the ICMP area.

Flow Scenario	Ohote (Exelby Road Culvert) (m ³ /s)	Te Otamanui (Te Kowhai Road East) (m³/s)	Mangaheka (m³/s)	Rotokauri South (m³/s)
50% AEP ED / 50% AEP _{cc} Post	0.33	0.85	1.19	0.46
10% AEP ED / 10% AEP _{cc} Post	0.50	1.50	1.90	0.91
80% of 1% AEP ED / 1% AEP _{cc} Post	0.70	1.45	2.57	1.51

Table 18: Limiting Catchment Discharges

Predicted peak flows from the MUSIC modelled detention basins are summarised in the following table (Table 19). Generally, the peak flows can be considered to meet the limiting discharge values. Minor differences were due to numerical rounding and considered to be within modelling confidence levels.

Flow Scenario	Ohote (m ³ /s)	Te Otamanui (m³/s)	Mangaheka (m ³ /s) ^{1.}	Rotokauri South (m³/s)
50% AEP _{cc} Post	0.27	0.16	1.25	Refer below
10% AEP _{cc} Post	0.45	0.97	2.05	Refer below
1% AEP _{cc} Post	0.70	1.45	3.80	Refer below

Table 19: Predicted Peak Discharges

 The Mangaheka catchment discharge was inclusive of the external catchment inflows. The peak predicted flow from the ICMP area catchment for the 50%, 10% and 1% AEP_{cc} events was 0.03 m³/s, 0.08 m³/s and 0.57 m³/s respectively. Therefore, any reduction in flows to meet the limiting sub-catchment discharge needs to incorporate upstream mitigation measures on the contributing external catchment. These have been covered in the Mangaheka ICMP (Adams, 2018b)

For the Rotokauri South catchment, the predicted peak discharges are the summation of the individual hydrographs from the wetlands. The requirement for additional detention volume will be need to be checked relative to the assumptions and proposed measures within the Rotokauri South sub-catchment ICMP.

8.4 Water Quality Performance

The performance of the development in regards to water quality has been assessed based on the effectiveness of the treatment options modelled within MUSIC. While a toolbox approach for on lot residential treatment is proposed within the sub-catchment ICMP, the results as modelled are considered to be representative of the effectiveness of the range of treatment options within the toolbox.

The water quality requirements were noted within Section 4.0. The water quality results have been presented for the Long-Term Rainfall event time series as modelled within MUSIC. The results have been presented for the following parameter as modelled:

- Total Suspended Solids (TSS)
- Total Phosphorus (TP)
- Total Nitrogen (TN)

The performance of the treatment train has been considered based on TSS, TN and TP generated at the nodal level, amount present immediately before wetlands, and after wetlands.

The measurement units by MUSIC were kg/year of TSS, TN and TP.

MUSIC – Pollutant Load Calculation Limitation

The calculations undertaken by MUSIC achieve a water balance at each node. However, pollutant load balancing is not undertaken. Instead outgoing pollutant loads from treatment nodes are calculated based on outflow rate and outflow pollutant concentrations. This can lead to the situation where calculated outgoing pollutant loads can exceed incoming pollutant loads.

While this was not observed in the results for this modelling, this comment has been included for reference purposes.

Table 20: WQV Design Rainfall Water Quality Performance – TSS

Subcatchment Reference	Total Generated (All Contributing Nodes) (kg/year)	Before Wetland (kg/year)	% Reduction before wetland	After Wetland (kg/year)	% Reduction by wetland	Total % Reduction
Ohote A	13448	5900	56%	586	40%	96%
Ohote B	14445	7670	47%	724	48%	95%
Ohote D	5799	2880	50%	159	47%	97%
Ohote E	5043	2610	48%	174	48%	97%
Te Otamanui	30551	27700	9%	1800	85%	94%
Mangaheka A	1501	1470	2%	159	87%	89%
Mangaheka B	3765	3610	4%	336	87%	91%
Mangaheka C	4318	4150	4%	352	88%	92%
Rotokauri South A	2007	1940	3%	149	89%	93%
Rotokauri South B	856	841	2%	65.7	91%	92%
Rotokauri South C	536	465	13%	15.4	84%	97%
TOTAL	82269	59236	28%	4520	67%	95%

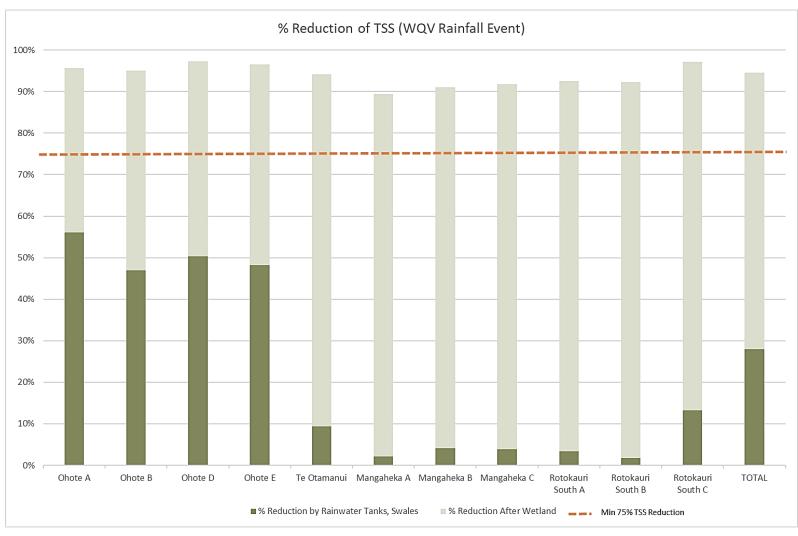


Figure 10: TSS Reduction – WQV Rainfall Event

Table 2	21: Long Term	Rainfall Water Q	uality Performar	nce – TSS	
_	-				

Subcatchment Reference	Total Generated (All Contributing Nodes) (kg/year)	Before Wetland (kg/year)	% Reduction before wetland	After Wetland (kg/year)	% Reduction by wetland	Total % Reduction
Ohote A	4029	2550	37%	1070	37%	73%
Ohote B	4235	2860	32%	1090	42%	74%
Ohote D	1723	1180	31%	465	42%	73%
Ohote E	1495	1060	29%	418	43%	72%
Te Otamanui	8933	8760	2%	2770	67%	69%
Mangaheka A	427	427	0%	116	73%	73%
Mangaheka B	1087	1087	0%	306	72%	72%
Mangaheka C	1251	1251	0%	327	74%	74%
Rotokauri South A	586	586	0%	141	76%	76%
Rotokauri South B	252	252	0%	53.2	79%	79%
Rotokauri South C	156	156	0%	49.8	68%	68%
TOTAL	24174	20170	17%	6806	55%	72%

Preliminary sensitivity modelling was undertaken for the wetlands predicted to not meet a long-term threshold of 75% TSS removal. Sensitivity results indicated wetland sizing to achieve 75% removal would require a substantial (100%+) increase in wetland surface area. The wetland sizing was retained as per the design completed using Auckland Council TP10 and for which the design rainfall event showed the overall treatment providing 75% removal.

The predicted TSS removal rates in for the long-term rainfall modelling in MUSIC were generally close to the required removal rate for the wetlands designed as per TP10. Considering assumptions and limitations involved in both designs as per TP10 and inputs to MUSIC, the wetlands were considered

functional for the current level of investigation and design. Future wetland detailed design should consider updates to the MUSIC model based on additional field investigations and testing as completed.

Further the long-term rainfall record includes events which have a higher exceedance probability than the design rainfall event used for sizing as per TP10. Therefore, the pollutant loads included in the result tables include these larger intensity events, for which the treatment nodes have lower relative removal efficiency.

We note that the final detention basin proposed for each catchment, to ensure outflows from the catchment do not exceed 80% ED flows, will provide additional TSS polishing. Modelling and assessment of this component is ongoing.

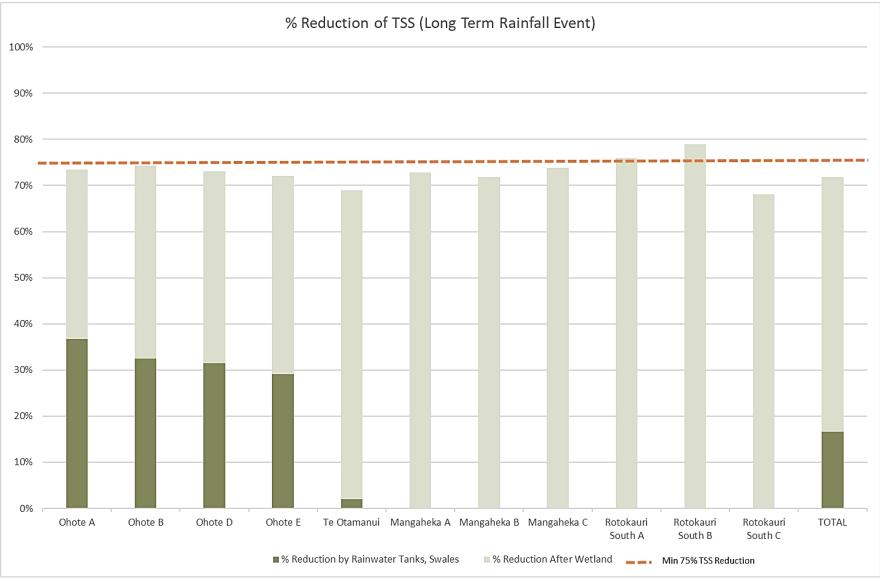


Figure 11: TSS Reduction - Long Term Rainfall

Subcatchment Reference	Total Generated (All Contributing Nodes) (kg/year)	Before Wetland (kg/year)	% Reduction before wetland	After Wetland (kg/year)	% Reduction by wetland	Total % Reduction
Ohote A	200	57.2	71%	5.94	26%	97%
Ohote B	216	60.7	72%	7.34	25%	97%
Ohote D	89	32.6	64%	1.6	35%	98%
Ohote E	78	29.7	62%	1.8	36%	98%
Te Otamanui	465	407	13%	18.8	83%	96%
Mangaheka A	24	23.5	3%	2.1	89%	91%
Mangaheka B	58	55.1	6%	4.0	87%	93%
Mangaheka C	66	62.4	5%	4.1	88%	94%
Rotokauri South A	29	27.5	5%	1.7	89%	94%
Rotokauri South B	11	10.9	2%	0.7	92%	93%
Rotokauri South C	9	7.89	16%	0.2	82%	98%
TOTAL	1247	774	38%	48	58%	96%

Table 22: WQV Design Rainfall Water Quality Performance - TP

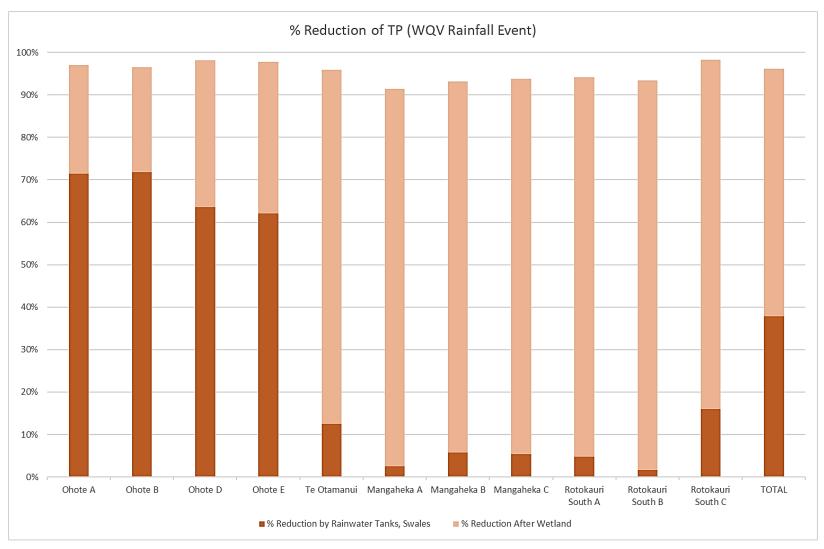


Figure 12: Total Phosphorus Reduction - WQV Design Rainfall

Subcatchment Reference	Total Generated (All Contributing Nodes) (kg/year)	Before Wetland (kg/year)	% Reduction before wetland	After Wetland (kg/year)	% Reduction by wetland	Total % Reduction
Ohote A	61	24	61%	11	21%	82%
Ohote B	64	23	64%	11	19%	83%
Ohote D	27	13	53%	5	29%	82%
Ohote E	23	11	52%	4	30%	82%
Te Otamanui	138	129	7%	31	71%	77%
Mangaheka A	7	7	0%	1	79%	80%
Mangaheka B	17	17	1%	4	78%	79%
Mangaheka C	19	19	1%	4	79%	80%
Rotokauri South A	9	9	1%	2	80%	81%
Rotokauri South B	3	3	0%	1	83%	82%
Rotokauri South C	3	3	2%	1	77%	79%
TOTAL	372	258	31%	74	49%	80%

Table 23: Long Term Rainfall Water Quality Performance - TP

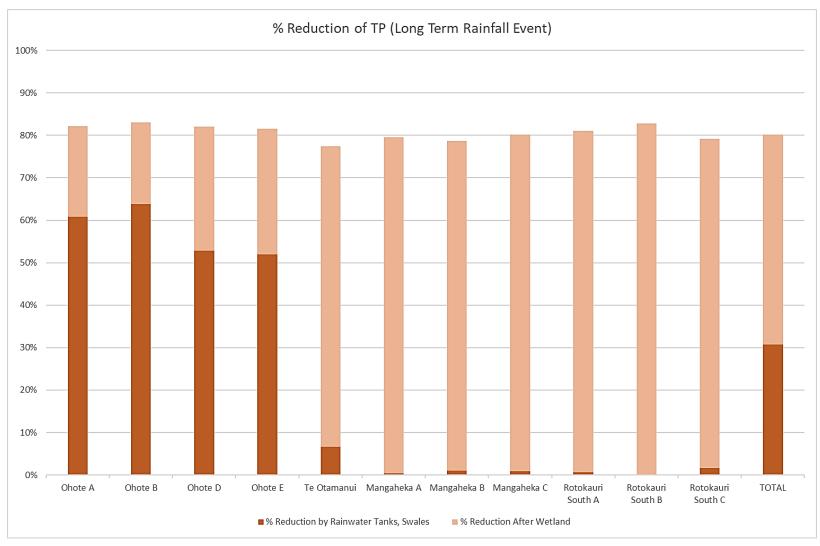


Figure 13: Total Phosphorus Reduction - Long Term Rainfall

Table 24: WO	V Design	Rainfall Wate	r Quality	y Performance - TN

Subcatchment Reference	Total Generated (All Contributing Nodes) (kg/year)	Before Wetland (kg/year)	% Reduction before wetland	After Wetland (kg/year)	% Reduction by wetland	Total % Reduction
Ohote A	833	544	35%	108	52%	87%
Ohote B	832	597	28%	134	56%	84%
Ohote D	374	233	38%	28.5	55%	92%
Ohote E	327	204	38%	31.7	53%	90%
Te Otamanui	1595	1230	23%	325	57%	80%
Mangaheka A	71	63	12%	25.2	53%	65%
Mangaheka B	196	153	22%	57.6	49%	71%
Mangaheka C	220	175	20%	61.4	52%	72%
Rotokauri South A	97	80.3	17%	26.5	56%	73%
Rotokauri South B	35	34	2%	12	64%	65%
Rotokauri South C	39	20.3	47%	2.69	46%	93%
TOTAL	4618	3334	28%	813	55%	82%

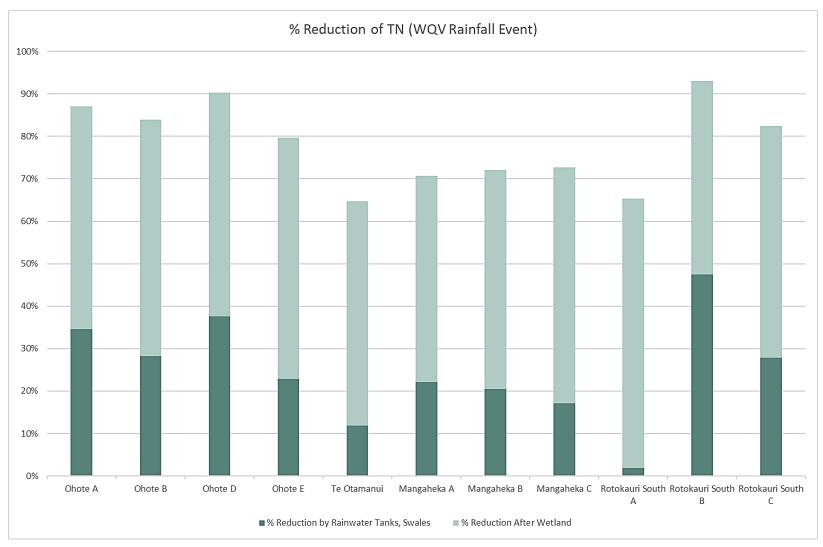


Figure 14: Total Nitrogen Reduction - WQV Design Rainfall

Subcatchment Reference	Total Generated (All Contributing Nodes) (kg/year)	Before Wetland (kg/year)	% Reduction before wetland	After Wetland (kg/year)	% Reduction by wetland	Total % Reduction
Ohote A	238	223	6%	180	18%	24%
Ohote B	236	226	4%	182	19%	23%
Ohote D	106	98	8%	79	18%	26%
Ohote E	92	85	8%	69	17%	25%
Te Otamanui	456	456	0%	358	22%	22%
Mangaheka A	20	20	0%	17	16%	16%
Mangaheka B	56	52	7%	45	13%	19%
Mangaheka C	63	63	0%	50	20%	20%
Rotokauri South A	28	28	0%	22	20%	20%
Rotokauri South B	10	10	0%	9	18%	18%
Rotokauri South C	11	9	15%	8	11%	26%
TOTAL	1316	1270	3%	1019	19%	23%

Table 25: Long Term Rainfall Water Quality Performance - TN

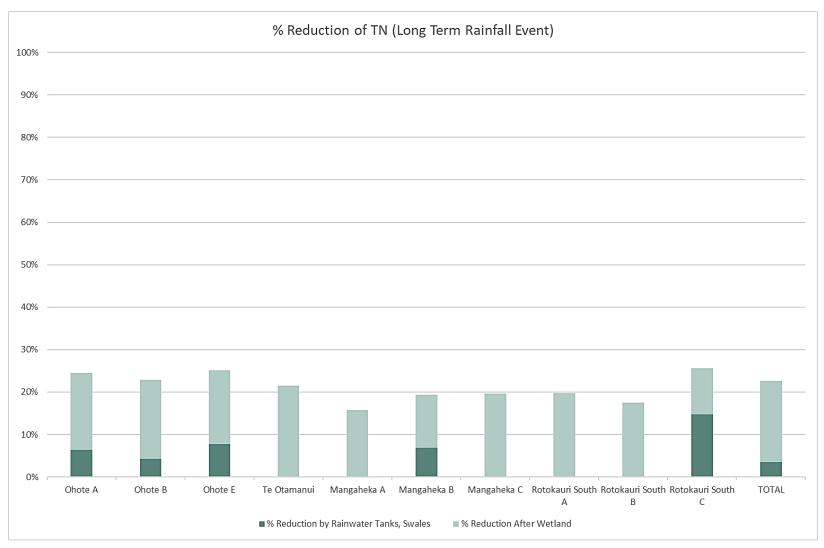


Figure 15: Total Nitrogen Reduction - Long Term Rainfall

Water Quality Results Commentary

Inspection of the water quality results indicates that the larger wetlands appear to be oversized with regards to their performance. Conversely the smaller wetlands, while meeting the quality parameters, appear to be undersized when compared with the performance of the larger wetlands.

The design rainfall event when applied to the MUSIC model shows that the wetland design, and upstream swales and rainwater tank provided positive water quality outcomes. The design rainfall event modelled using MUSIC confirms that the design of the wetlands in accordance with TP10 provides the required reduction in TSS, TP and TN. The long-term rainfall, which includes higher probability rainfall events than those used for TP10 wetland design, provides positive water quality outcomes albeit short of the required reduction quantities for TSS. The higher probability rainfall events within the long-term rainfall series when modelled would have higher pollutant loads (TSS, TP, TN) than those for which the wetlands were designed. As noted previously, preliminary increases in wetland sizes did not achieve overall reduction of TSS to greater than 75%. Due to the differences in modelling of design rainfall events compared with long term rainfall (including higher probability events), the wetlands are considered to be appropriately sized.

8.5 Soil Storage Capacity Sensitivity

The MUSIC model soil storage was based calculated based on Group B soils and Curve Number (CN) of 69. Model sensitivity was assessed by calculating the soil storage based on Group C soils Curve Number of 79. The resultant soil storage capacity was 68 mm based on Equation 5-2 WRC SRM (2018). The field capacity value was also adjusted to 54mm corresponding to 80% of the Soil Storage Capacity.

The Water Quality Volume event was simulated with the adjusted soil storage capacity, and peak flow results exported for the wetlands. The table (Table 26) below shows the peak inflows predicted for the base WQV results and the sensitivity results.

Subcatchment Reference	Base		Sensitivity	
	WQV Peak Flow before Wetland (L/s)	WQV Peak Flow after Wetland (L/s)	WQV Peak Flow before Wetland (L/s)	WQV Peak Flow after Wetland (L/s)
Ohote A	71	17	71	17
Ohote B	86	21	86	21
Ohote D	47	6	47	6
Ohote E	39	6	39	6
Te Otamanui	185	18	185	18
Mangaheka A	17	4	17	4
Mangaheka B	33	6	33	6
Mangaheka C	27	7	27	7
Rotokauri South A	10	3	10	3
Rotokauri South B	4	1	4	1
Rotokauri South C	2	<1	2	<1

Table 26: Soil Storage Capacity Sensitivity Hydraulics Summary (WQV)

The sensitivity results suggest no change to the predicted peak flows. Based on these model predictions the model results are considered insensitivity to changes to the soil group and related CN.

9.0 SWALE NETWORK HYDRAULICS

HEC-RAS was used to model the swale and conveyance channel network for the critical reaches, to demonstrate performance of the proposed swale and channel sizes. Two major upstream inputs to the swale conveyance from external catchments were included within the model.

HEC-RAS was used to develop a series of reaches with cross sectional dimensions as per the previous swale/channel design table. The invert levels for the network were based on the interim levels developed as part of the Qualifying Development (QD) subdivision design (on going).

9.1 Flow Scenarios

The 1% Average Exceedance Probability 24-hour design rainfall event including climate change allowance was modelled.

9.2 Model Configuration

The HEC-RAS model was configured as a one-dimensional network using steady flow analysis to determine the suitability of the swale and channel sizes, and required detention storage areas.

Flow conditions within each reach were based on aggregate of peak flows for the contributing upstream subcatchments.

Wetlands were configured with design water level as corresponding to the Extended Duration Level.

Two models were built, to consider the critical hydraulic path for, the Ohote A Wetland Catchment (Qualifying Development) and the Te Otamanui Wetland Catchment. The critical hydraulic path has been shaded in the figures below.

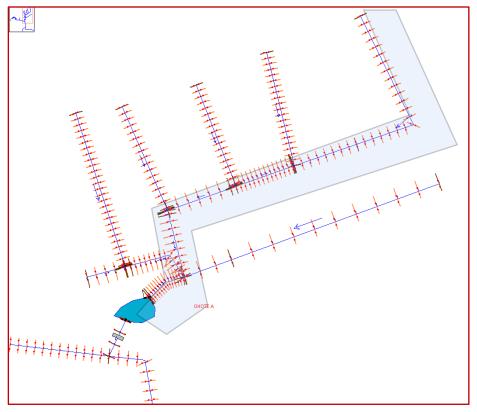
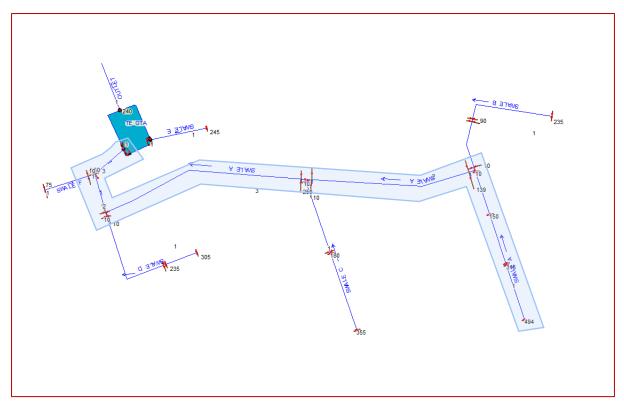



Figure 16: Ohote A Wetland Swale Network

Figure 17: Te Otamanui Wetland Swale Network

Road Network

Parts of the Plan Change area were designed to use the road/carriageway for conveyance of stormwater flows. The road network used for stormwater conveyance of smaller catchments were modelled as standard dual cross fall roads, with the gutter invert matching the gutter invert of the downstream swale profile.

For model stability purposes a weir was added at the connection point of the road to the swale network. The weir profile matched the immediate upstream road profile so as to allow for numerical simulation engine stability where the flow would fall from road level into the lower swale network.

The carriageways used for conveyance were local roads with a fixed 6.0m wide carriageway.

Vegetated Swales

The vegetated swales were modelled with Manning 'n' of 0.06 (Flood plain, brush) for the 1%AEP_{cc} flows. This differs from the value of 0.25 as per RITS, however adopting that value was considered to be too conservative and likely to overestimate water depths for the 1%AEP_{cc} flows.

Conveyance Swales and Channels

These swales and channels were configured with base and sides having Manning's n of 0.03. The overbank areas corresponding to roadways were modelled with n of 0.015.

9.3 Inflow Hydrographs

Two sources were used for the inflow hydrographs for the reaches.

MUSIC modelling

A MUSIC model prepared previously predicted the inflow and outflow hydrographs for the range of water sensitive design features adopted within the Plan Change Area. MUSIC used the 24-hour

design rainfall to predict the runoff from a range of catchment surfaces, and the conveyance of that runoff through the swale conveyance network.

Peak flows as predicted within the MUSIC model for the contributing subcatchments, were used as inputs for each HEC-RAS reach.

Two-dimensional catchment modelling

Previous catchment modelling of the Ohote Stream was used to determine the inflows from the two external catchments. The catchments were outside the Plan Change area but were included within catchment modelling. These areas (O-G and O-H, refer to) will contribute to flows within the Ohote catchment. Peak flows modelled for the flow scenarios were as per Table 5.

9.4 Wetlands and Detention Storage

Storage Areas within HEC-RAS were used to model the wetlands and detention areas for the ICMP area. The depth/volume relationship for the wetlands was based on the wetland design as per Section 5.2.

9.5 Ohote A Catchment Results

Inspection of the critical hydraulic path showed that the road carriageway and swale network was able to convey the 1%AEP_{cc} flows. The road carriageway flows were predicted to slightly overlap onto front berms, with a maximum predicted depth of flow being 131 mm (from water level to kerb invert). This meets the 150mm requirement of RITS (Waikato Local Authority, 2018, Section 3.3.14.1).

Maximum velocity predicted along the road carriageway was 0.72 m/s. The resultant pedestrian safety factor of 0.09m²/s was less than 0.4 m²/s as per Austroads Guide (Fanning, Richard, 2013).

The footpath was not predicted to have any inundation during the 1%AEP_{cc} rainfall.

The vegetated swale and conveyance channel sections were predicted to contain all the 1%AEP_{cc} flows within the swale/channel banks.

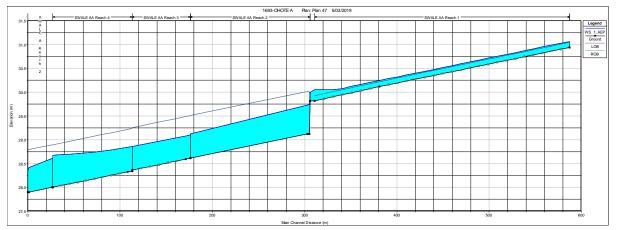


Figure 18: Ohote A Critical Hydraulic Path – 1%AEP_{cc} Results

The maximum velocity within the swales and channels was predicted to be 1.5 m/s, which was comparable with the RITS maximum of 1.5 m/s.

Refer to selected results as per Appendix G –Swale Hydraulic Results.

9.6 Te Otamanui Catchment Results

Inspection of the critical hydraulic path showed that the road carriageway and swale network was able to convey the 1%AEP_{cc} flows. The road carriageway flows were predicted to slightly overlap onto front berms, similar to the Ohote A results. The footpath was not predicted to have any inundation. The maximum predicted depth of flow 149 mm (from water level to kerb invert). This meets the 150mm requirement of RITS (Shaver, 2018, Section 3.3.14.1).

Maximum velocity predicted along the road carriageway was 0.79 m/s. The resultant pedestrian safety factor of 0.12 m²/s was less than 0.4 m²/s as per Austroads Guide Part 5A (Fanning, Richard, 2013).

The footpath was not predicted to have any inundation during the 1%AEP_{cc} rainfall.

The vegetated swale and conveyance channel sections were predicted to contain all the 1%AEP_{cc} flows within the swale/channel banks.

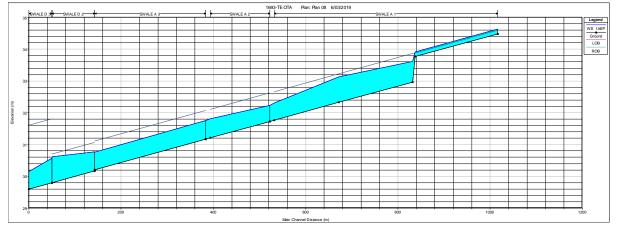


Figure 19: Te Otamanui Critical Hydraulic Path – 1%AEP_{cc} Results

The maximum velocity within the swale and channel network was predicted to be 1.83 m/s, which was greater than the RITS maximum of 1.5 m/s. Inspection of the location with the highest velocity showed that this was the junction of two swales discharging into a larger conveyance channel. The swale velocity upstream of the junction was <1.5 m/s.

Detailed design of the junctions will manage any higher velocities through design features such as additional planting, rip rap and engineered drop structures.

Refer to selected results as per Appendix G –Swale Hydraulic Results.

10.0 LOW IMPACT DESIGN (LID) ASSESSMENT

A high-level water impact (Low Impact Design) assessment as per WRC TR2018/01 (2018) and HCC's Water impact assessment (2016d) was undertaken as per the following table (Table 27).

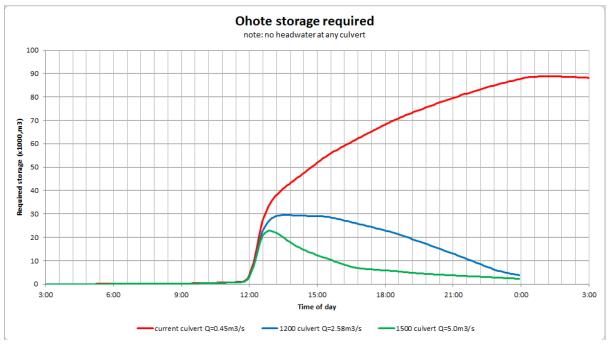
Implementation elements	Typical components	Maximum Individual score	Total score for each item
Source control maximised	Water re-use	0-4 depending on % of runoff capture	3
	Site disturbance reduced from a conventional development approach	0-3 depending on % of runoff capture	0
	Impervious surfaces reduced from a traditional approach	0-3 depending on % of runoff capture	1
	Use of building or site materials that do not contaminate	0 or 1 for residential 0-3 for commercial or industrial	1
	Existing streams and gullies located on site (including ephemeral) are protected and enhanced. The entire stream other than possible crossings shall be protected to qualify for points.	0 or 3	2
	Riparian corridors are protected, enhanced or created	0 or 3	3
	Protection and future preservation of existing native bush areas	0-2 depending on percentage of site area	2
LID stormwater device/practice used	Infiltration devices to reduce runoff volume	0-6 depending on % of runoff capture	1
	Revegetation of open space areas as bush	0-3 depending on % of site covered	0
	Bioretention	0-6 depending on % of runoff capture	1
	Swales and filter strips	0-3 depending on % of site covered	3
	Tree pits	0-6 depending on % of runoff capture	1
Traditional mitigation	Constructed wetlands	0-4 depending on % of runoff capture	4

Table 27: Low Impact Design Assessment

Implementation elements	Typical components	Maximum Individual score	Total score for each item
	Wet ponds	0-1 depending on % of runoff capture	0
	Innovative devices	0-1 depending on % of runoff capture	0
	Detention ponds (normally dry)	0	1
Urban design	Stormwater management is designed to be an integral and well considered part of the urban design.	0-2	2
Total score			25

Based on the high-level assessment the Rotokauri North Plan Change area exceeds the minimum point value of 15 as required by WRC.

11.0 DOWNSTREAM OHOTE CATCHMENT OPTIONS


The Exelby Road culvert forms the discharge point for the Ohote catchment within the Plan Change area. As per Section 8.0 significant detention volume will be required to buffer peak flows to 80% ED. The following options have been identified for this discharge point so as to potentially lower the invert of Exelby Culvert to minimise earthwork volumes:

- Retain culvert as is;
- Upgrade culvert to allow for 80% of 1% AEP_{cc} ED flow to pass unattenuated;
- Upgrade culvert to allow for >100% of 1% AEP_{cc} ED flow.

Preliminary analysis indicates that retaining the existing culvert will require in the order of 85,100 m³ of detention, where the flows are limited to the AECOM pre development maximum of 0.7m³/s.

Increasing the culvert to allow 80% of the McK 1% AEP_{cc} ED flow modelling to pass unattenuated (1200mm Culvert, Q = 2.58m³/s), reduces detention requirements to approximately 30,000 m³.

Increasing the culvert further to allow >100% of McK 1% $AEP_{cc} ED$ flow to pass unattenuated (1500mm Culvert, Q = 5.00m³/s), reduces detention requirements to approximately 23,000 m³.

11.1 Downstream Ohote Modelling

Sensitivity modelling on the Ohote Stream downstream of the PPC and ICMP areas was undertaken using HEC-RAS. A one-dimensional model of the existing stream from Exelby Road to Duck Road was created, with stream cross sections derived from a digital elevation model from Lidar flown July 2018.

The following figures show the extent of the modelling, and digital elevation model used for generating cross sections.

The sensitivity modelling considered a range of increasing peak flows from the PPC and ICMP areas, nominally corresponding with different values for the 1%AEP_{cc} peak flow values.

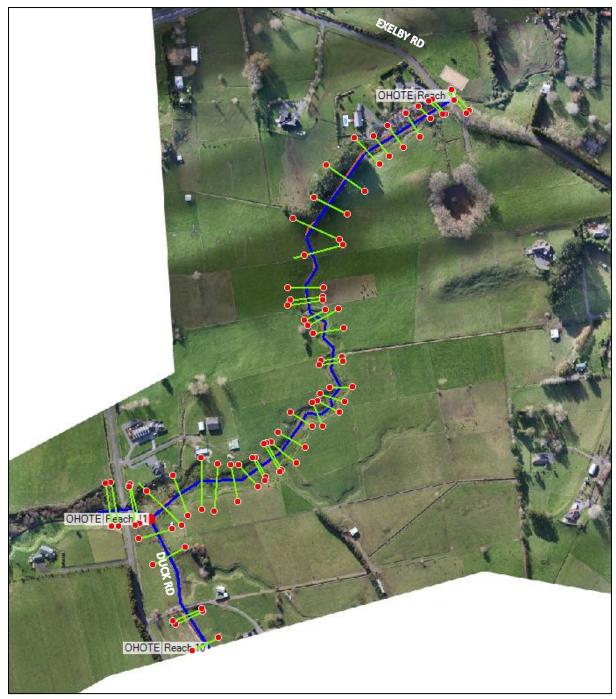


Figure 21: Downstream Ohote Stream 1D Model (Aerial)

Refer to Appendix H –Ohote Stream Model Figure for larger figure.

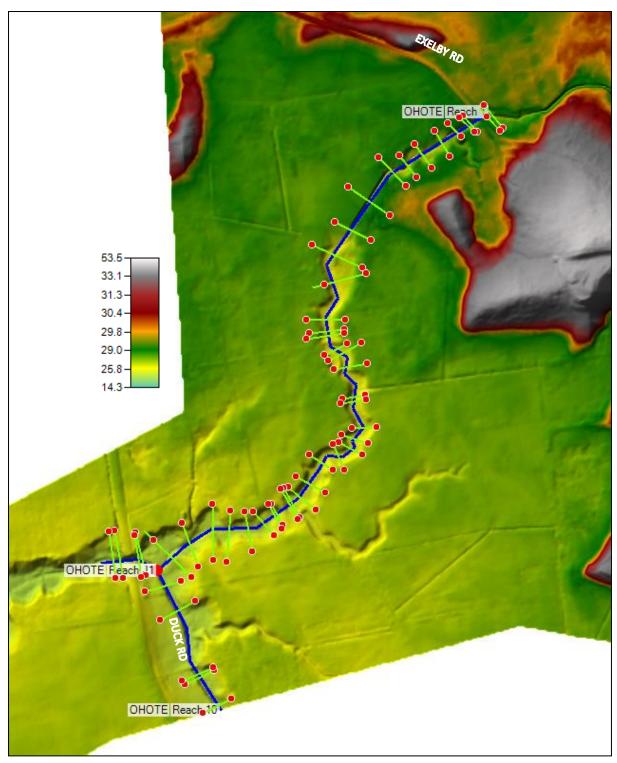


Figure 22: Downstream Ohote Stream 1D Model (Digital Elevation Model)

11.2 Digital Elevation Model Adjustment

A digital elevation model (DEM) was created within 12d software based on the LIDAR information, A small section of topography was manually adjusting such that a channel was added between Chainage 634m and 773m. This was due to a stand of trees and vegetation affecting the LIDAR measured heights. The stream was added with an assumed base width of 2.0m, and the

longitudinal gradient based on matching the gradients of the upstream and downstream sections. The area of adjustment has been shown in the figure below.

The DEM was exported as raster image from 12d and used as the terrain association with HEC-RAS. Two-dimensional (2D) flow areas were defined for the stream catchments within the ICMP area.

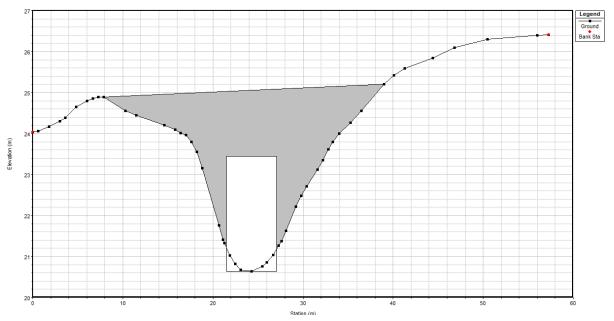


Figure 23: DEM Adjustment

Roughness values for all cross sections were Manning's n = 0.045 for all surfaces corresponding to weedy stream.

11.3 Inline Structures

Three inline structures were added to the model based on inspection of the aerial photography. The main structure modelled was the single lane Duck Road culvert, which was modelled with 5.6m span, 2.8m height and 5.5m width. Embankments either side of the bridge were modelled as per the figure below.

Figure 24: Duck Road Culvert

The other two inline structures were farm culverts added at Chainage 180m and 496m. The culverts were modelled with assumed diameters of 1.05m and 0.9m respectively, based on maximum distance between farm track and stream invert. The top surface of the culverts, typically corresponding with farm access tracks, was modelled as per DEM information.

11.4 Boundary Flow Conditions

The boundary flow conditions for steady state modelling were based on 2 flow rates modelled, one for the upper reach at Exelby Road, and the other at the southern reach. The southern reach modelled inflow from Lake Rotokauri to the Ohote Stream.

Southern Reach (Lake Rotokauri)

The 1% AEP flow from Lake Rotokauri was included, based on peak flow from the modelling in support of the Rotokauri South ICMP (Hart Environmental Ltd, 2017). The modelling report (AECOM, 2016) noted that the peak flow occurring at Duck Road was 6.3 m³/s.

The contributing peak flow from the Lake Rotokauri catchment was based on pro rata application by contributing area. The contributing areas of catchments were as per Table 28 below.

Name	Description	Area (ha)	% of Contributing Catchment	Pro Rata Peak Flow (m³s)
Lake Rotokauri	Catchment upstream of Lake Rotokauri	486.3	40.5	2.55
Exelby Road	Catchment upstream of Exelby Road, corresponds to the ICMP area.	181.2	15.1	Refer Exelby Road Section below
Exelby - Duck Road and Lake Rotokauri (E-D - LK)	Contributing area between Exelby Road (ICMP area), Duck Road and downstream of Lake Rotokauri	534.4	44.4	2.80
Total	Total catchment upstream of Duck Road	1201.9	100	6.3

Table 28: Pro Rata Flows

The Lake Rotokauri flow of 2.55 m³s was modelled at the end of the southern reach. The E-D-LK flow was modelled as three lateral inflow hydrographs equally spaced along the main reach between Exelby Road and Duck Road.

The lateral inflows and locations were:

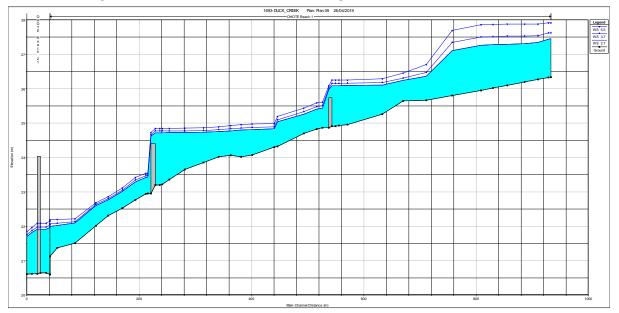
- Chainage $634m = 0.93m^{3}/s$
- Chainage 410m = 0.93m³/s
- Chainage 157m = 0.93m³/s

Exelby Road

Three flow scenarios were considered for Exelby Road:

- Base = $2.7 \text{ m}^3/\text{s}$
- Intermediate = 3.7 m³/s
- Upper = 5.5 m³/s

These scenarios are to consider the affect of different flow rates on the Ohote Stream, specifically velocity, erosion potential, and sedimentation potential.


11.5 Hydraulic Performance Criteria

Hydraulic performance of the stream was assessed based on Waikato Regional Council Stormwater Modelling Guidelines (Shaver, 2018), and Auckland Regional Council 'Erosion Parameters for Cohesive Sediment in Auckland Streams' (Jowett & Elliot, 2009) with specific criteria noted below:

- Maximum permissible velocity = 1.14 m/s (alluvial silts)
- Critical shear stress = 33 N/m² (Assumed). We note that critical shear stress is a function
 of grain size/soil type and that soils within the stream corridor have not been specifically
 assessed.
- Froude <1.0

11.6 Existing Stream Results

For the base case flow of 2.7 m^3 /s from the ICMP area, the inline farm culverts were predicted to overtop during peak flow. This contributed to instances of velocities exceeding 1.14 m/s, shear stress exceeding 33 N/m² and Froude number exceeding 1.0.

Figure 25: Existing Ohote Stream Water Profiles

The overtopping of the culverts was predicted to increase with increased flow from PPC area. Longitudinal sections showing hydraulic performance have been included within Appendix H.

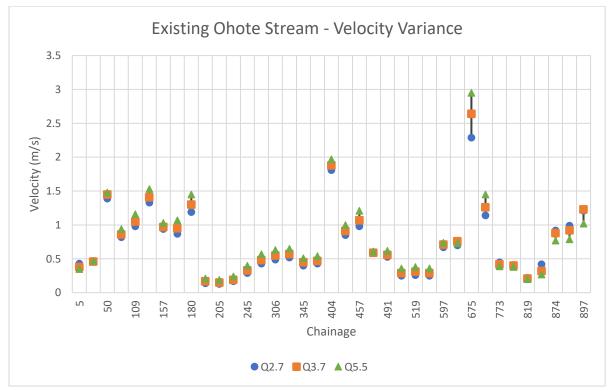

The Duck Road bridge was not predicted to have any hydraulic deficiencies.

Table 29 below summarises the hydraulic performance criteria results for the Ohote Stream.

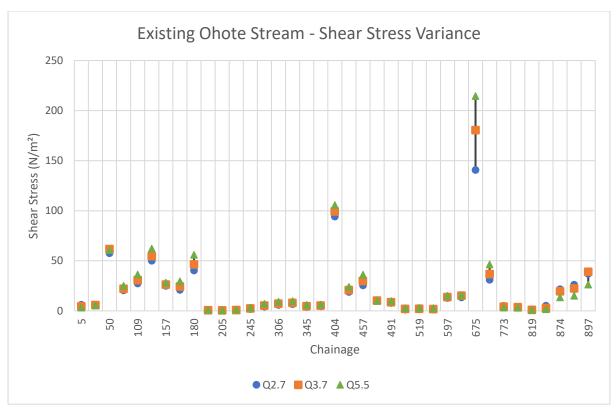
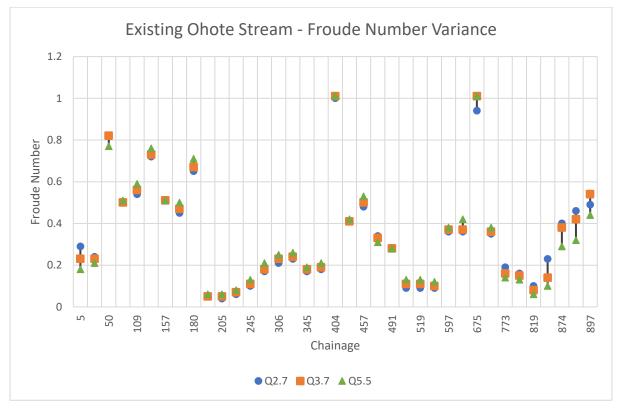
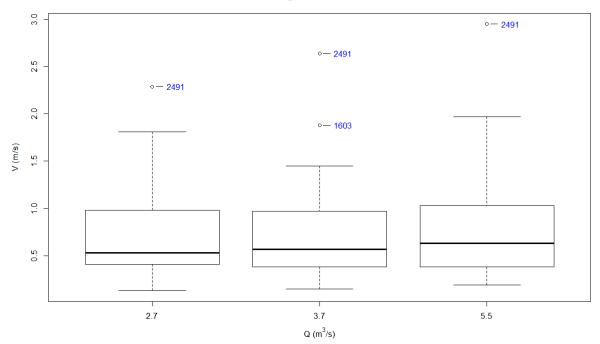
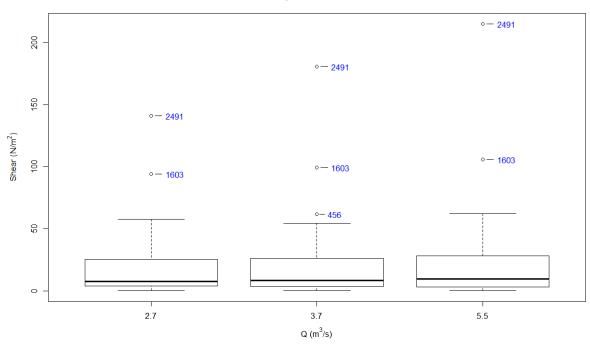

Results	Base	Intermediate	Upper
	(2.7 m³s)	(3.7 m³s)	(5.5 m³s)
Mean Velocity (m/s)	0.7	0.8	0.8
Median Velocity (m/s)	0.5	0.6	0.6
Maximum Velocity (m/s)	2.3	2.6	3.0
Minimum Velocity (m/s)	0.1	0.2	0.2
Mean Shear Stress (N/m²)	20	22	24
Median Shear Stress (N/m²)	8	8	10
Maximum Shear Stress (N/m²)	141	180	215
Mean Froude Number	0.34	0.35	0.35
Median Froude Number	0.29	0.28	0.28
Maximum Froude Number	1.00	1.01	1.01

Table 29: Existing Downstream Ohote Stream Results

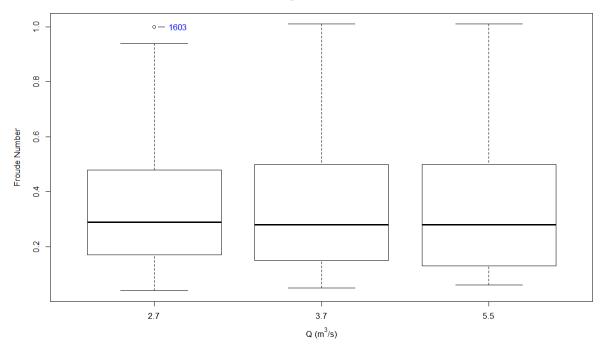

The variability of the velocity, shear stress and Froude number along the alignment have been shown in the charts below, which have been included in detail in Appendix H.




Boxplots below, Figure 29, Figure 30, and Figure 31, give an indication of the distribution of the various parameters for each of the three flow rates. Given the median (thick black line) and the inter quartile range of each of the factors modelled are similar it is apparent that flows ranging between 2.7m³/s and 5.5m³/s produce similar metrics. The box plots do highlight a few outliers (stream

locations with relatively high predictions): River Stations 456 (chainage 50), 1603 (chainage 404), and 2491 (chainage 675) – see Figure 32.

Existing Stream Conditions



Existing Stream Conditions

Existing Stream Conditions

Figure 31: Existing Stream – Froude Number Box Plot

The major variance occurs at Chainage 675, which corresponded with the stream profile that was assumed due to the LIDAR being affected by vegetation. The stream profile should be revised with ground truth data from a topographical survey and remodelled. The other "hotspots" occur where the stream narrows and changes direction.

The hydraulic performance was compared with the information contained within the Morphum Environmental 'Rotokauri North Sub-Catchment – Receiving Environment and Rapid Erosion Assessment" report (Parmar, McArthur, Surrey, & Yeates, 2018). The report identified that the downstream section of Ohote Stream had minimal erosion hot spots. Refer to figure below, extracted from report. Their assessment is validated insofar as the median/average flow velocities along the stream are low, 0.5 to 0.8 m/s (less than 1.14 m/s); median/average Shear Stress are less than 33 N/m²; and median/average Froude Numbers are less than 1.0.

Figure 32: Most Sensitive sections of Ohote Stream

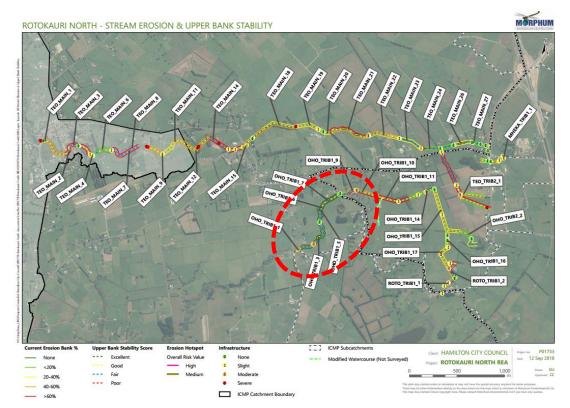


Figure 33: Stream Erosion and Upper Bank Stability (Source: Morphum Environmental)

Statistical Analysis

An Analysis of Variation (*Anova*) was undertaken to allow for comparison of the three flow scenarios. The *Anova* was completed for water level, velocity, shear stress and Froude number, with outputs of specific interest being:

- F-Ratio measure of whether the different samples means are significantly different or not;
- n² value proportion of variability between the data sets, calculated as sum of squares for between group variability divided by sum of squares for within group variability.

Critical F-Ratio ($F_{critical}$) was estimated based on alpha value of 0.05 (5%) i.e., if the F-Ratio was calculated to be within top 5% of sample data set distribution, then data sets can be considered significantly different. As the sample sizes for all data sets was the same, $F_{critical}$ was the same.

Anova results have been included within following table (Table 30).

Table 30: Anova Results

Variable	F-Ratio	Fcritical	Sum of Squares (Between Group Variability)	Sum of Squares (Within Group Variability)	n²
Water Level	0.179		1.074	325	0.33%
Velocity	0.259	3.080	0.145	30.15	0.48%
Shear Stress	0.149	3.000	347	12634	0.27%
Froude	0.001		0.000	6.88	0.00%

All estimated F-Ratio values were less than $F_{critical}$, indicating statistically the three flow scenarios were similar. Similarly, the low n² values indicate minimal difference in variability of the three flow scenarios.

As such, given the data and modelling, there is no significant difference with respect to erosion indicators for flow rates between 2.7m³/s and 5.5m³/s. This suggests that differences in modelling approaches have little effect and that flow through the Exelby culvert could be increased to 5.5m³/s with no additional effect on the downstream environment.

Sections of stream, for all three flow scenarios, did not meet the hydraulic design criteria. Therefore, it is expected that downstream works would be required where design criteria are cannot be met.

11.7 Downstream Works

The Morphum Environmental 'Rotokauri North Sub-Catchment – Receiving Environment and Rapid Erosion Assessment" report, Section 5.3, identified proposed downstream works for enhancement of the Ohote Stream. The hydraulic analysis of the existing stream profile indicated that there are areas where downstream works would be beneficial in achieving design criteria.

The following downstream works were modelled for the three flow scenarios based on enhancement recommendations and iterative amendment to meet the design criteria:

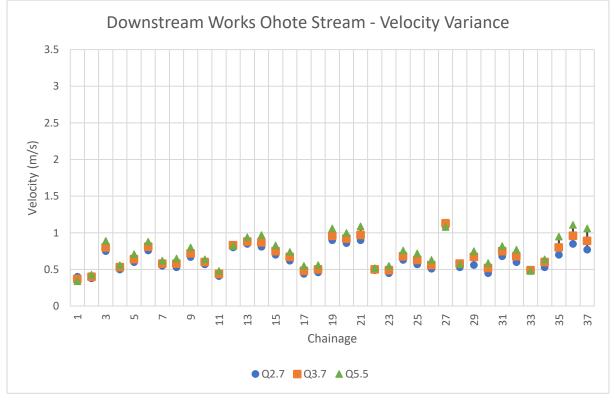
- Farm culverts all removed, future access across stream to be provided by oversized culverts or new stream fords;
- Planting along the whole stream to increase Manning 'n' to 0.06 (Planted floodplain).
- Greater density of planting between Chainages 0m and 180m to increase Manning 'n' to 0.1 (Dense brush).

- Cross section reshaping between Chainages 205m and 217m. Reshaping modelled as constant base width of 10m.
- Cross section reshaping between Chainages 365m and 410m. Reshaping modelled as constant base width of 8m.
- Cross section reshaping between Chainages 597m and 773m. Reshaping modelled as constant base width of 8m. Note that these works are through the area of tree vegetation and additional field survey should be undertaken to confirm stream invert levels before further design.
- Stream invert level amended at Chainage 634m to provide constant gradient.
- Cross section reshaping between Chainages 773m and 897m. Reshaping modelled as constant base width of 6m.

The proposed downstream works were consistent with the enhancement works proposed within Section 5.3 of Morphum Environmental 'Rotokauri North Sub-Catchment – Receiving Environment and Rapid Erosion Assessment" report.

11.8 Downstream Works Results

For the three flow scenarios, generally the downstream works mitigated the erosion potential for the three flow scenarios. The maximum velocity of 1.14 m/s was not exceeded for any flow scenarios, neither was the Froude number predicted to exceed 1.0.


Figure 34: Ohote Stream Water Profiles After Downstream Works

Results	Base	Intermediate	Upper
	(2.7 m³s)	(3.7 m³s)	(5.5 m³s)
Mean Velocity (m/s)	0.6	0.7	0.7
Median Velocity (m/s)	0.6	0.7	0.7
Maximum Velocity (m/s)	1.1	1.1	1.1
Minimum Velocity (m/s)	0.2	0.4	0.2
Mean Shear Stress (N/m²)	25	30	33
Median Shear Stress (N/m²)	21	25	26
Maximum Shear Stress (N/m²)	71	79	93
Mean Froude Number	0.29	0.31	0.31
Median Froude Number	0.28	0.28	0.29
Maximum Froude Number	0.59	0.59	0.57

Table 31: Downstream Works Ohote Stream Results

In all instances, maximum values have been reduced substantially, and mean/median values are well within design specification.

The variability of the velocity, shear stress and Froude number along the alignment are shown in Figure 35 to Figure 40 below. Longitudinal sections showing hydraulic performance have been included within Appendix I.

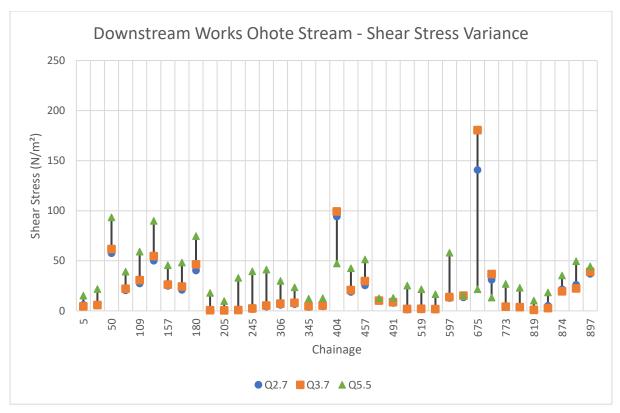


Figure 36: Downstream Works Stream Shear Stress Variance

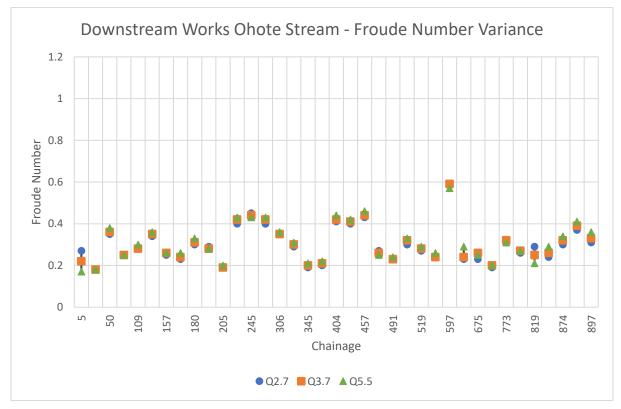
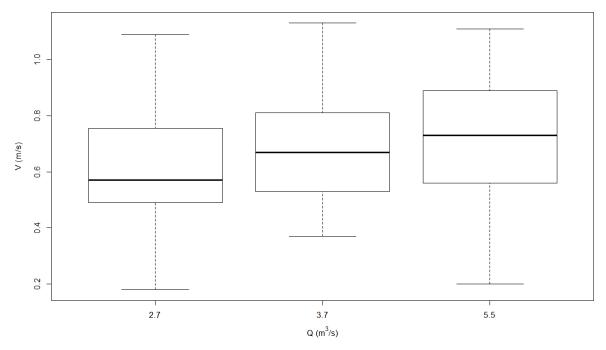
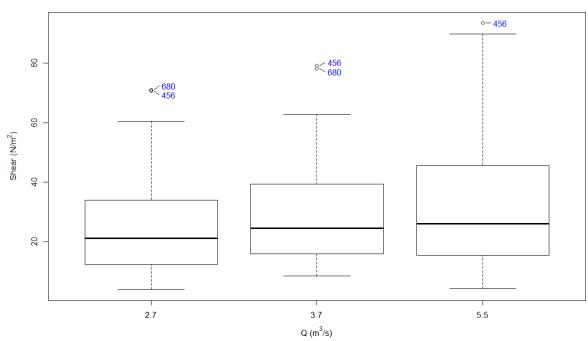
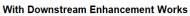
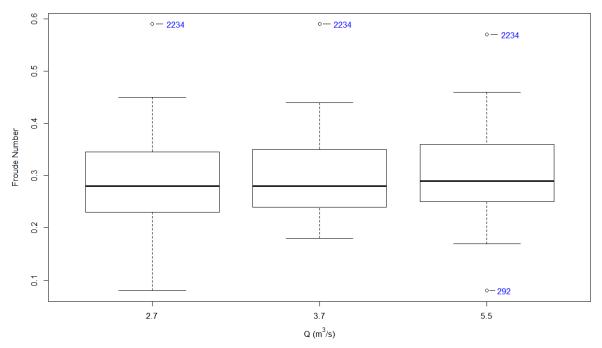


Figure 37: Downstream Works Stream Froude Number Variance

Figure 38, Figure 39 and Figure 40 show indicative distributions of each of the parameters if downstream works described above were undertaken. Figure 38 indicates that expected velocities will be consistent and less than recommended maximum velocities. Figure 39 indicates that average/median Shear forces are under the design threshold with River Stations 456 and 680 being outliers, although 680 is not an outlier at high flows. Froude Numbers are all low.

With Downstream Enhancement Works


Figure 38: Downstream Works – Velocity Box Plot

With Downstream Enhancement Works

Figure 40: Downstream Works – Froude Number Box Plot

The main section not meeting hydraulic design criteria was between Chainage 50m and 180m, which exceeded the shear stress value of 33 N/m^2 . This section of stream has a steeper gradient of 0.93% than elsewhere resulting in higher shear stresses.

With reference to Auckland Regional Council 'Erosion Parameters for Cohesive Sediment in Auckland Streams', critical shear stress values for streams are dependent on particle size distribution of the underlaying material. It is recommended that geotechnical sampling and testing, specifically particle size distribution (PSD) tests, be undertaken to inform any downstream stream works.

It is expected that a combination of PSD test results will allow for the shear stress hydraulic design criteria to be refined for actual site conditions. Stream design features can then be developed to be meet shear stress design criteria.

Statistical Analysis

An Analysis of Variation (*Anova*) was undertaken as per methodology in Section 9.6. Anova results have been included within following table (Table 32).

Variable	F-Ratio	Fcritical	Sum of Squares (Between Group Variability)	Sum of Squares (Within Group Variability)	n²
Water Level	0.16		0.76	262	0.29%
Velocity	2.89	3.080	0.24	4.56	5.2%
Shear Stress	1.31	3.000	974	41307	2.4%
Froude	0.16		0.003	1.01	0.3%

Table 32: Downstream Works Anova Results

All calculated F-Ratio values were less than $F_{critical}$, indicating statistically the three flow scenarios do not differ significantly.

Statistically, given the proposed downstream enhancement works on the Ohote Stream, flow rates over 2.7 m³/s up to 5.5m³/s discharged through the Exelby Road culvert (PPC and ICMP areas) would not be expected to increase the impact of stream erosion.

Summary

The hydraulic modelling and statistical analysis showed that the Exelby Road culvert could be lowered to reduce earthworks, when erosion mitigation measures were applied to downstream properties.

However, these downstream works would be within properties not within the PPC area and/or ICMP area. GSCL would be required to reach agreements with the property owners to undertake the works.

Notwithstanding potential access issues there were information gaps within the hydraulic modelling, specifically regarding topography in the area identified in Figure 23, for which additional investigation was recommended. The erosion potential, particularly critical shear stress, would require further quantification through stream bed testing to ascertain the grain size/soil type.

While there are hydraulic benefits to the PPC area and ICMP area from lowering the culvert and providing stream mitigation works, there are also a number of risks that need to be addressed (property owner consultation, topography survey, soil testing). Consultation, surveying and testing should be undertaken as part of future Resource Consenting to determine if the hydraulic benefits can be realised.

Until the risks above have been addressed the limiting discharge from the PPC area and ICMP area would be $0.7m^3/s$ as per the existing Rotokauri ICMP.

11.9 Recommendations

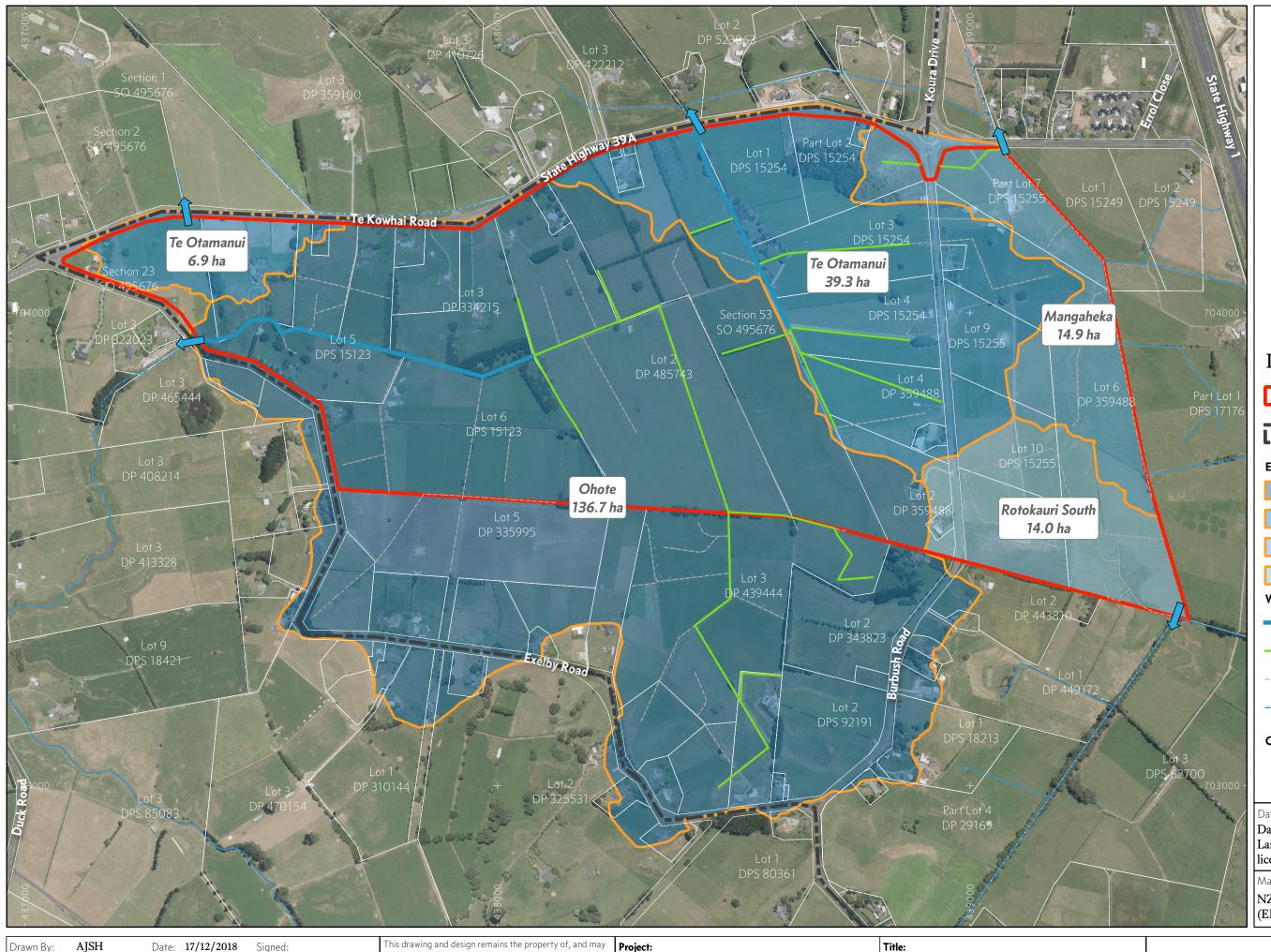
If additional discharge from the PPC/ICMP area above the Existing Development value (0.7m³/s) were to be considered then the following are recommended:

- A detailed topographic survey of the Ohote Stream down stream of Exelby Road to confirm stream alignment, cross sectional shape, and grade.
- Grain size/soil testing to estimate critical shear stress for the Ohote Stream, i.e., what is the streams critical shear stress that activates erosion.
- Consultation with downstream property owners so as to determine likelihood of undertaking erosion mitigation measures for catchment wide benefit.

12.0 CONCLUSION

Stormwater within the Plan Change area and sub-catchment ICMP area will be managed through a water sensitive design philosophy and a suite of stormwater management measures that can be used to comply with Hamilton City Council and Waikato Regional Council retention, detention, and quality requirements within the public and private realms. The selection of a precise treatment train to meet these requirements will be determined at the subdivision consent stage.

The stormwater conveyance network and associated water quality devices were shown to manage the additional runoff from increased impervious surfaces while also marching the maximum Existing Development flows specifically for the 1%AEP_{cc} rainfall. With reference to the investigations and analyses undertaken in the Rotokauri North Private Plan Change: Catchment Modelling Report (Rudsits, 2019b), further work was recommended to refine the maximum Existing Development value.


Modelling of the Ohote stream downstream of Exelby Road has shown that given the data and model there is no significant change in erosion potential for flows between 2.7 m³/s and 5.5 m³/s. However, there were a number of risks identified with the modelling that should be addressed as part of future Resource Consenting investigations. Investigation of these risks should be undertaken to determine if there would be any adverse effects from increasing discharge rate above the Existing Development value.

13.0 REFERENCES

- Adams, D. (2018a). Mangaheka Integrated Catchment Management Plan. Hamilton: Beca.
- Adams, D. (2018b, February). Beca Mangaheka Integrated Catchment Management Plan (K. Hermens, Ed.). Beca.
- AECOM. (2016, September). Rotokauri ICMP Major Drainage Options Report. AECOM.
- Alder, S. (2018). Rotokauri North SHA: Preliminary Geotechnical Assessment (No. HD631). Hamilton: HD Geo.
- Auckland Regional Council. (2003). Stormwater management devices: Design guidelines manual (No. TP10). Auckland: Auckland Regional Council.
- Chappell, P. R. (2014). The Climate and Weather of Waikato. Auckland: NIWA.
- eWater. (2012). MUSIC by eWater | Evolving Water Management. Retrieved November 3, 2018, from MUSIC by eWater website: https://ewater.org.au/products/music/
- Fanning, Richard. (2013). Guide to road design. Part 5a Road surface, networks, basins and subsurface. Sydney, N.S.W.: Austroads Ltd.
- Hamilton City Council. (2016a). Detention Tank (No. HCC 06). Hamilton: Hamilton City Council.
- Hamilton City Council. (2016b). Rainwater Reuse and Detention System (No. HCC 05). Hamilton: Hamilton City Council.
- Hamilton City Council. (2016c). Rainwater Reuse System (Rain Tanks) (No. HCC02). Hamilton: Hamilton City Council.
- Hamilton City Council. (2016d). Water Impact Assessment (No. HCC09). Hamilton: Hamilton City Council.
- Hart Environmental Ltd. (2017, June). Rotokauri Integrated Catchment Management Plan. Hart Environmental Ltd.
- Hart, R. (2017). Rotokauri Integrated Catchment Management Plan. Hamilton: Hamilton City Council.
- Jowett, L. G., & Elliot, M. A. (2009). Erosion Parameters for Cohesive Sediment in Auckland Streams (No. TR 2009/038). Auckland: Auckland Regional Council.
- Miller, D. (2018). Rotokauri North Development Area: Technical review of stream classification (No. 1008263). Hamilton: Tonkin & Taylor.
- Ministry for the Environment. (2017). National Policy Statement for Freshwater Management. Retrieved November 3, 2018, from About the National Policy Statement website: http://www.mfe.govt.nz/fresh-water/acts-and-regulations/national-policy-statementfreshwater-management
- Morphum. (2018). Rotokauri North Sub-Catchment: Receiving Environment and rapid erosion assessment (No. P01733). Auckland: Morphum Environmental Ltd.
- NIWA. (2017). High Intensity Rainfall System. Retrieved November 3, 2018, from High Intensity Rainfall System website: https://hirds.niwa.co.nz/
- Nutsford, R. (2018). RNDA ICMP: Desktop Review of Hydrogeological Conditions Influencing Stormwater Design (No. 3209016). Hamilton: Beca.

- Parmar, K., McArthur, S., Surrey, G., & Yeates, R. (2018, September). Morphum Environmental
 Rotokauri North Sub-Catchment Recieving Environment and Rapid Erosion Assessment. Morphum Environmental Ltd.
- Rudsits, B. (2018a). Ohote Catchment 2D Modelling Sensitivity. Auckland: McKenzie & Co Consultants Ltd.
- Rudsits, B. (2019b). Rotokauri North Private Plan Change: Catchment modelling. Auckland: McKenzie & Co Consultants Ltd.
- Shaver, E. (2018). Waikato Regional Council Stormwater Runoff Modelling Guideline (No. TR2018/02). Retrieved from Waikato Regional Council website: https://www.waikatoregion.govt.nz/assets/WRC/Services/publications/technical-reports/2018/TR201802.pdf
- Shaver, E., Wood, M., & Grant, D. (2018, June). WRC SMG TR2018-02.pdf. Waikato Regional Council.
- Vajlikova, S. (2018). Rotokauri North Catchment Stormwater Modelling, Ohote Stream Capacity Assessment Model Build Report (No. 60582116). Hamilton: AECOM.
- Waikato Local Authority. (2018). Regional Infrastructure Technical Specifications (RITS). Retrieved from Waikato Local Authority Shared Services website: http://www.waikatolass.co.nz/wp-content/uploads/2018/06/Regional-Infrastructure-Technical-Specification-V1.0-FINAL.pdf

APPENDIX A – CATCHMENT EXTENT PLANS

Drawn By:	AJSH	Date:	17/12/2018	Signed:
Checked By:		Date:		Signed:
Approved By:		Date:		Signed:
Plot Date:	28/04/2019			

This drawing and design remains the property of, and may not be reworked or altered, without the written permission of McKenzie and Company Consultants Limited. No liability shall be accepted for the unauthorised use of this drawing.

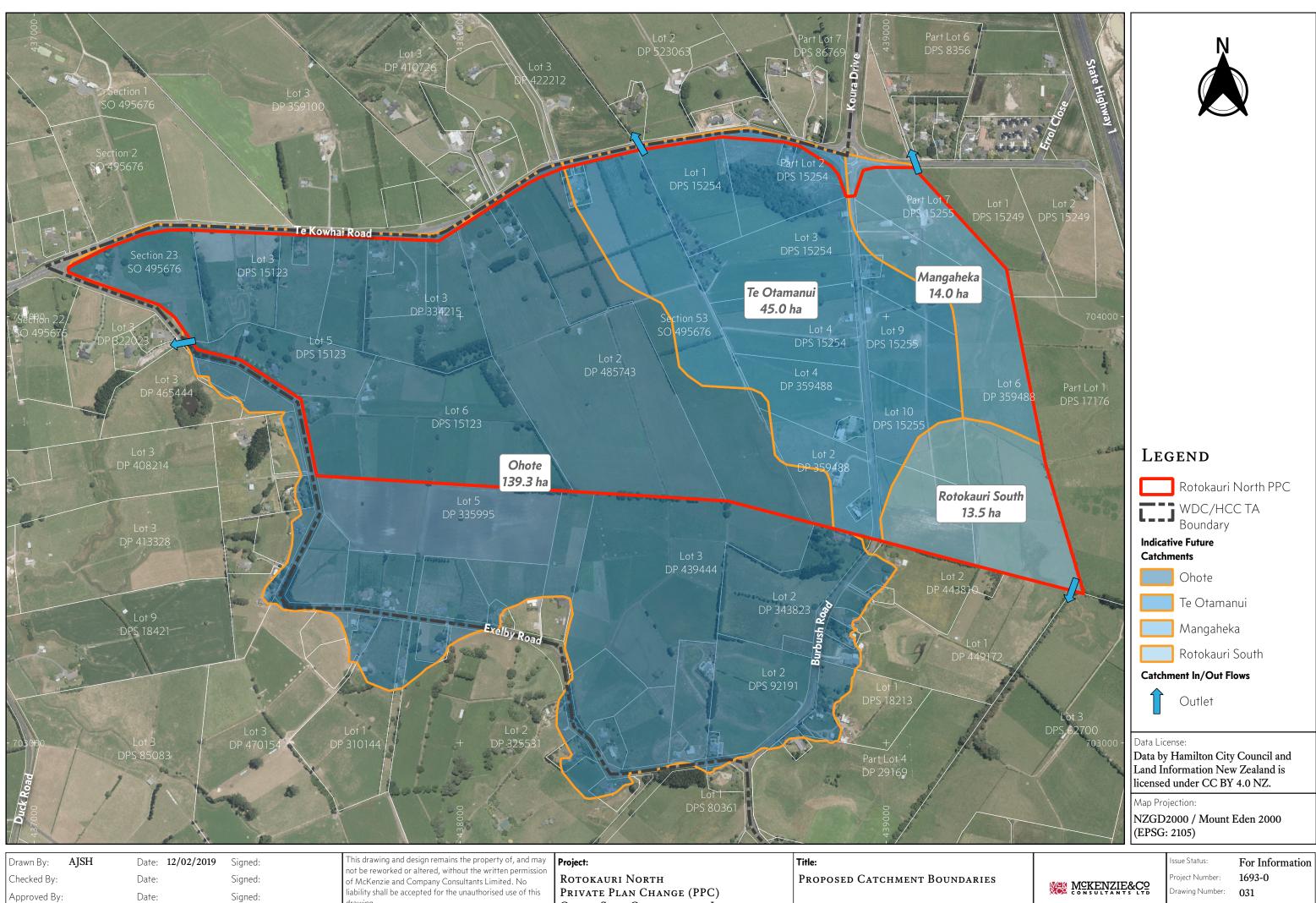
All dimensions to be checked; Do not scale from drawing.

Rotokauri North Private Plan Change (PPC) Green Seed Consultants Limited Title: Existing Catchment Boundaries and Watercourses

Legend

	Rotokauri North PPC Area
īj	WDC/HCC TA Boundary
Existing	Catchments
	Ohote
	Te Otamanui
	Mangaheka
	Rotokauri South
Waterco	ourses
	Modified
	Artificial
	Other Artificial
	Watercourse outside RN PCC Area
Catchm	ent In/Out Flows
$\widehat{1}$	Outlet

.


Data License: Data by Hamilton City Council and Land Information New Zealand is licensed under CC BY 4.0 NZ.

Map Projection:

NZGD2000 / Mount Eden 2000 (EPSG: 2105)

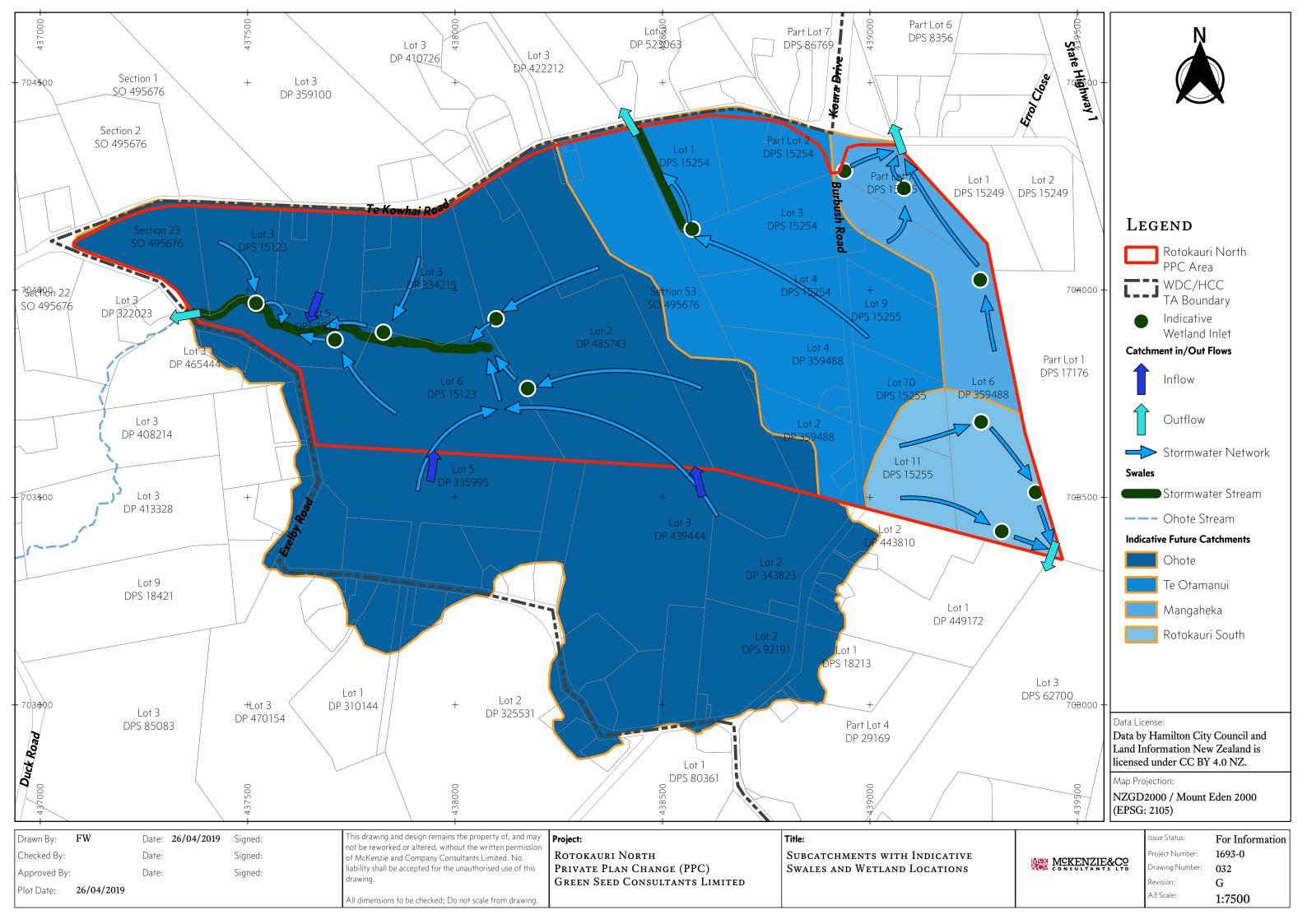
MCKENZIE&CO

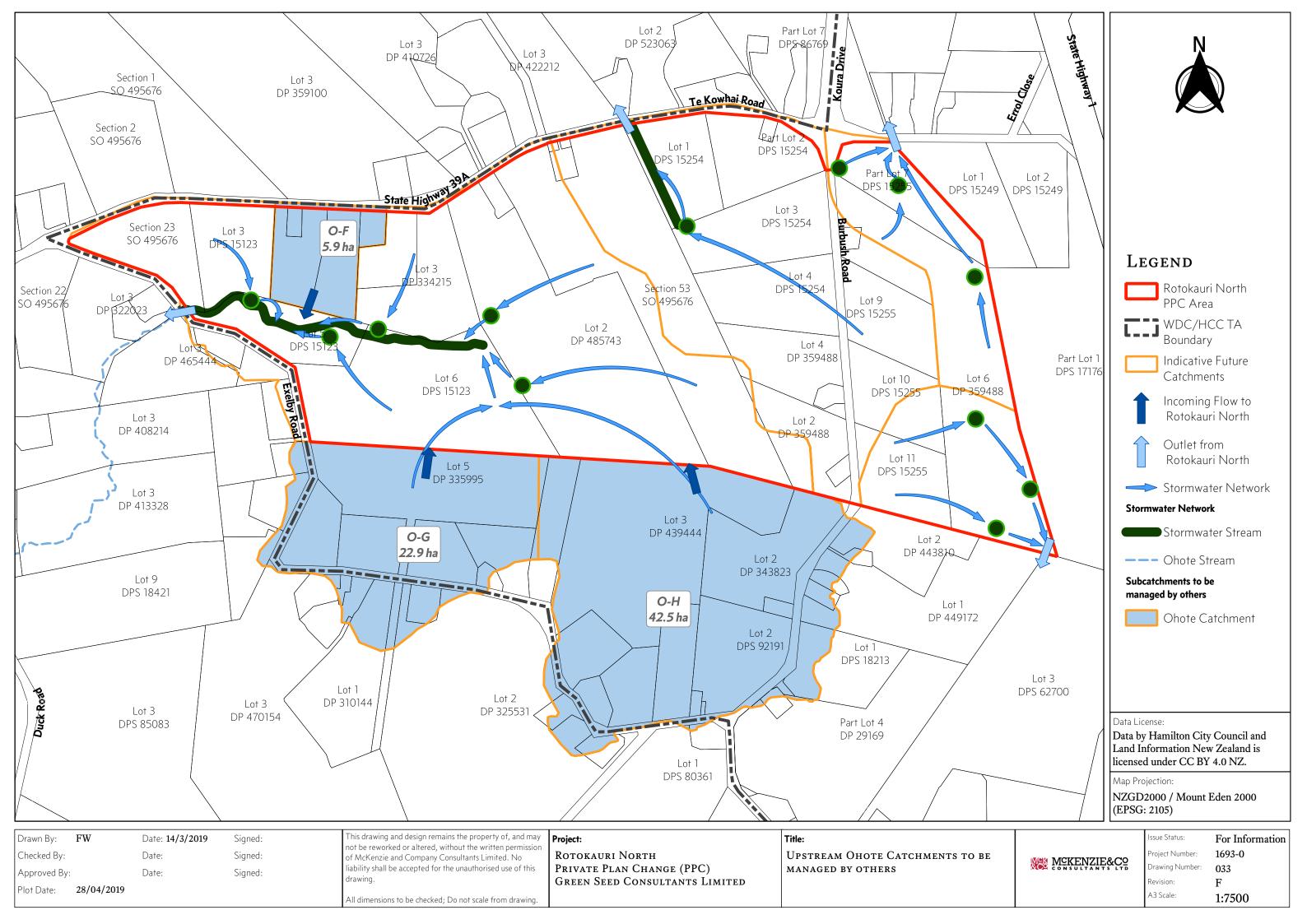
Issue Status: Project Number: Drawing Number: Revision: A3 Scale: For Information 1693-0 030 F 1:7500

GREEN SEED CONSULTANTS LIMITED

drawing.

All dimensions to be checked; Do not scale from drawing.


Plot Date: 28/04/2019


MCKENZIE&CO

Drawing Number: Revision: A3 Scale:

031 F 1:7500

APPENDIX B – PRIMARY NETWORK

APPENDIX C – WETLAND DESIGN

1693 Wetland Summary

27/11/2018

Notes

1 Fall through wetland system is 1.8m, refer drawing 1693-0-908.

Wetland	WQV (m3)	EDV (m3)	Culvert Level	Drop to culvert (m)	Detention base RL	Outlet pipe fall (m)	Out Pool base RL	NWL	EDL	Inflow channel base RL	Channel depth
Ohote A	2216	5014	26.4	0.4	26.8	0.3	27.1	28.6	29.1	28.6	0.5
Ohote B	2559	5788	26.4	0.7	27.1	0.3	27.4	28.9	29.4	28.9	0.5
Ohote C	208	472	26.4	0.3	26.7	0.3	27.0	28.5	29.0	28.5	0.5
Ohote D	1176	2660	26.4	0.1	26.5	0.3	26.8	28.3	28.8	28.3	0.5
Ohote E	994	2248	26.4	0.0	26.4	0.3	26.7	28.2	28.7	28.2	0.5
Te Otamanui	4869	11014	28	0.0	28	0.3	28.3	29.8	30.3	29.8	0.5
Mangaheka A	222	503	28	0.0	28	0.3	28.3	29.8	30.3	29.8	1.1
Mangaheka B	567	1284	28	0.0	28	0.3	28.3	29.8	30.3	29.8	1.1
Mangaheka C	684	1547	28	0.2	28.2	0.3	28.5	30.0	30.5	30.0	1.1
Rotokauri A	304	687	29.5	0.3	29.8	0.3	30.1	31.6	32.1	31.6	0.2
Rotokauri B	113	256	29.5	0.1	29.6	0.3	29.9	31.4	31.9	31.4	1.0
Rotokauri C	115	261	29.5	0.0	29.5	0.3	29.8	31.3	31.8	31.3	1.1

PROJECT:	Rotokauri	BY:	BH	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Ohote Point A

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

	_											
Calculated in accordance with TP10, chapters 3 and Total Area 177520 % Imp. 80		20	1									
//////////////////////////////////////	/81 61			-								
Cover Description (cover track to strength a 11 - 1		Curve	Product of	0	1	Chapte	r 3, TP10	r	Water	Ch	apter 5, TP	10
Cover Description (cover type, treatment, and hydro condition)	aulic Area (m2)	number	Product of CN x Area	2 year rainfall					Quality		Runoff	
condition		(CN)*	CITAICO	Figure				Runoff	Runoff		Depth	
		(0.1)		A.1			Storage S	depth	Volume	ED depth	(ED)	ED Vo
					Sd (MM)	la (MM)	(MM)	(MM)	(m3)	(MM)	(MM)	(m3)
	25504	74	0/0700/	70.0	02.4	0	00.0	10	172.0	245	9.6	2
Catchment A - Pervious - Impervious	35504 142016	74 98	2627296 13917568	70.3 70.3	23.4 23.4		89.2 5.2	4.9	173.0 2043.2	34.5 34.5	9.6	3 35
Catchment B - Pervious	0	74	0	70.3	23.4		89.2	4.9	0.0		9.6	00
- Impervious	0	98	0	70.3	23.4	5	5.2	14.4	0.0	34.5	25.1	
Subtotal	177520											
Io	tals 177520			1								
	177020	_1	<u></u>									
Total Area	177520						Tote	al WQ Vol	2216	subto	ital ED Vol	39
- WETLAND POND VOLUME CALCULATIONS												
VQV 2216 m	3											
extended detention regd? Ye												
ubtotal ED volume 3905 m3												
0 % reduction in WQV 1109 m3	3											
otal vol ED reqd 5014 m3	3											
orebay size 15% of WQV 332 m3	3											
orebay depth 1.5 m												
prebay area 222 m2												
2 - WETLAND POND AREA CALCULATIONS												
		1	Ave Dooth	Valuma	1							
Assume banded wetland	% of area	Area (m2)	Avg Depth (m)	Volume (m3)								
Proposed Wetland area 4625.0 m2			(11)	(113)								
2SZ Macrophyte zone 0m - 0.2m deep from NWL	40%	1850	0.1	185								
SZ Macrophyte zone 0.2m - 0.35m deep from NWL	40%	1850	0.275	5 509								
PSZ Inlet Pool 0.35m - 1.2m deep from NWL	10%	462.5										
PSZ Outlet Pool 0.35m - 1.5m deep from NWL	10%	462.5	0.925			Caractert						
iotal PSZ		l		1480	4	Greater th						
Check PSZ * 0.75 > WQV * 0.50				1110	m3	Greater th	nan 1109 n	n3, OK				
NWL Dimensions @ 5:1 L	W		=		m2	Less than			L			
WL Dimensions @ 8:1 L 193	W 24	1	=	4632	m2	Greater th	nan 4625 n	n2, OK				
- OUTLET CONTROL - ED												
3.1 Extended detention outlet			Slot ED outlet		Q = 1.7 W	/ D ^1.5						
					weir width	0.099	m					
EDV 5014 m3					. manti	0.077						
Qi 0.059 m3/s over 24 hrs					h	Q						
					0							
Max release rate	iv release rate is 00	vi			0.0500							
x Qi 0.118 m3/s At full EDV, mc	ix release rate is 2Q	li li			0.1000							
assumed orifice outlet					0.2000	0.0151						
Q =0.62*A*(2*g*h)^.5					0.3000	0.0277						
Outlet Dia. 0.26 m					0.3500	0.0426						
D 0.50					0.4500		=	0.059				
0.37					0.0000	0.0070		5.007				
ED Area 10028 m2												

ED Area 10028 m2 Q = 0.089 m3/s OK

 PROJECT:
 Rotokauri
 BY:
 BH
 DATE:
 29 November 2018

 LOCATION:
 Rotokauri
 Checked:

Catchment: Ohote Point B

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

Calculated in accordance with TP	10, chapters 3 and 5												
Total Area 204940	% Imp. 80	% Per.	20										
							Chapte	er 3, TP10			Ch	apter 5, TP	10
Cover Description (cover type, tre condition)		Area (m2)	Curve number (CN)*	Product of CN x Area	2 year rainfall Figure A.1	Sd (MM)		Storage S (MM)	Runoff depth (MM)	Water Quality Runoff Volume (m3)	ED depth (MM)	Runoff Depth (ED) (MM)	ED Vol (m3)
Catchment A - Pervious		40988	74	3033112	70.3	23.4	0	89.2	4.9	199.8	34.5	9.6	394
- Impervious		163952	98	16067296	70.3	23.4	5	5.2	14.4	2358.8	34.5	25.1	4114
Catchment B - Pervious		0	74	0	70.3			89.2	4.9	0.0	34.5	9.6	0
- Impervious		0	98	0	70.3	23.4	5	5.2	14.4	0.0	34.5	25.1	0
Subtotal		204940											
	Totals	204940											
	Total Area	204940]					Toto	al WQ Vol	2559	subto	tal ED Vol	4508
2 - WETLAND POND VOLUME CA	ALCULATIONS												
WQV extended detention reqd? subtotal ED volume 50 % reduction in WQV	2559 m3 Yes 4508 m3 1280 m3												
Total vol ED reqd	5788 m3												

2 - WETLAND POND AREA CALCULATIONS

384 m3 1.5 m 256 m2

forebay size 15% of WQV

forebay depth

forebay area

			Avg Depth	Volume	
Assume banded wetland	% of area	Area (m2)	(m)	(m3)	
Proposed Wetland area 5334.0 m2					
PSZ Macrophyte zone 0m - 0.2m deep from NWL	40%	2133.6	0.1	213	
PSZ Macrophyte zone 0.2m - 0.35m deep from NWL	40%	2133.6	0.275	587	
PSZ Inlet Pool 0.35m - 1.2m deep from NWL	10%	533.4	0.775	413	
PSZ Outlet Pool 0.35m - 1.5m deep from NWL	10%	533.4	0.925	493	
Total PSZ				1707	Greater than 1280 m3, OK
Check PSZ * 0.75 > WQV * 0.50 NWL Dimensions @ 5:1 L V NWL Dimensions @ 8:1 L 178 V)	= =	1280 r <mark>0</mark> r 5340 r	m2 Less than 5334 m2, TOO SMALL
3 - OUTLET CONTROL - ED 3.1 Extended detention outlet			Slot ED outlet	v	Q = 1.7 W D ^1.5 weir
EDV 5788 m3 Qi 0.067 m3/s over 24 hrs					width 0.112 m n Q

0 0 0.0021 0.0060 0.0111 Max release rate 0.0500 0.1000 0.1500 0.134 m3/s At full EDV, max release rate is 2Qi 2 x Qi Assumed orifice outlet 0.2000 0.2500 0.0170 0.0238 Q =0.62*A*(2*g*h)^.5 0.3000 0.0313 0.3500 0.0394 0.0482 0.28 m Outlet Dia. 0.4500 0.0575 0.50 ED 0.0673 = 0.067

b 0.36 ED Area 11576 m2 Q = 0.101 m3/s OK

PROJECT:	Rotokauri	BY:	ВН	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Ohote Point C

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

Total Area 16670 % Imp. 80	% Per.	20	1									
						Chapte	er 3, TP10			Ch	apter 5, TP	·10
Cover Description (cover type, treatment, and hydraulic condition)	Area (m2)	Curve number (CN)*	Product of CN x Area	2 year rainfall Figure A.1	6-1 (1.1.1)		Storage S	Runoff depth (MM)	Water Quality Runoff Volume (m3)	ED depth	Runoff Depth (ED)	ED Vol
					Sd (MM)		(MM)	(101101)	(113)	(MM)	(MM)	(m3)
Catchment A - Pervious	3334	74	246716	70.3	23.4	0	89.2	4.9	16.2	34.5	9.6	32
- Impervious	13336	98	1306928	70.3	23.4	5	5.2	14.4	191.9	34.5	25.1	335
Catchment B - Pervious	0	74	0	70.3	23.4	0	89.2	4.9	0.0	34.5	9.6	(
- Impervious	0	98	0	70.3	23.4	5	5.2	14.4	0.0	34.5	25.1	C
Subtotal	16670											
Totals	16670											
Total Area					T-4-	al WQ Vol	208	a da ta	tal ED Vol	367		

2 - WETLAND POND VOLUME CALCULATIONS

WQV	208 m3
extended detention reqd?	Yes
subtotal ED volume	367 m3
50 % reduction in WQV	105 m3
Total vol ED read	472 m3
forebay size 15% of WQV	31 m3
forebay depth	1.5 m
forebay area	21 m2

2 - WETLAND POND AREA CALCULATIONS

				Avg Depth	Volume
Assume banded wetland	4	% of area	Area (m2)	(m)	(m3)
Proposed Wetland area 438.0	m2				
PSZ Macrophyte zone 0m - 0.2m deep from NWL		40%	175.2	0.1	18
PSZ Macrophyte zone 0.2m - 0.35m deep from NW	L	40%	175.2	0.275	48
PSZ Inlet Pool 0.35m - 1.2m deep from NWL		10%	43.8	0.775	34
PSZ Outlet Pool 0.35m - 1.5m deep from NWL		10%	43.8	0.925	41
Total PSZ					140
Check PSZ * 0.75 > WQV * 0.50					105 m3
NWI Dimensions @ 5:1	w		1	=	<mark>0</mark> n
	Ŵ	0			440 m
NWL Dimensions @ 8:1 L 55	vv	8		=	440

3.1 Extended detention outlet		Slot ED outlet	Q = 1.7 W D ^1.5 weir			
			width 0.01	m		
EDV 472	m3					
Qi 0.006	m3/s over 24 hrs		h Q			
			0 0			
Max release rate			0.0500 0.0002			
2 x Qi 0.012	m3/s At full EDV, max release rate is 2Qi		0.1000 0.0005			
			0.1500 0.0010			
Assumed orifice outlet			0.2000 0.0015			
			0.2500 0.0021			
Q =0.62*A*(2*g*h)	\.5		0.3000 0.0028			
			0.3500 0.0035			
Outlet Dia. 0.08	m		0.4000 0.0043			
			0.4500 0.0051			
ED 0.50			0.5000 0.0060	=	0.006	
h 0.46						
ED Area 943	m2					

Q = 0.009 m3/s OK

PROJECT:	Rotokauri	BY:	BH	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Ohote Point D

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

Calculated in accordance with TP10, chapters 3 and 5												
Total Area 94190 % Imp. 80	% Per.	20										
						Chapte	er 3, TP10			Ch	apter 5, TP	10
Cover Description (cover type, treatment, and hydraulic condition)	Area (m2)	Curve number (CN)*	Product of CN x Area	2 year rainfall Figure A.1			Storage S	Runoff depth	Water Quality Runoff Volume	ED depth	Runoff Depth (ED)	ED Vol
					Sd (MM)	la (MM)		(MM)	(m3)	(MM)	(MM)	(m3)
Catchment A - Pervious	18838	74	1394012	70.3	23.4	0	89.2	4.9	91.8	34.5	9.6	181
- Impervious	75352	98	7384496	70.3	23.4	5	5.2	14.4	1084.1	34.5	25.1	189
Catchment B - Pervious	0	74	0	70.3	23.4	0	89.2	4.9	0.0	34.5	9.6	C
- Impervious	0	98	0	70.3	23.4	5	5.2	14.4	0.0	34.5	25.1	C
Subtotal	94190											
Totals	94190											
Total Area	94190	1					Toto	al WQ Vol	1176	subto	tal ED Vol	2072

2 - WETLAND POND VOLUME CALCULATIONS

WQV	1176 m3
extended detention reqd?	Yes
subtotal ED volume	2072 m3
50 % reduction in WQV	588 m3
Total vol ED reqd	2660 m3
forebay size 15% of WQV	176 m3
forebay depth	1.5 m
forebay area	118 m2

2 - WETLAND POND AREA CALCULATIONS

			Avg Depth	Volume	
Assume banded wetland	% of area	Area (m2)	(m)	(m3)	
Proposed Wetland area 2451.0 m2					
PSZ Macrophyte zone 0m - 0.2m deep from NWL	40%	980.4	0.1	98	
SZ Macrophyte zone 0.2m - 0.35m deep from NWL	40%	980.4	0.275	270	
SZ Inlet Pool 0.35m - 1.2m deep from NWL	10%	245.1	0.775	190	
SZ Outlet Pool 0.35m - 1.5m deep from NWL	10%	245.1	0.925	227	
otal PSZ				784	Greater than 588 m3, OK
Check PSZ * 0.75 > WQV * 0.50	15	7	=	588 m3	Greater than 588 m3, OK Less than 2451 m2, TOO SMALL
WL Dimensions @ 8:1 L 104 W	13		=	1352 m2	Less than 2451 m2, TOO SMALL
		5	-	1332 1112	Less Indit 2451 ITIZ, 100 SMALL
3 - OUTLET CONTROL - ED					
3.1 Extended detention outlet			Slot ED outlet	Q = 1	1.7 W D ^1.5
				weir	

			width	0.052 m	
EDV	2660 m3				
Qi	0.031 m3/s	over 24 hrs	h G	2	
			0	0	
Max release r	ate		0.0500	0.0010	
2 x Qi	0.062 m3/s	At full EDV, max release rate is 2Qi	0.1000	0.0028	
			0.1500	0.0051	
Assumed orific	ce outlet		0.2000	0.0079	
			0.2500	0.0111	
Q	=0.62*A*(2*g*h)^.5		0.3000	0.0145	
			0.3500	0.0183	
Outlet Dia.	0.18 m		0.4000	0.0224	
			0.4500	0.0267	
ED	0.50		0.5000	0.0313 =	0.031
h	0.41				

ED Area 5320 m2 Q = 0.045 m3/s OK

PROJECT:	Rotokauri	BY:	BH	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Ohote Point E

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

Calculated in accordance with TP10, chapters 3 and 5 Total Area 79590 % Imp. 80	% Per.	20]									
						Chapte	er 3, TP10			Ch	apter 5, TP	10
Cover Description (cover type, treatment, and hydraulic condition)	Area (m2)	Curve number (CN)*	Product of CN x Area	2 year rainfall Figure A.1	Sd (MM)	la (MM)	Storage S (MM)	Runoff depth (MM)	Water Quality Runoff Volume (m3)	ED depth (MM)	Runoff Depth (ED) (MM)	ED Vol (m3)
						-						
Catchment A - Pervious	15918 63672	74 98	1177932 6239856	70.3 70.3			89.2 5.2	4.9	77.6 916.1	34.5 34.5	9.6 25.1	153 1598
- Impervious Catchment B - Pervious	03672	70	0237030	70.3			5.2 89.2	4.9	916.1		23.1	1370
- Impervious	0	98	0	70.3			5.2	14.4			25.1	0
Subtotal	79590											
Totals	79590											
Total Area	79590						Toto	al WQ Vol	994	subto	tal ED Vol	1751
2 - WETLAND POND VOLUME CALCULATIONS												

Johnnonio
994 m3 Yes 1751 m3 497 m3
2248 m3
149 m3 1.5 m 99 m2

2 - WETLAND POND AREA CALCULATIONS

			Avg Depth	Volume	
Assume banded wetland	% of area	Area (m2)	(m)	(m3)	
Proposed Wetland area 2071.0 m2					
PSZ Macrophyte zone 0m - 0.2m deep from NWL	40%	828.4	0.1	83	
PSZ Macrophyte zone 0.2m - 0.35m deep from NWL	40%	828.4	0.275	228	
PSZ Inlet Pool 0.35m - 1.2m deep from NWL	10%	207.1	0.775	161	
PSZ Outlet Pool 0.35m - 1.5m deep from NWL	10%	207.1	0.925	192	
Total PSZ				663	Greater than 497 m3, OK
Check PSZ * 0.75 > WQV * 0.50		-		497 m3	Greater than 497 m3, OK
NWL Dimensions @ 5:1 L W			=	<mark>0</mark> m2	Less than 2071 m2, TOO SMALL
NWL Dimensions @ 8:1 L 130 W	17	7	=	2210 m2	Greater than 2071 m2, OK
3 - OUTLET CONTROL - ED					
3.1 Extended detention outlet			Slot ED outlet	0 - 1	.7 W D ^1.5

			weir			
			width	0.045 m		
EDV	2248 m3		mann	0.040 111		
				_		
Qi	0.027 m3/s	over 24 hrs	h	Q		
			0	0		
Max release rate			0.0500	0.0009		
2 x Qi	0.054 m3/s	At full EDV, max release rate is 2Qi	0.1000	0.0024		
			0.1500	0.0044		
Assumed orifice ou	tlot		0.2000	0.0068		
Assumed onlice ou	liei					
			0.2500	0.0096		
Q =0.62	2*A*(2*g*h)^.5		0.3000	0.0126		
			0.3500	0.0158		
Outlet Dia.	0.17 m		0.4000	0.0194		
			0.4500	0.0231		
ED	0.50		0.5000	0.0270 =	0.027	
			0.5000	0.02/0 -	0.02/	
h	0.42					
ED Area	4495 m2					

Q = 0.040 m3/s OK

PROJECT:	Rotokauri	BY:	BH	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Mangaheka Point A

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

Calculated in accordance wit	h TP10, chapters 3 and 5	
Total Area 390000	% Imp. 80	% Per. 20

			Chapter 3, TP10					Chapter 5, TP10			
Area (m2)	Curve	Product of	2 year					Water			
	number	CN x Area	rainfall					Quality		Runoff	
	(CN)*		Figure				Runoff	Runoff		Depth	
			A.1			Storage S	depth	Volume	ED depth	(ED)	ED Vol
				Sd (MM)	la (MM)	(MM)	(MM)	(m3)	(MM)	(MM)	(m3)
78000	74	5772000	70.3	23.4	0	89.2	4.9	380.1	34.5	9.6	750
312000	98	30576000	70.3	23.4	5	5.2	14.4	4488.9	34.5	25.1	7828
0	74	0	70.3	23.4	0	89.2	4.9	0.0	34.5	9.6	0
0	98	0	70.3	23.4	5	5.2	14.4	0.0	34.5	25.1	0
390000											
390000											
	78000 312000 0 390000	number (CN)* 78000 74 312000 98 0 74 0 98 390000 98	number (CN)* CN x Area 78000 74 5772000 312000 98 30576000 0 74 0 0 98 0 390000 - -	number (CN)* CN x Area Figure A.1 rainfall Figure A.1 78000 74 5772000 70.3 312000 98 30576000 70.3 0 74 0 70.3 0 98 0 70.3 390000 - -	number (CN)* CN x Area (SN)* rainfall Figure A.1 sd (MM) 78000 74 5772000 70.3 23.4 0 74 0 70.3 23.4 0 74 0 70.3 23.4 0 74 0 70.3 23.4 0 98 0 70.3 23.4 390000	Area (m2) Curve number (CN)* Product of CN x Area 2 year rainfall Figure A.1 78000 74 5772000 70.3 23.4 0 312000 98 30576000 70.3 23.4 0 0 74 0 70.3 23.4 5 390000 98 0 70.3 23.4 5	Area (m2) Curve number (CN)* Product of CN x Area 2 year rainfall Figure A.1 Sd (MM) Ia (MM) Storage S (MM) 78000 74 5772000 70.3 23.4 0 89.2 312000 98 30576000 70.3 23.4 0 89.2 0 74 0 70.3 23.4 0 89.2 0 98 0 70.3 23.4 5 5.2 390000	Area (m2) Curve number (CN)* Product of CN x Area 2 year rainfall Figure A.1 x area Runoff depth (MM) Runoff depth (MM) <th< td=""><td>Area (m2) Curve number (CN)* Product of CN x Area 2 year rainfall Figure A.1 a b water Storage S (MM) Water Quality (MM) 78000 74 5772000 70.3 23.4 0 89.2 4.9 380.1 312000 98 30576000 70.3 23.4 5 5.2 14.4 4488.9 0 74 0 70.3 23.4 5 5.2 14.4 4488.9 0 98 0 70.3 23.4 5 5.2 14.4 408.9 390000 </td><td>Area (m2) Curve number (CN)* Product of CN x Area 2 year rainfall Figure A.1 Sd (MM) Ia MM Water Quality Runoff depth (MM) Water Quality Runoff depth (MM) ED depth (MM) 78000 74 5772000 70.3 23.4 0 89.2 4.9 380.1 34.5 312000 98 30576000 70.3 23.4 0 89.2 4.9 0.0 34.5 0 74 0 70.3 23.4 0 89.2 4.9 0.0 34.5 0 74 0 70.3 23.4 0 89.2 4.9 0.0 34.5 0 98 0 70.3 23.4 5 5.2 14.4 4488.9 34.5 390000 </td><td>Area (m2) Curve number (CN)* Product of CN x Area 2 year rainfall Figure A.1 a b a water Runoff water Runoff Runoff Runoff 78000 74 5772000 70.3 23.4 0 89.2 4.9 380.1 34.5 9.6 312000 98 30576000 70.3 23.4 5 5.2 14.4 448.9 34.5 9.6 0 74 0 70.3 23.4 5 5.2 14.4 448.9 34.5 9.6 0 98 0 70.3 23.4 5 5.2 14.4 0.0 34.5 9.6 0 98 0 70.3 23.4 5 5.2 14.4 0.0 34.5 25.1 390000 </td></th<>	Area (m2) Curve number (CN)* Product of CN x Area 2 year rainfall Figure A.1 a b water Storage S (MM) Water Quality (MM) 78000 74 5772000 70.3 23.4 0 89.2 4.9 380.1 312000 98 30576000 70.3 23.4 5 5.2 14.4 4488.9 0 74 0 70.3 23.4 5 5.2 14.4 4488.9 0 98 0 70.3 23.4 5 5.2 14.4 408.9 390000	Area (m2) Curve number (CN)* Product of CN x Area 2 year rainfall Figure A.1 Sd (MM) Ia MM Water Quality Runoff depth (MM) Water Quality Runoff depth (MM) ED depth (MM) 78000 74 5772000 70.3 23.4 0 89.2 4.9 380.1 34.5 312000 98 30576000 70.3 23.4 0 89.2 4.9 0.0 34.5 0 74 0 70.3 23.4 0 89.2 4.9 0.0 34.5 0 74 0 70.3 23.4 0 89.2 4.9 0.0 34.5 0 98 0 70.3 23.4 5 5.2 14.4 4488.9 34.5 390000	Area (m2) Curve number (CN)* Product of CN x Area 2 year rainfall Figure A.1 a b a water Runoff water Runoff Runoff Runoff 78000 74 5772000 70.3 23.4 0 89.2 4.9 380.1 34.5 9.6 312000 98 30576000 70.3 23.4 5 5.2 14.4 448.9 34.5 9.6 0 74 0 70.3 23.4 5 5.2 14.4 448.9 34.5 9.6 0 98 0 70.3 23.4 5 5.2 14.4 0.0 34.5 9.6 0 98 0 70.3 23.4 5 5.2 14.4 0.0 34.5 25.1 390000

Total Area	390000		Total WQ Vol	4869	subtotal ED Vol	8579
		_				

2 - WETLAND POND VOLUME CALCULATIONS

WQV	4869 m3
extended detention reqd?	Yes
subtotal ED volume	8579 m3
50 % reduction in WQV	2435 m3
Total vol ED read	11014 m3
forebay size 15% of WQV	730 m3
forebay depth	1.5 m
forebay area	487 m2

2 - WETLAND POND AREA CALCULATIONS

			Avg Depth	Volume	
Assume banded wetland	% of area	Area (m2)	(m)	(m3)	
Proposed Wetland area 10150.0 m2		1			
PSZ Macrophyte zone 0m - 0.2m deep from NWL	40%	4060	0.1	406	
PSZ Macrophyte zone 0.2m - 0.35m deep from NWL	40%	4060	0.275		
PSZ Inlet Pool 0.35m - 1.2m deep from NWL	10%	1015			
PSZ Outlet Pool 0.35m - 1.5m deep from NWL	10%	1015	0.925		
Total PSZ				3248	Greater than 2435 m3, OK
Check PSZ * 0.75 > WQV * 0.50				2436 m3	Greater than 2435 m3, OK
NWL Dimensions @ 5:1 L 205 W	50	0	=	10250 m2	Greater than 10150 m2. OK
NWL Dimensions @ 8:1 L W			=	0 m2	Less than 10150 m2, TOO SMALL
		-			
3 - OUTLET CONTROL - ED					
3.1 Extended detention outlet			Slot ED outlet	0-17	W D ^1.5
			SIGI ED GONGI	weir	1 B 11.0
				width	0.213 m
EDV 11014 m3					
Qi 0.128 m3/s over 24 hrs				h	Q
					0 0
Max release rate				0.050	0.0040
2 x Qi 0.256 m3/s At full EDV, max re	elease rate is 2G	Qi		0.100	0 0.0115
					00 0.0210
Assumed orifice outlet					00 0.0324
					00 0.0453
Q =0.62*A*(2*g*h)^.5					00 0.0595
					00 0.0750
				0.400	0.0916
Outlet Dia. 0.3 m					
Outlet Dia. 0.3 m				0.450	00 0.1093 00 0.1280 = 0.128

Outlet Dia.	0.3 m	
ED h ED Area Q =	0.50 0.35 22027 m2 0.115 m3/s	ок

PROJECT:	Rotokauri	BY:	BH	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Mangaheka Point A

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

Calculated in accordance with TP10, chapters 3 and 5 Total Area 17790 % Imp. 80	% Per.	20]					
						Chapte	er 3, TP10	
Cover Description (cover type, treatment, and hydraulic condition)	Area (m2)	Curve number (CN)*	Product of CN x Area	2 year rainfall Figure A.1	Sd (MM)	la (MM)	Storage S (MM)	
Catchment A - Pervious	3558	74	263292	70.3	23.4	0	89.2	_
- Impervious	14232	98	1394736	70.3		-	5.2	
Catchment B - Pervious	0	74	0	70.3	23.4	0	89.2	
								_

0

17790

17790

17790

Totals

Total Area

74 98

2 - WETLAND POND VOLUME CALCULATIONS					
WQV	222 m3				
ovtanded datantian road?	Voc				

Impervious

Subtotal

extended detention reqd?	Yes
subtotal ED volume	391 m3
50 % reduction in WQV	112 m3
Total vol ED reqd	503 m3
forebay size 15% of WQV	33 m3
forebay depth	1.5 m
forebay area	22 m2

2 - WETLAND POND AREA CALCULATIONS

				Avg Depth	Volume	
ssume banded wetland		% of area	Area (m2)	(m)	(m3)	
roposed Wetland area	467.0 m2					
SZ Macrophyte zone 0m - 0.2m	deep from NWL	40%	186.8	0.1	19	
SZ Macrophyte zone 0.2m - 0.35	m deep from NWL	40%	186.8	0.275	51	
SZ Inlet Pool 0.35m - 1.2m deep	from NWL	10%	46.7	0.775	36	
SZ Outlet Pool 0.35m - 1.5m dee	p from NWL	10%	46.7	0.925	43	
otal PSZ					149	Greater than 112 m3, OK
Check PSZ * 0.75 > WQV * 0.50 IWL Dimensions @ 5:1 IWL Dimensions @ 8:1	L W L <u>59</u> W	8		= =	ו 112 יו 0 יו 472 יו	m2 Less than 467 m2, TOO SMALL
.1 Extended detention outlet				Slot ED outlet	`	Q = 1.7 W D ^1.5 weir width 0.01 m
DV 503 m Qi 0.006 m						h Q

Г

70.3

Chapter 5, TP10

Runoff Depth (ED)

(MM)

9.6

25.1 9.6

25.1

ED Vol

(m3)

34 357

391

Water Quality

Runoff

Volume

(m3)

17.

204.

0.0

0.0

222

ED depth

(MM)

34.5 34.5

34.5

34.5

subtotal ED Vol

Runoff

depth

(MM)

Total WQ Vol

4.9 14.4

4.9

14.4

				0	0		
Max release r	ate			0.0500	0.0002		
2 x Qi		0.012 m3/s	At full EDV, max release rate is 2Qi	0.1000	0.0005		
				0.1500	0.0010		
Assumed orific	ce outlet			0.2000	0.0015		
				0.2500	0.0021		
Q	=0.62*A*(2*g*h)^.5		0.3000	0.0028		
				0.3500	0.0035		
Outlet Dia.		0.05 m		0.4000	0.0043		
				0.4500	0.0051		
ED		0.50		0.5000	0.0060	=	0.006
h		0.48					

ED Area **Q =** 1007 m2 0.004 m3/s OK

PROJECT:	Rotokauri	BY:	BH	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Mangaheka Point B

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

Calculated in accordance wit	h TP10, chapters 3 and 5	
Total Area 45450	% Imp. <mark>80</mark>	% Per. 20

						Chapte	er 3, TP10			Ch	apter 5, TP	10
Cover Description (cover type, treatment, and hydraulic	Area (m2)	Curve	Product of	2 year					Water			
condition)		number	CN x Area	rainfall					Quality		Runoff	
		(CN)*		Figure				Runoff	Runoff		Depth	
				A.1			Storage S	depth	Volume	ED depth	(ED)	ED Vol
					Sd (MM)	la (MM)	(MM)	(MM)	(m3)	(MM)	(MM)	(m3)
			•									
Catchment A - Pervious	9090	74	672660	70.3	23.4	0	89.2	4.9	44.3	34.5	9.6	87
- Impervious	36360	98	3563280	70.3	23.4	5	5.2	14.4	523.1	34.5	25.1	912
Catchment B - Pervious	0	74	0	70.3	23.4	0	89.2	4.9	0.0	34.5	9.6	C
- Impervious	0	98	0	70.3	23.4	5	5.2	14.4	0.0	34.5	25.1	C
Subtotal	45450											
Totals	45450											

E

Total Arec	45450
2 - WETLAND POND VOLUME CALCULATIONS	

WQV	567 m3
extended detention reqd?	Yes
subtotal ED volume	1000 m3
50 % reduction in WQV	284 m3
Total vol ED reqd	1284 m3
forebay size 15% of WQV	85 m3
forebay depth	1.5 m
forebay area	57 m2

2 - WETLAND POND AREA CALCULATIONS

					Avg Depth	Volume	
Assume banded wetle	and		% of area	Area (m2)	(m)	(m3)	
Proposed Wetland an		1184.0 m2	/		,		
PSZ Macrophyte zone		o from NWL	40%	473.6	0.1	47	
PSZ Macrophyte zone			40%	473.6		130	
PSZ Inlet Pool 0.35m -	1.2m deep from	NWL	10%	118.4	0.775	92	
PSZ Outlet Pool 0.35m	- 1.5m deep fro	m NWL	10%	118.4	0.925	110	
Total PSZ						379	Greater than 284 m3, OK
Check PSZ * 0.75 > W0	QV * 0.50					284 m3	Greater than 284 m3, OK
NWL Dimensions @ 5:1	L	75 W	16	5	=	1200 m2	Greater than 1184 m2, OK
NWL Dimensions @ 8:1	L	W			=	<mark>0</mark> m2	Less than 1184 m2, TOO SMALL
3 - OUTLET CONTRO	L - ED						
3.1 Extended detentio	on outlet				Slot ED outlet	Q = 1.7	W D ^1.5
						weir width	0.025 m
EDV	1284 m3					widin	0.025 11
Qi	0.015 m3/s	over 24 hrs				h	Q
							0 0
Max release rate						0.050	0 0.0005
2 x Qi	0.030 m3/s	At full EDV, max r	elease rate is 2Q	i		0.100	0 0.0013
						0.150	0 0.0025
A second se	+					0.000	0 0000

Assumed orifice outlet

Q	=0.62*A*(2*g*h)^.5	
Outlet Dia.	0.05 m	
ED h	0.50 0.48	
ED Area Q =	2567 m2 0.004 m3/s	ок

0.015 =

0.1500 0.0025 0.2000 0.0038 0.2500 0.0053 0.3000 0.0070 0.3500 0.0088 0.4000 0.0108 0.4500 0.0128 0.5000 0.0150

567

subtotal ED Vol

Total WQ Vol

PROJECT:	Rotokauri	BY:	BH	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Mangaheka Point C

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

ea (m2)	Curve	Product of								apter 5, TP	
			2 year					Water			
	number	CN x Area	rainfall					Quality		Runoff	
	(CN)*		Figure				Runoff	Runoff		Depth	
			Ā.1			Storage S	depth	Volume	ED depth	(ED)	ED Vol
				Sd (MM)	la (MM)	(MM)	(MM)	(m3)	(MM)	(MM)	(m3)
0954	74	810596	70.3	23.4	0	89.2	4.9	53.4	34.5	9.6	10
3816	98	4293968				5.2				25.1	109
0	74	0	70.3	23.4	0	89.2	4.9	0.0	34.5	9.6	
0	98	0	70.3	23.4	5	5.2	14.4	0.0	34.5	25.1	
54770											
			1								
54	3816 0 0	3816 98 0 74 0 98 4770	3816 98 4293968 0 74 0 0 98 0 4770	0954 74 810596 70.3 3816 98 4293968 70.3 0 74 0 70.3 0 98 0 70.3 4770	Sd (MM) 0954 74 810596 70.3 23.4 8816 98 4293968 70.3 23.4 0 74 0 70.3 23.4 0 74 0 70.3 23.4 0 98 0 70.3 23.4 4770	Sd (MM) Ia (MM) 0954 74 810596 70.3 23.4 0 3816 98 4293968 70.3 23.4 5 0 74 0 70.3 23.4 0 0 98 0 70.3 23.4 5 4770	Sd (MM) Ia (MM) (MM) 0954 74 810596 70.3 23.4 0 89.2 3816 98 4293968 70.3 23.4 5 5.2 0 74 0 70.3 23.4 0 89.2 0 78 0 70.3 23.4 5 5.2 4770	Sd (MM) Ia (MM) (MM) (MM) 0954 74 810596 70.3 23.4 0 89.2 4.9 3816 98 4293968 70.3 23.4 5 5.2 14.4 0 74 0 70.3 23.4 0 89.2 4.9 0 98 0 70.3 23.4 5 5.2 14.4 0 98 0 70.3 23.4 5 5.2 14.4 070 98 0 70.3 23.4 5 5.2 14.4	Sd (MM) Ia (MM) (MM) (MM) (MM) (m3) 0954 74 810596 70.3 23.4 0 89.2 4.9 53.4 3816 98 4293968 70.3 23.4 5 5.2 14.4 630.4 0 74 0 70.3 23.4 0 89.2 4.9 0.0 0 98 0 70.3 23.4 5 5.2 14.4 630.4 0 74 0 70.3 23.4 5 5.2 14.4 630.4 0 98 0 70.3 23.4 5 5.2 14.4 0.0 4770	Sd (MM) Ia (MM) (MM) (MM) (MM) 0954 74 810596 70.3 23.4 0 89.2 4.9 53.4 34.5 3816 98 4293968 70.3 23.4 5 5.2 14.4 630.4 34.5 0 74 0 70.3 23.4 0 89.2 4.9 0.0 34.5 0 98 0 70.3 23.4 5 5.2 14.4 0.0 34.5 4770	Sd (MM) Ia (MM) (M) (M)

2 - WETLAND POND VOLUME CALCULATIONS

WQV	684 m3
extended detention reqd?	Yes
subtotal ED volume	1205 m3
50 % reduction in WQV	342 m3
Total vol ED reqd	1547 m3
forebay size 15% of WQV	103 m3
forebay depth	1.5 m
forebay area	68 m2

2 - WETLAND POND AREA CALCULATIONS

					-				
						Avg Depth	Volume		
Assume banded wet				% of area	Area (m2)	(m)	(m3)		
Proposed Wetland a		1426.0	m2						
PSZ Macrophyte zone	e 0m - 0.2m deep	o from NWL		40%	570.4		57		
PSZ Macrophyte zone	e 0.2m - 0.35m de	eep from NV	VL	40%	570.4	0.275	157		
PSZ Inlet Pool 0.35m -	1.2m deep from	NWL		10%	142.6	0.775	111		
PSZ Outlet Pool 0.35m	n - 1.5m deep fro	m NWL		10%	142.6	0.925	132		
lotal PSZ							456		Greater than 342 m3, OK
					•				
Check PSZ * 0.75 > W	QV * 0.50						342 m3	3	Greater than 342 m3, OK
VWL Dimensions @ 5:	1 L		W		1	=	<mark>0</mark> m2	2	Less than 1426 m2, TOO SMALL
VWL Dimensions @ 8:	1 L	158	w	20		=	3160 m2	2	Greater than 1426 m2, OK
					-				
3 - OUTLET CONTRC	DL - ED								
3.1 Extended detenti	on outlet					Slot ED outlet	Q	= 1.7 W	D ^1.5
							we		
							wig		0.03 m
EDV	1547 m3								
Qi	0.018 m3/s	over 24 br					h		Q
ואַב	0.010 110/3	076124113	2					0	0
Max release rate								0.0500	0.0006
	0.02/2/-								
2 x Qi	0.036 m3/s	AT TUILEDV	, max relea	ase rate is 2Q	1			0.1000	0.0016
								0.1500	0.0030

0.0046 0.0064 0.0084

0.2500 0.0084 0.3000 0.0084 0.3500 0.0106 0.4000 0.0129 0.4500 0.0154 0.5000 0.0180 =

0.018

0.2000 0.2500

Assumed orifice outlet

Q	=0.62*A*(2*g*h)^.5	
Outlet Dia.	0.05 m	
ED h ED Area Q =	0.50 0.48 3094 m2 0.004 m3/s	ОК

 PROJECT:
 Rotokauri
 BY:
 BH
 DATE:
 29 November 2018

 LOCATION:
 Rotokauri
 Checked:

Catchment: Rotokauri Point A

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

				-		Chapte	er 3, TP10			Ch	apter 5, TP	°10
Cover Description (cover type, treatment, and hydraulic condition)	Area (m2)	Curve number (CN)*	Product of CN x Area	2 year rainfall Figure A.1	Sd (MM)		Storage S (MM)	Runoff depth (MM)	Water Quality Runoff Volume (m3)	ED depth (MM)	Runoff Depth (ED) (MM)	ED Vol (m3)
					50 (1111)	ia (min)	(iviivi)	(14114)	(110)	(141141)	(iviivi)	(mo)
Catchment A - Pervious	4868	74	360232	70.3	23.4	0	89.2	4.9	23.7	34.5	9.6	4
- Impervious	19472	98	1908256	70.3	23.4	5	5.2	14.4	280.2	34.5	25.1	48
Catchment B - Pervious	0	74	0	70.3	23.4	0	89.2	4.9	0.0	34.5	9.6	
- Impervious	0	98	0	70.3	23.4	5	5.2	14.4	0.0	34.5	25.1	
Subtotal	24340											
Totals	24340		r	1								

2 - WETLAND POND VOLUME CALCULATIONS

WQV	304 m3
extended detention reqd?	Yes
subtotal ED volume	535 m3
50 % reduction in WQV	152 m3
Total vol ED reqd	687 m3
forebay size 15% of WQV	46 m3
forebay depth	1.5 m
forebay area	30 m2

2 - WETLAND POND AREA CALCULATIONS

					1	Avg Depth	Volume	
Assume banded wetle	land		97	of area	Area (m2)	(m)	(m3)	
Proposed Wetland an		635.0	m2	of aloa	, 100 (m2)	()	(110)	
PSZ Macrophyte zone			1.1.2	40%	254	0.1	25	
PSZ Macrophyte zone			VL	40%	254		70	
PSZ Inlet Pool 0.35m -	1.2m deep from	NWL		10%	63.5	0.775	49	
PSZ Outlet Pool 0.35m	n - 1.5m deep frc	m NWL		10%	63.5	0.925	59	
Total PSZ							203	Greater than 152 m3, OK
Check PSZ * 0.75 > WO	QV * 0.50						152 m3	Greater than 152 m3, OK
					-			
NWL Dimensions @ 5:1			w			=	<mark>0</mark> m2	Less than 635 m2, TOO SMALL
NWL Dimensions @ 8:1	1 L	72	w	9		=	648 m2	Greater than 635 m2, OK
3 - OUTLET CONTRO	ol - ED							
							0.17	
3.1 Extended detention	on outlet					Slot ED outlet		7 W D ^1.5
							weir	
							width	0.014 m
	687 m3						width	
EDV Qi	687 m3 0.008 m3/s	over 24 hrs	;					Q
Qi		over 24 hrs	Ď				width h	Q 0 0
Qi Max release rate	0.008 m3/s						width h 0.05	Q 0 0 00 0.0003
Qİ				se rate is 2Q	i		width h	Q 0 00 0.0003 00 0.0008

0.0021 0.0030 0.0039

0.3500 0.0049 0.4000 0.0060 0.4500 0.0072 0.5000 0.0084

=

0.008

0.2000 0.2500 0.3000 0.3500 0.4000

Assumed orifice outlet

Q	=0.62*A*(2*g*h)^.5	
Outlet Dia.	0.09 m	
ED h ED Area Q =	0.50 0.46 1375 m2 0.012 m3/s	ОК

PROJECT:	Rotokauri	BY:	BH	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Rotokauri Point B

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

Calculated in accordance with TP10, chapters 3 and 5 Total Area 9040 % Imp. 80	% Per.	20]									
						Chapte	er 3, TP10			Ch	apter 5, TP	10
Cover Description (cover type, treatment, and hydraulic condition)	Area (m2)	Curve number (CN)*	Product of CN x Area	2 year rainfall Figure A.1	Sci (MM)	la (MM)	Storage S (MM)	Runoff depth (MM)	Water Quality Runoff Volume (m3)	ED depth (MM)	Runoff Depth (ED) (MM)	ED Vol (m3)
					50 (MIN)	10 (1111)	(14044)	(11111)	(ino)	(14114)	(10100)	(mo)
Catchment A - Pervious	1808	74	133792	70.3			07.2	4.9	8.8			1
- Impervious	7232	98	708736	70.3	23.4	5	5.2	14.4	104.0	34.5	25.1	18
Catchment B - Pervious	0	74	0	70.3	23.4	0	89.2	4.9	0.0	34.5	9.6	(
- Impervious	0	98	0	70.3	23.4	5	5.2	14.4	0.0	34.5	25.1	C
Subtotal	9040											
Totals	9040											
Total Area	9040	1					Toto	al WQ Vol	113	subto	tal ED Vol	199

0.003

=

2 - WETLAND POND VOLUME CALCULATIONS

WQV	113 m3
extended detention reqd?	Yes
subtotal ED volume	199 m3
50 % reduction in WQV	57 m3
Total vol ED reqd	256 m3
forebay size 15% of WQV	17 m3
forebay depth	1.5 m
forebay area	11 m2

2 - WETLAND POND AREA CALCULATIONS

		T		Avg Depth	Volume	
Assume banded wetland		% of area	Area (m2)	(m)	(m3)	
Proposed Wetland area	240.0 m2					
PSZ Macrophyte zone 0m - 0.2	2m deep from NWL	40%	96	0.1	10	
PSZ Macrophyte zone 0.2m - 0).35m deep from NWL	40%	96	0.275	26	
PSZ Inlet Pool 0.35m - 1.2m de	ep from NWL	10%	24	0.775	19	
PSZ Outlet Pool 0.35m - 1.5m d	deep from NWL	10%	24	0.925	22	
Total PSZ					77	Greater than 57 m3, OK
Check PSZ * 0.75 > WQV * 0.5(NWL Dimensions @ 5:1 NWL Dimensions @ 8:1) L 42 W	E]	= =	58 m3 0 m2 252 m2	Less than 240 m2, TOO SMALL
3 - OUTLET CONTROL - ED 3.1 Extended detention outlet				Slot ED outlet	Q = wei wid	
	5 m3 3 m3/s over 24 hrs				h	Q 0 0

			0	0	
Max release	rate		0.0500	0.0001	
2 x Qi	0.006 m3/s	At full EDV, max release rate is 2Qi	0.1000	0.0003	
			0.1500	0.0005	
Assumed ori	fice outlet	0.2000	0.0008		
		0.2500	0.0011		
Q	=0.62*A*(2*g*h)^.5		0.3000	0.0014	
			0.3500	0.0018	
Outlet Dia.	0.05 m		0.4000	0.0022	
			0.4500	0.0026	
ED	0.50		0.5000	0.0030	
h	0.48				

h ED Area **Q =** 512 m2 0.004 m3/s OK

PROJECT:	Rotokauri	BY:	BH	DATE:	29 November 2018
LOCATION:	Rotokauri	Checked:			

Catchment: Rotokauri Point C

1 - WATER QUALITY AND EXTENDED DETENTION CALCULATIONS

				r		Charata	er 3, TP10			Ch	antor 5 TD	10
Cover Description (cover type, treatment, and hydro condition)	aulic Area (m2)	Curve number (CN)*	Product of CN x Area	2 year rainfall Figure A.1	Sd (MM)		Storage S (MM)	Runoff depth (MM)	Water Quality Runoff Volume (m3)	ED depth (MM)	Runoff Depth (ED) (MM)	ED Vol (m3)
	•											
Catchment A - Pervious	1848	74	136752	70.3			89.2	4.9				18
- Impervious	7392	98	724416	70.3			5.2	14.4			25.1	185
Catchment B - Pervious - Impervious	0	74 98	0	70.3 70.3			89.2 5.2	4.9			9.6 25.1	
Subtotal	9240	70	0	70.3	23.4	5	J.2	14.4	0.0	54.5	23.1	
То	tals 9240											
Total Area	9240]					Toto	al WQ Vol	115	subto	ital ED Vol	203
2 - WETLAND POND VOLUME CALCULATIONS												
WQV 115 m. extended detention reqd? Ye	s											
subtotal ED volume203 mi50 % reduction in WQV58 mi												

2 - WETLAND POND AREA CALCULATIONS

17 m3 1.5 m 12 m2

forebay size 15% of WQV forebay depth forebay area

				1		Avg Depth	Volume		
Assume banded wetlar	nd			% of area	Area (m2)	(m)	(m3)		
Proposed Wetland area	a	242.0	m2						
SZ Macrophyte zone C)m - 0.2m deej	p from NWL		40%	96.8	0.1	10		
SZ Macrophyte zone C).2m - 0.35m d	eep from NV	VL	40%	96.8	0.275	27		
PSZ Inlet Pool 0.35m - 1.	2m deep from	n NWL		10%	24.2	0.775	19		
SZ Outlet Pool 0.35m -	1.5m deep fro	om NWL		10%	24.2	0.925	22		
otal PSZ							77		Greater than 58 m3, OK
Check PSZ * 0.75 > WQ NWL Dimensions @ 5:1 NWL Dimensions @ 8:1	L	41	w w		6	= =	58 0 246	m2	Less than 242 m2, TOO SMALL
3 - OUTLET CONTROL 3.1 Extended detention						Slot ED outlet		Q = 1.7 weir width	
EDV Qi	261 m3 0.004 m3/s	over 24 hrs	5					h	Q 0 0

0.004

=

Max release	rate		0.0500	0.0001
2 x Qi	0.008 m3/s	At full EDV, max release rate is 2Qi	0.1000	0.0004
			0.1500	0.0007
Assumed orifi	ice outlet		0.2000	0.0011
			0.2500	0.0015
Q	=0.62*A*(2*g*h)^.5		0.3000	0.0020
			0.3500	0.0025
Outlet Dia.	0.06 m		0.4000	0.0030
			0.4500	0.0036
ED	0.50		0.5000	0.0042
h	0.47			

 0.30

 h
 0.47

 ED Area
 522 m2

 Q =
 0.005 m3/s
 OK

APPENDIX D – DEFAULT MUSIC PARAMETERS

MUSIC - Default Parameters

PROJECT NAME:	Rotokauri North	Created By BJR	Date 30/11/2018
PROJECT Nos:	1693	Checked By	Date -

Contaminant Load Defaults - Mixed Surface

Zoning/Surface Type:	
Mixed	
Total Suspended Solids Stomflow Concentration	ion Parameters
Mean log (mg/L)	2.200
Standard Deviation log (mg/L)	0.320
Total Suspended Solids Baseflow Concentration	on Parameters
Mean log (mg/L)	1.100
Standard Deviation log (mg/L)	0.170
Total Phosphorus Stormflow Concentration Pa	rameters
Mean log (mg/L)	-0.450
Standard Deviation log (mg/L)	0.250
Total Phosphorus Baseflow Concentration Par	ameters
Mean log (mg/L)	-0.820
Standard Deviation log (mg/L)	0.190
Total Nitrogen Stormflow Concentration Param	eters
Mean log (mg/L)	0.420
Standard Deviation log (mg/L)	0.190
Total Nitrogen Baseflow Concentration Parame	eters
Mean log (mg/L)	0.320
Standard Deviation log (mg/L)	0.120
L	

Contaminant Load Defaults - Roof

Zoning/Surface Type:	
Total Suspended Solids Stomflow Concentration P Mean log (mg/L)	arameters
Standard Deviation log (mg/L)	0.320
Total Suspended Solids Baseflow Concentration Pa	arameters
Mean log (mg/L)	1.100
Standard Deviation log (mg/L)	0.170
Total Phosphorus Stormflow Concentration Parame	ters
Mean log (mg/L)	-0.890
Standard Deviation log (mg/L)	0.250
Total Phosphorus Baseflow Concentration Paramet	ers
Mean log (mg/L)	-0.820
Standard Deviation log (mg/L)	0.190
Total Nitrogen Stomflow Concentration Parameters	;
Mean log (mg/L)	0.300
Standard Deviation log (mg/L)	0.190
Total Nitrogen Baseflow Concentration Parameters	
Mean log (mg/L)	0.320
Standard Deviation log (mg/L)	0.120

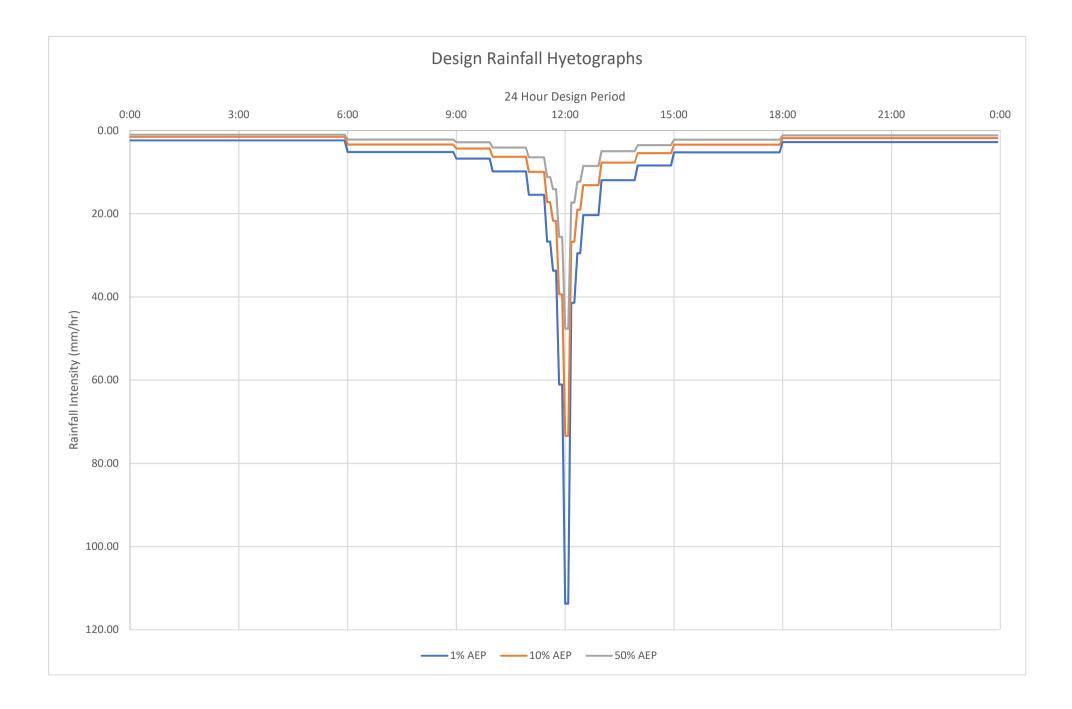
Contaminant Load Defaults - Sealed Road

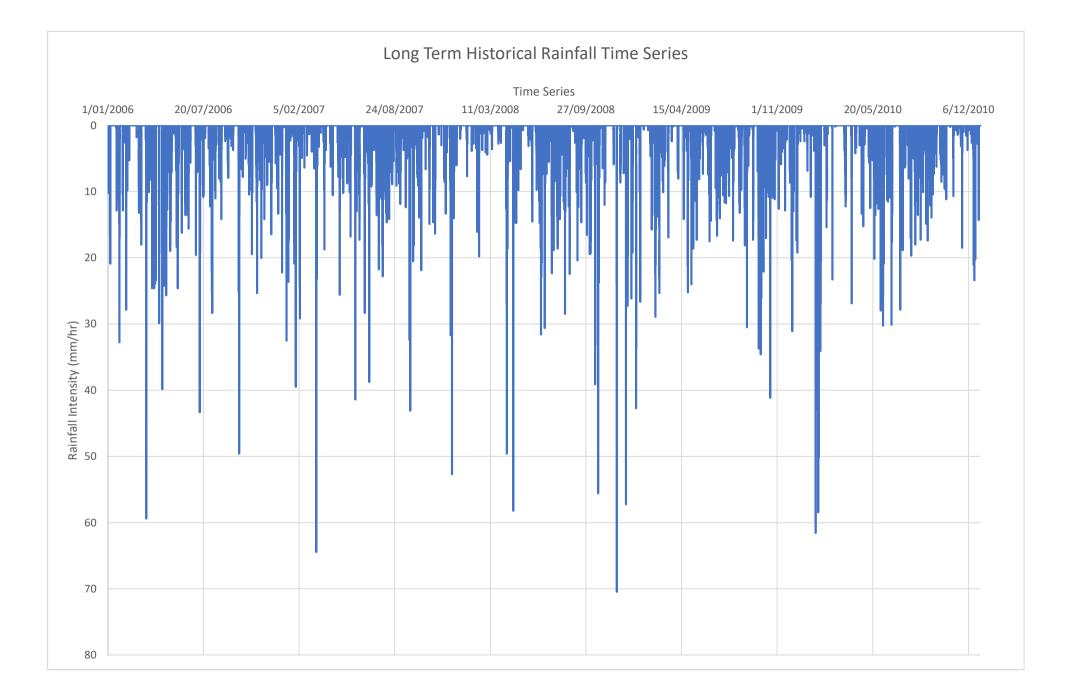
Zoning/Surface Type:	
Sealedroad	
Total Suspended Solids Stormflow Concentration Pa	arameters
Mean log (mg/L)	2.430
Standard Deviation log (mg/L)	0.320
Total Suspended Solids Baseflow Concentration Pa	rameters
Mean log (mg/L)	1.200
Standard Deviation log (mg/L)	0.170
Total Phosphorus Stormflow Concentration Paramet	ers
Mean log (mg/L)	-0.300
Standard Deviation log (mg/L)	0.250
Total Phosphorus Baseflow Concentration Parameter	ers
Mean log (mg/L)	-0.850
Standard Deviation log (mg/L)	0.190
Total Nitrogen Stormflow Concentration Parameters	
Mean log (mg/L)	0.340
Standard Deviation log (mg/L)	0.190
Total Nitrogen Baseflow Concentration Parameters	
Mean log (mg/L)	0.110
Standard Deviation log (mg/L)	0.120

Rainwater Tank Defaults

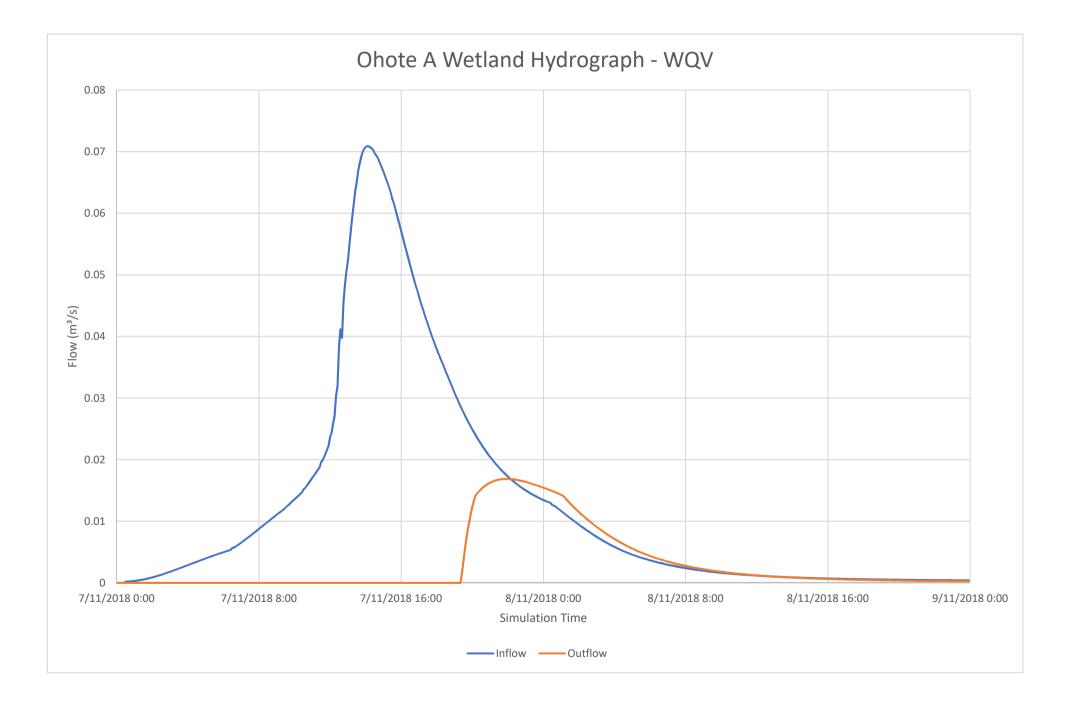
Low Flow By-Pass (cubic me	0.000		
High Flow By-pass (cubic me	100.000		
Surface Area (square metres	5.0		
Depth above overflow (metre	0.2		
Volume below overflow pipe	(kL)		10.0
Overflow Pipe Diameter (mm)	50.0		
Orifice Discharge Coefficient	0.60		
Number of CSTR Cells			2
	k (m∕yr)	C* (mg/L)	C** (mg/L)
Total Suspended Solids	400	12.000	12.000
Total Phosphorus	300	0.130	0.130
Total Nitrogen	1.400		
Threshold Hydraulic Loading	, for C ^{**} (m∕y	/r)	0

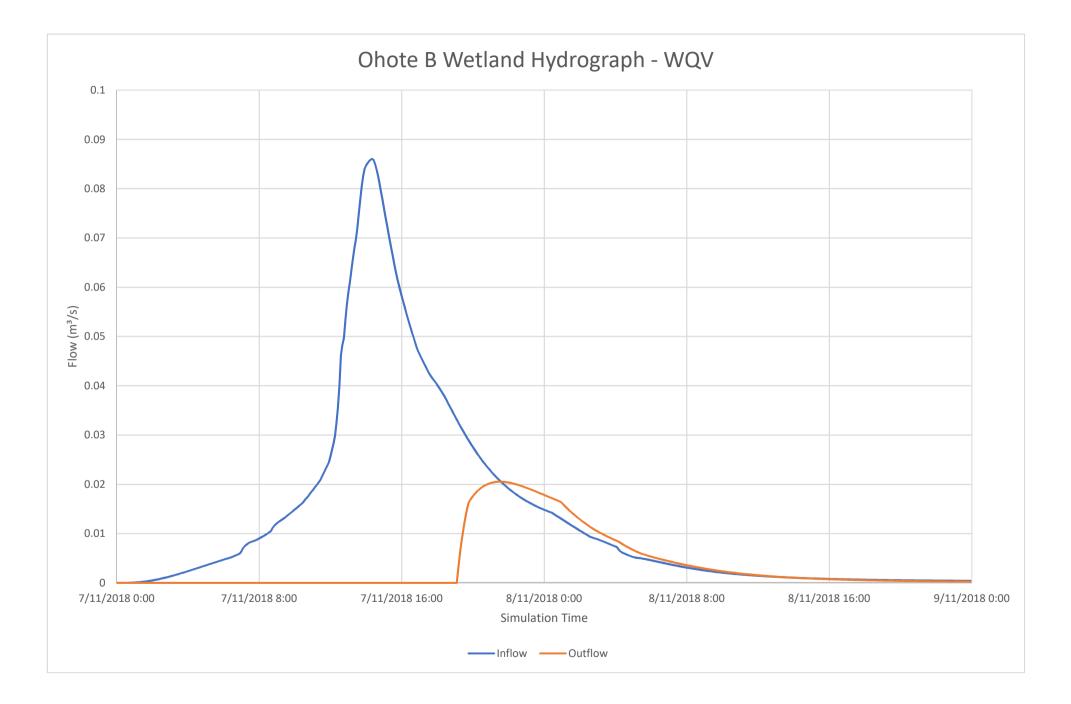
Swale Defaults

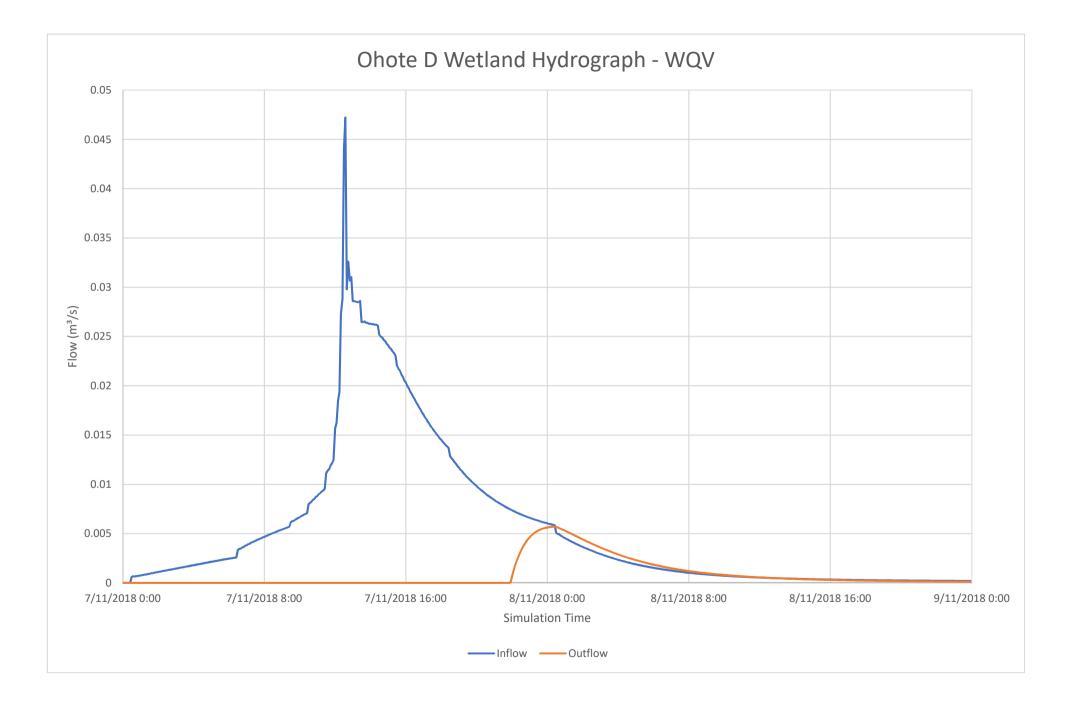

Low Flow By-Pass (cubic metres per sec)			0.000
Length (metres)			100.0
Bed Slope (%)			3.0
Base Width (metres)			1.0
Top Width (metres)			5.0
Depth (metres)			0.50
Vegetation Height (metres)			0.250
Seepage Loss (mm/hr)			0.00
Number of CSTR Cells			10
	k (m∕yr)	C* (mg/L)	C** (mg/L)
Total Suspended Solids	8000	20.000	14.000
Total Phosphorus	6000	0.130	0.130
Total Nitrogen	500	1.400	1.400
Threshold Hydraulic Loading for C** (m/yr)			3500

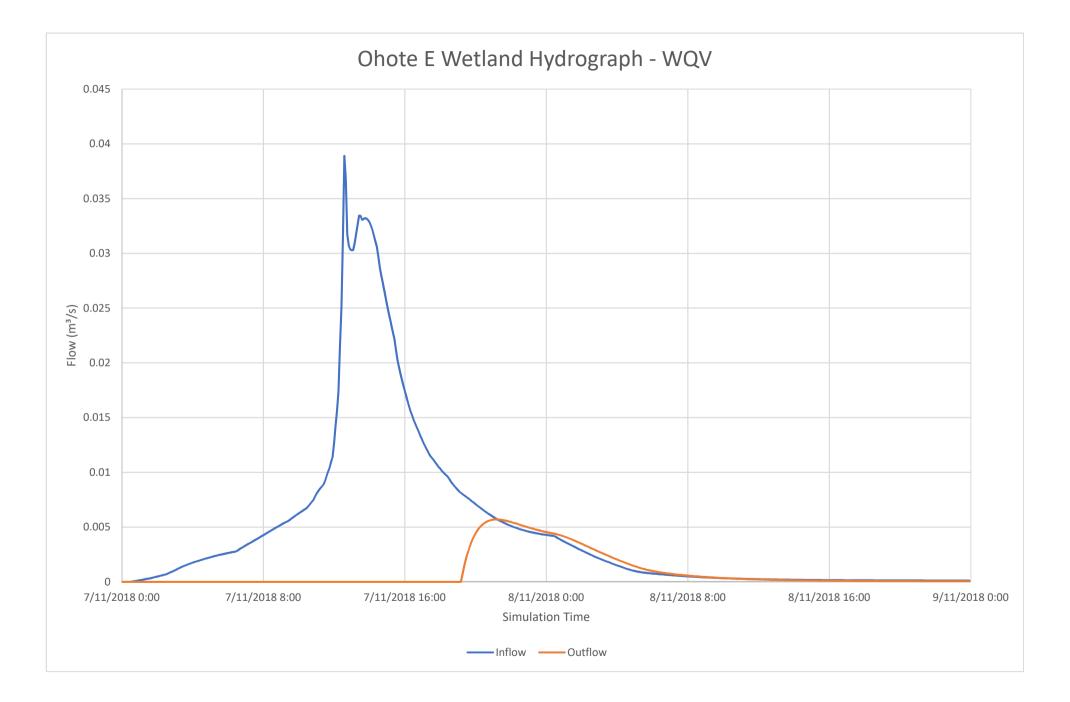


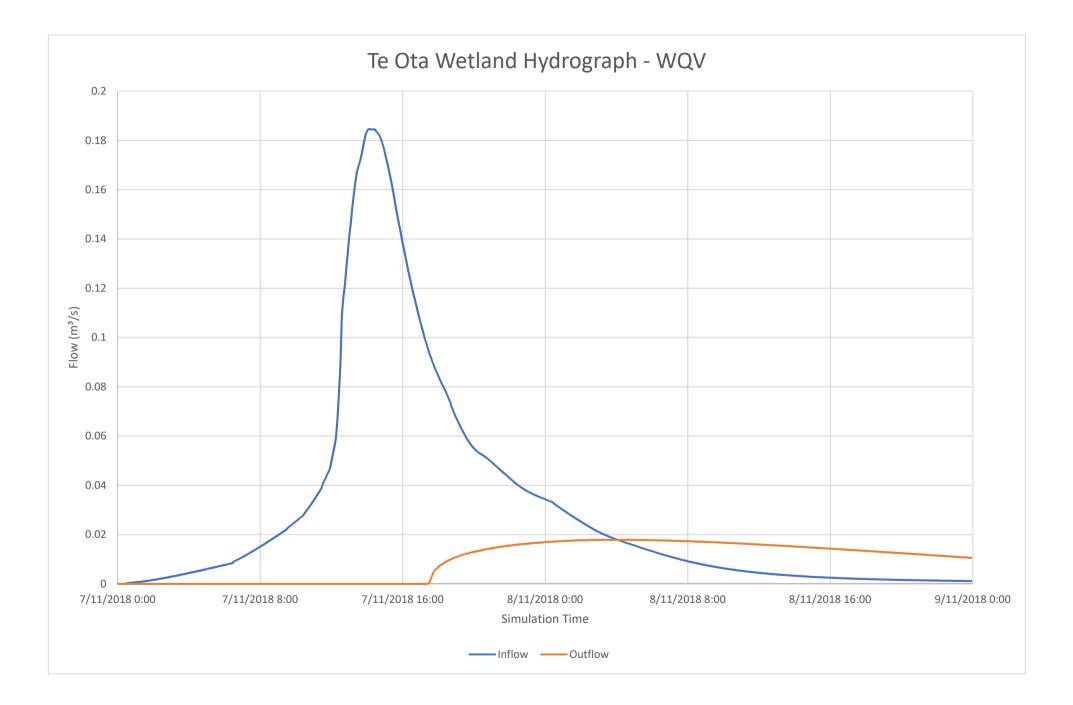
Wetland Defaults

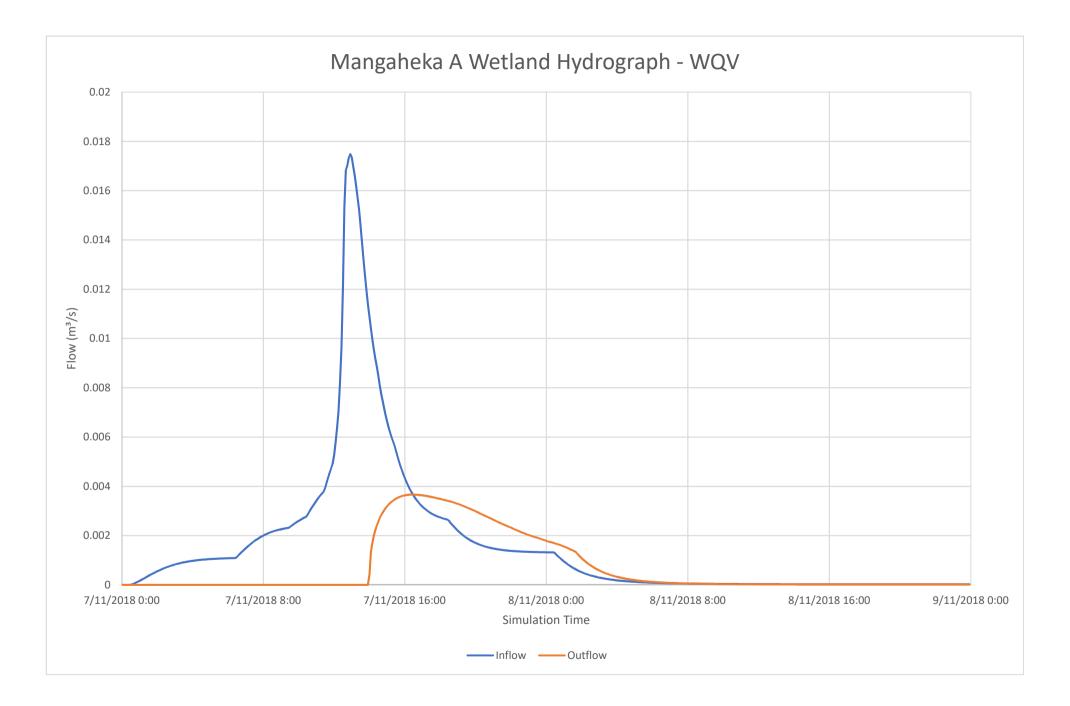

-			
Low Flow By-Pass (cubic m	0.000		
High Flow By-pass (cubic m	100.000		
Inlet Pond Volume (cubic m	0.0		
Surface Area (square metre	50.0		
Extended Detention Depth	1.0		
Permanent Pool Volume (cu	50.0		
Vegetation Cover (% of surf	50.0		
Seepage Loss (mm/hr)			0.00
Evaporative Loss as % of PET			125.00
Equivalent Pipe Diameter (mm)			200.0
Overflow Weir Width (metres)			3.0
Orifice Discharge Coefficient			0.60
Weir Coefficient	1.70		
Number of CSTR Cells	4		
	k (m∕yr)	C* (mg/L)	C** (mg/L)
Total Suspended Solids	1500	6.000	6.000
Total Phosphorus	1000	0.060	0.060
Total Nitrogen	150	1.000	1.000
Threshold Hydraulic Loading for C** (m/yr)			3500

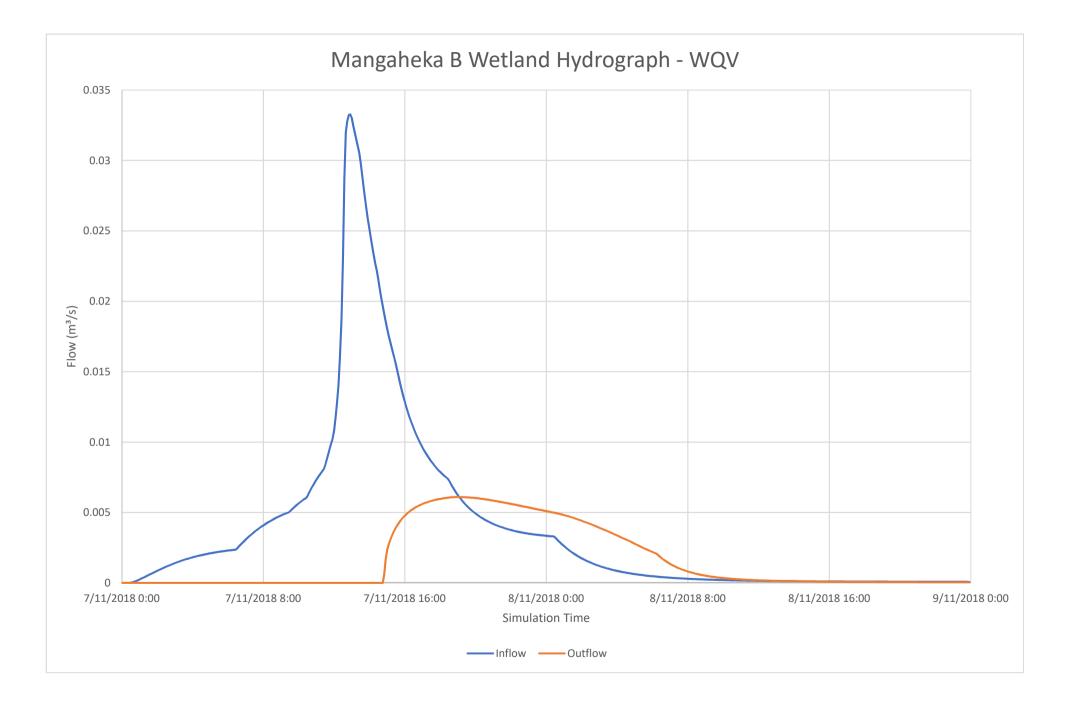

APPENDIX E – DESIGN RAINFALL HYETOGRAPHS

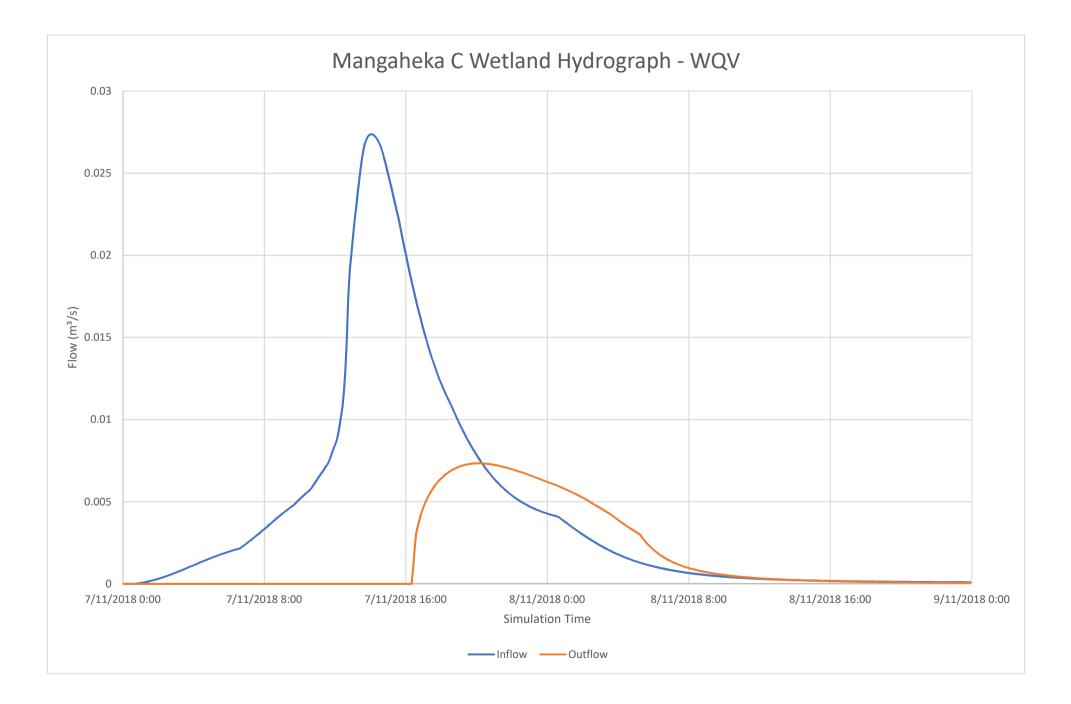


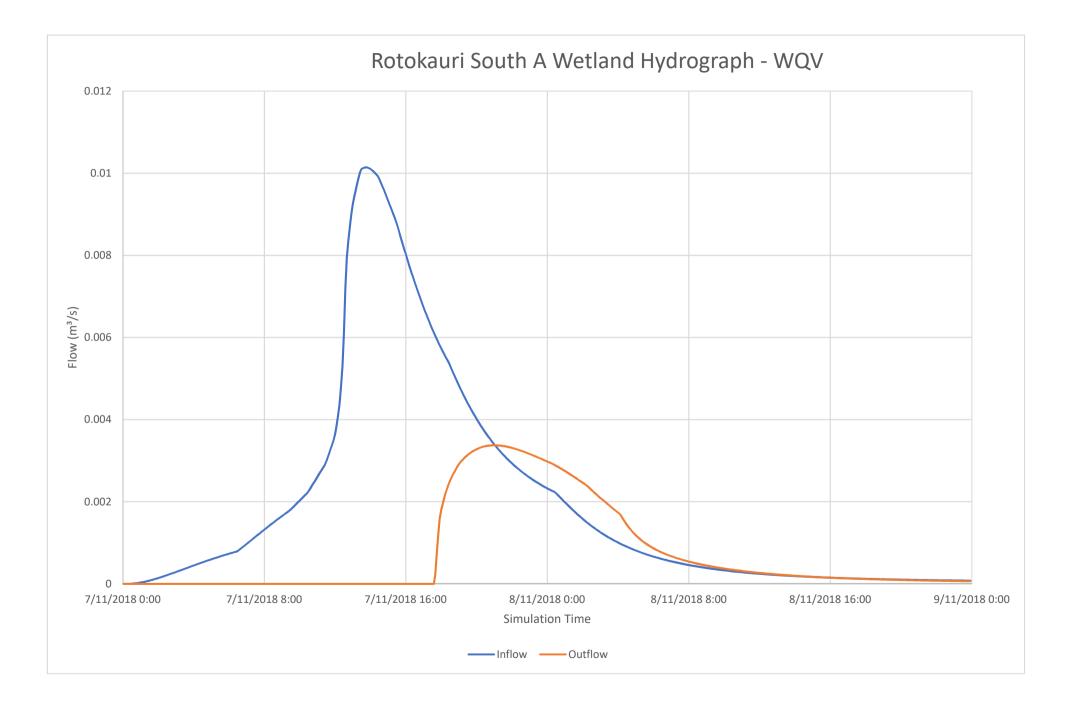


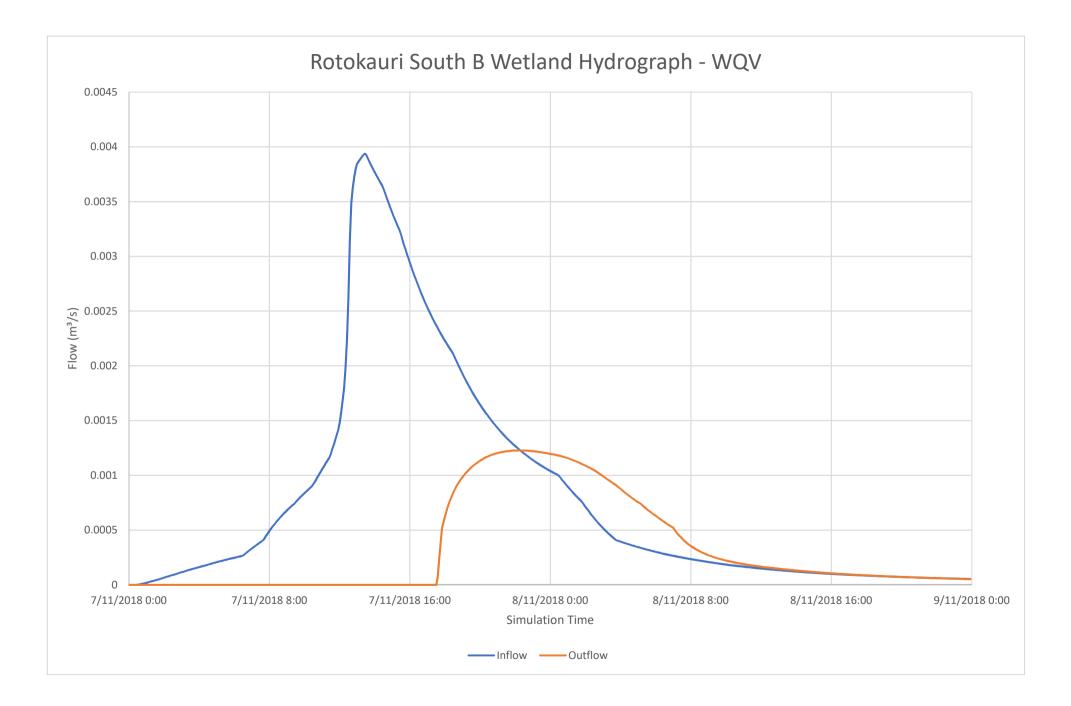

APPENDIX F – WETLAND HYDROGRAPHS

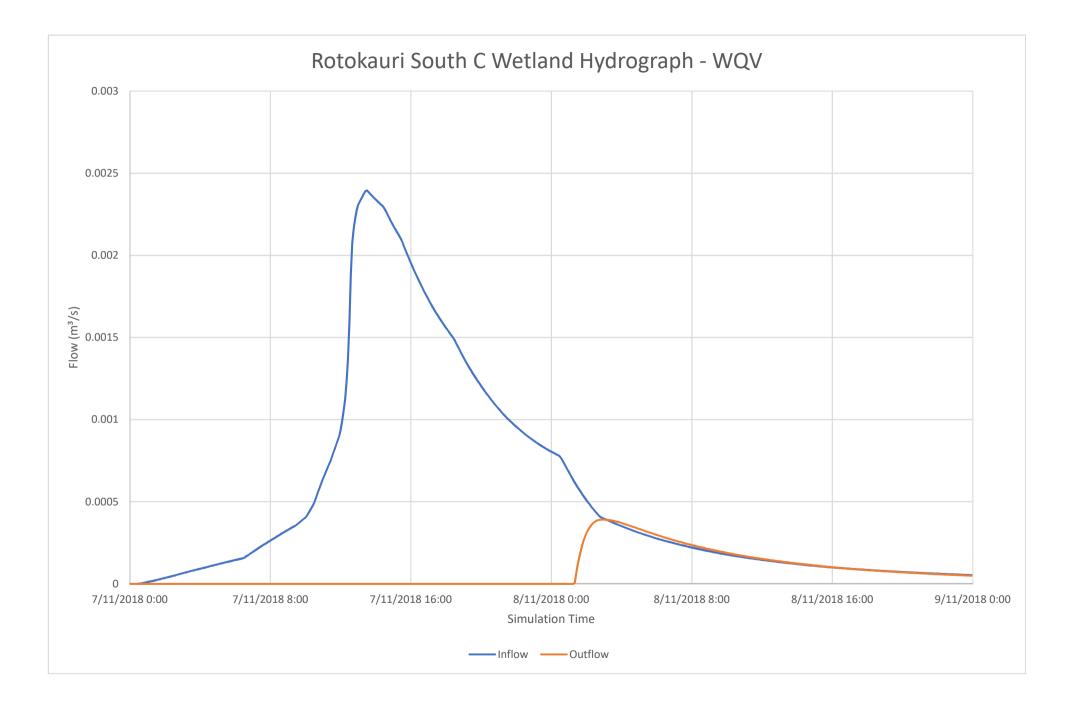


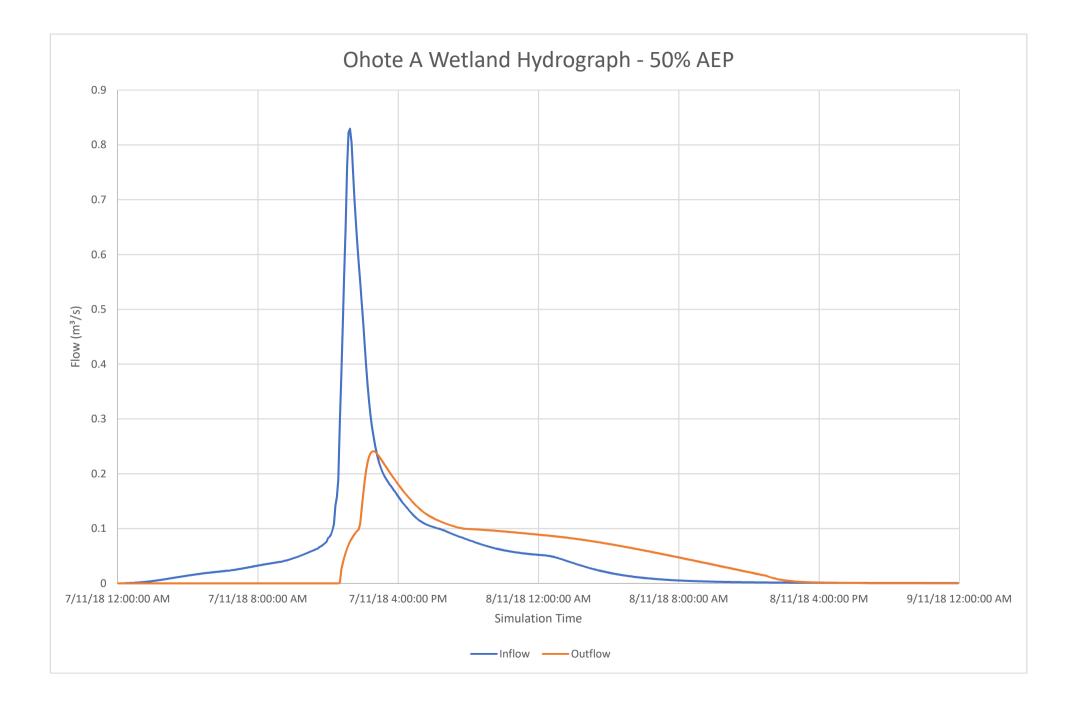


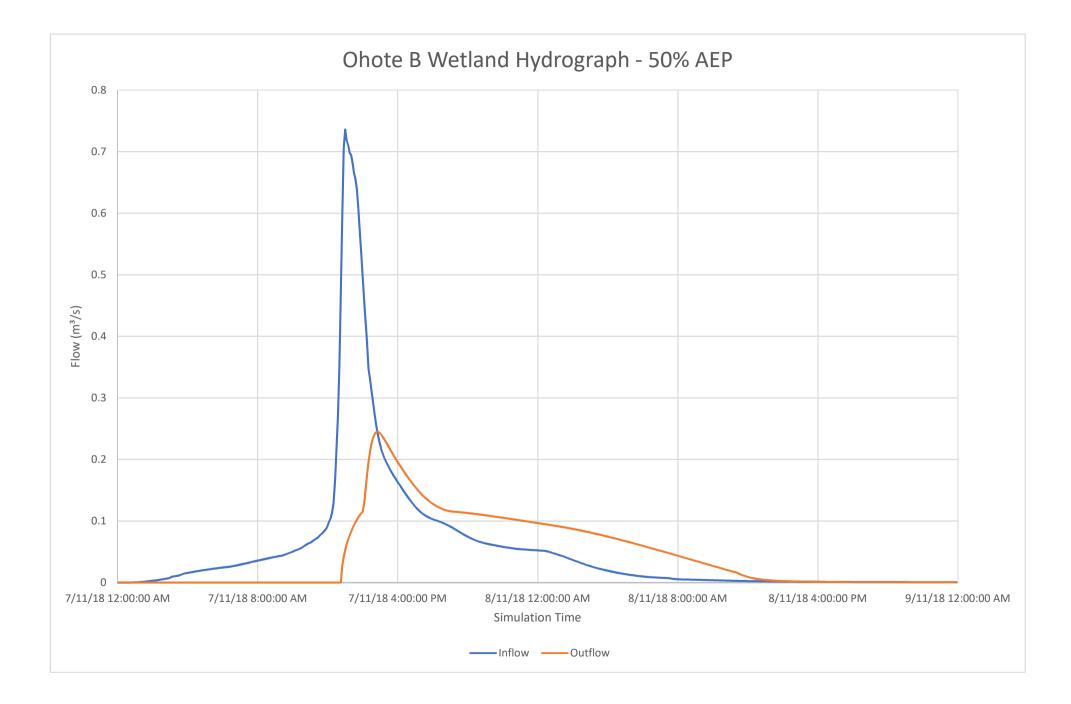


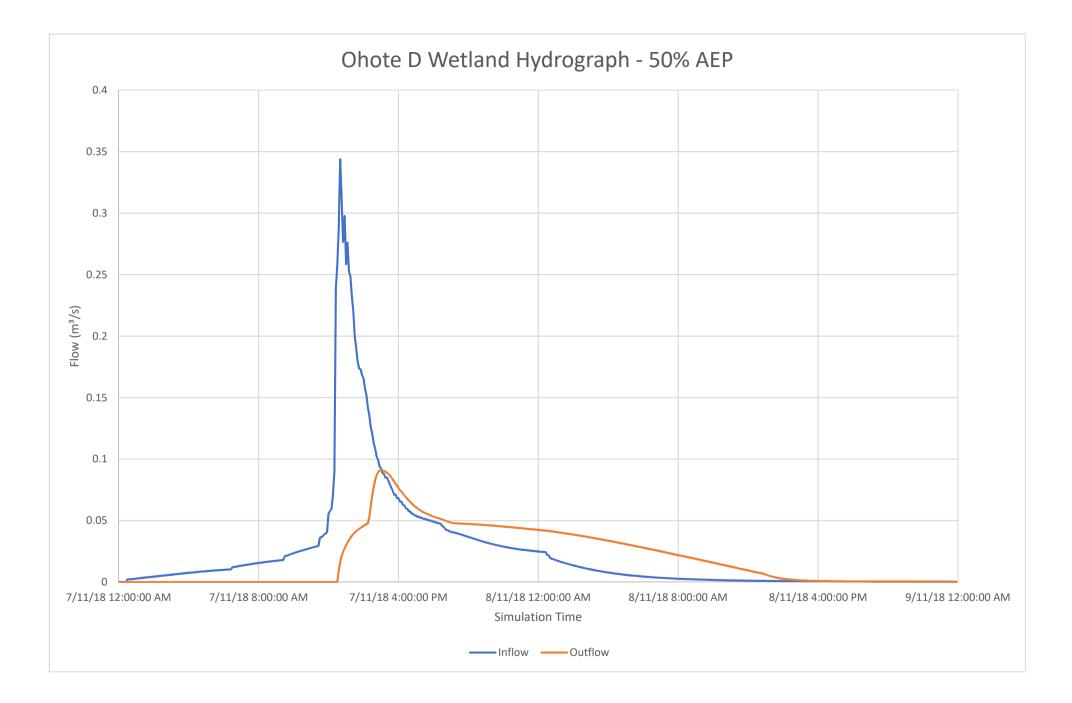


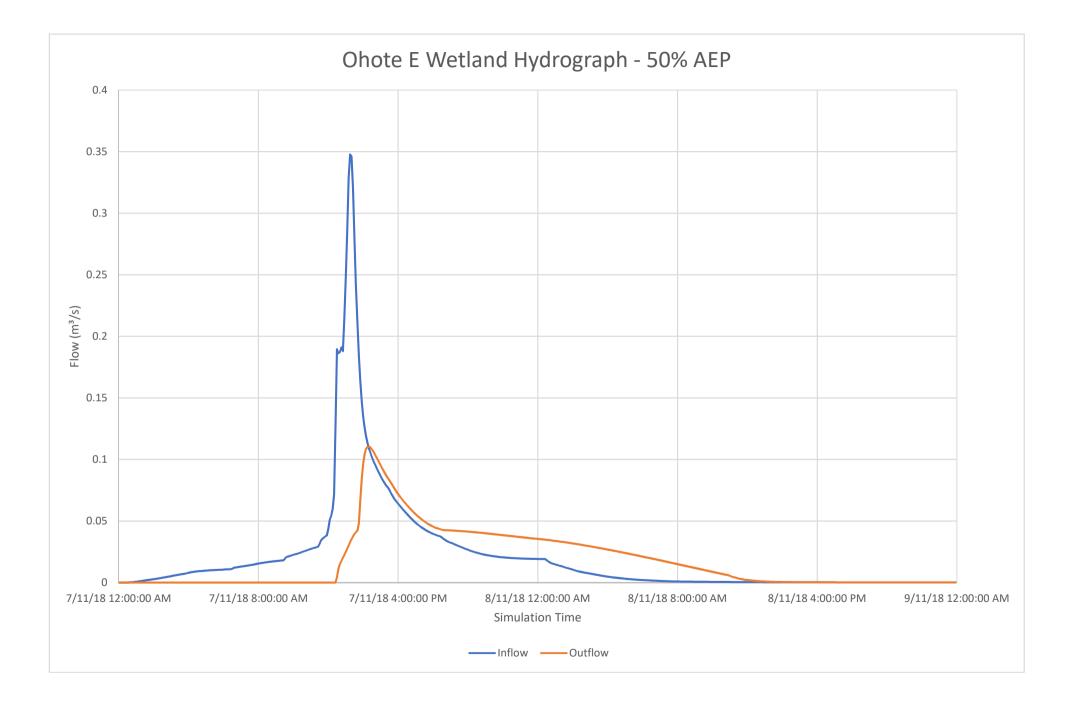


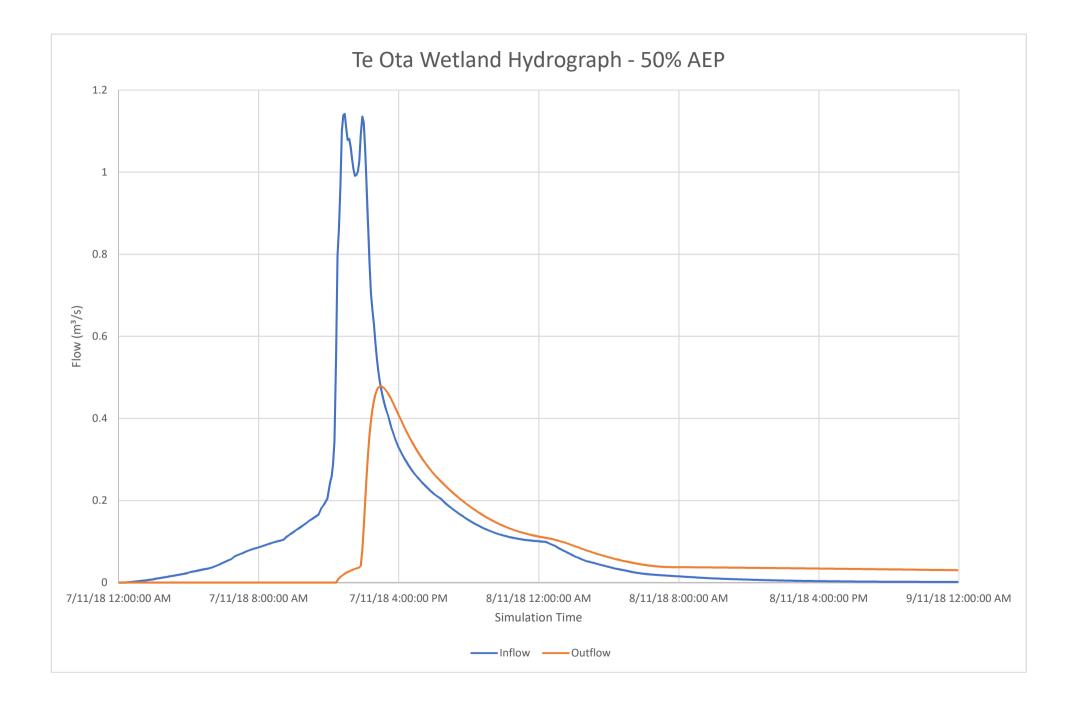


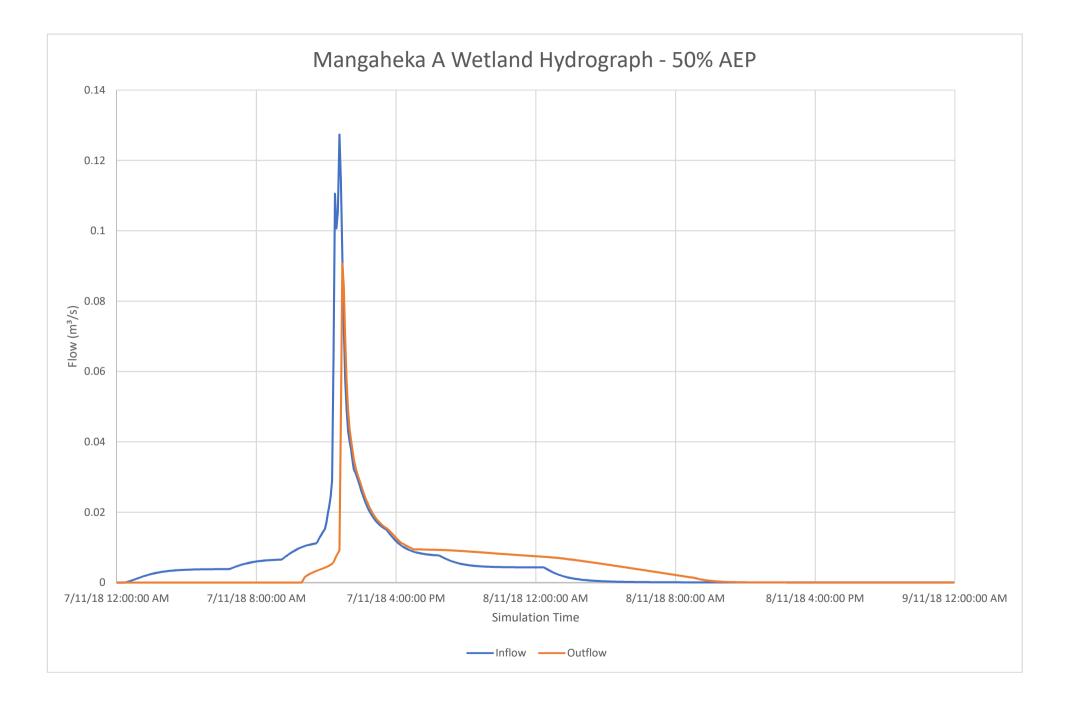


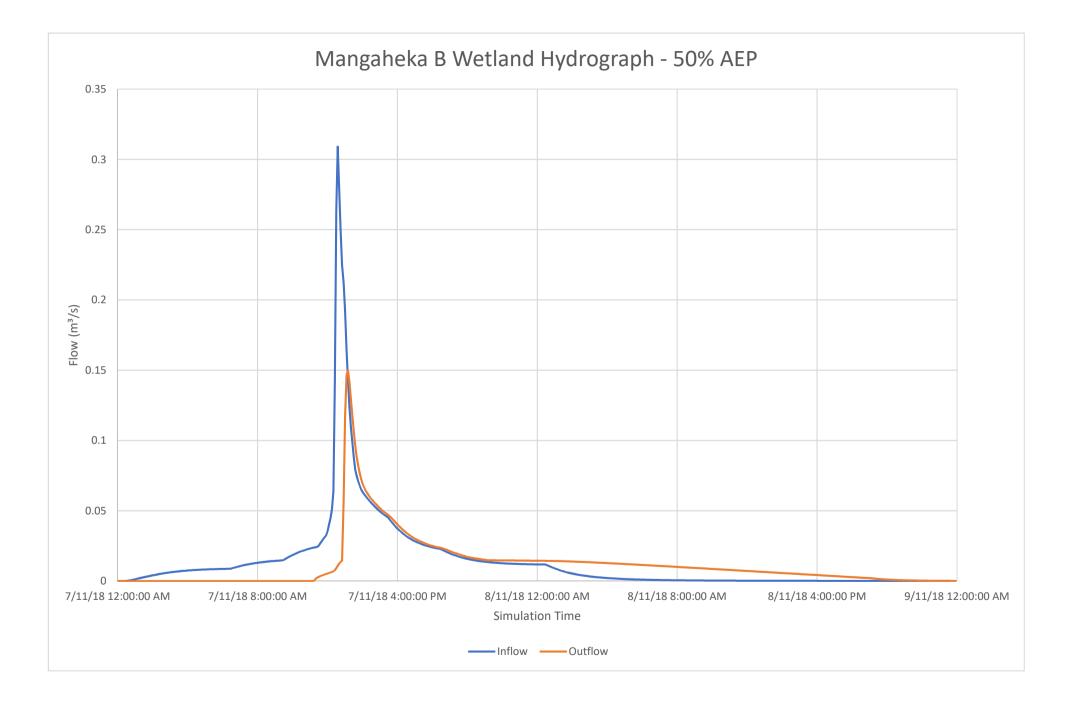


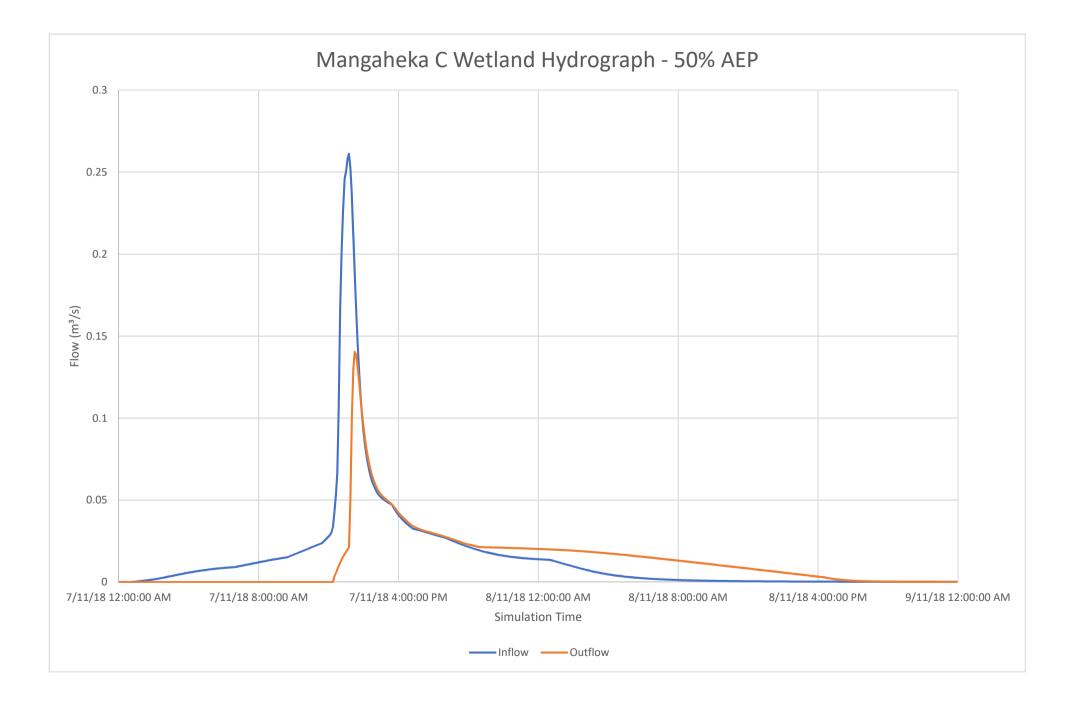


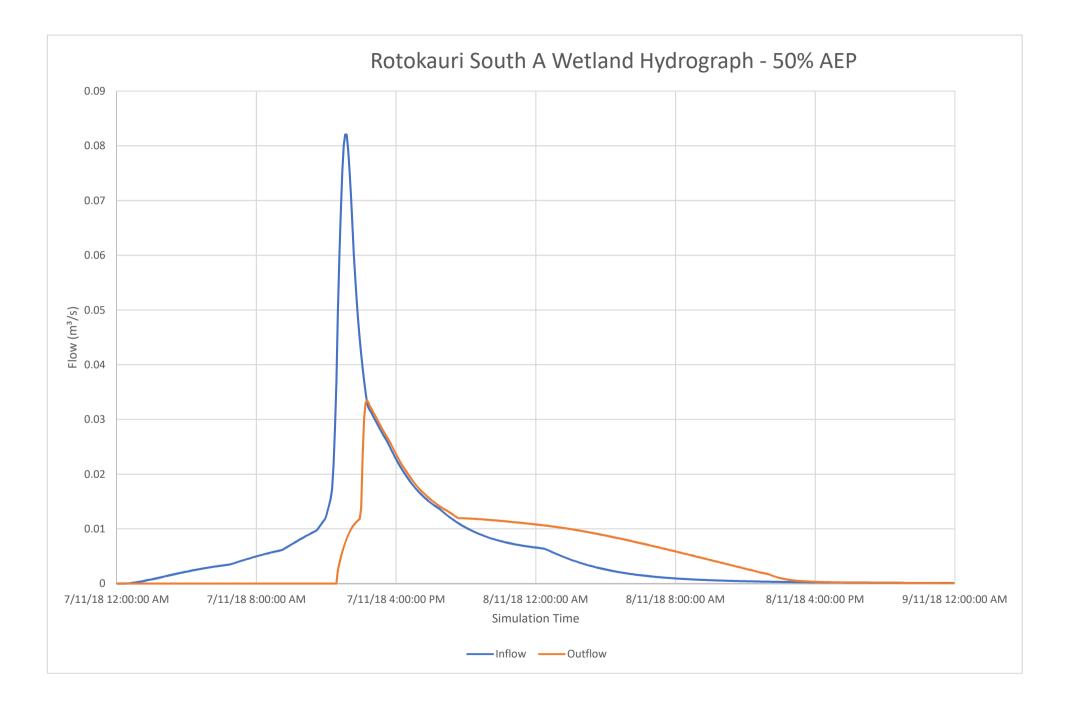


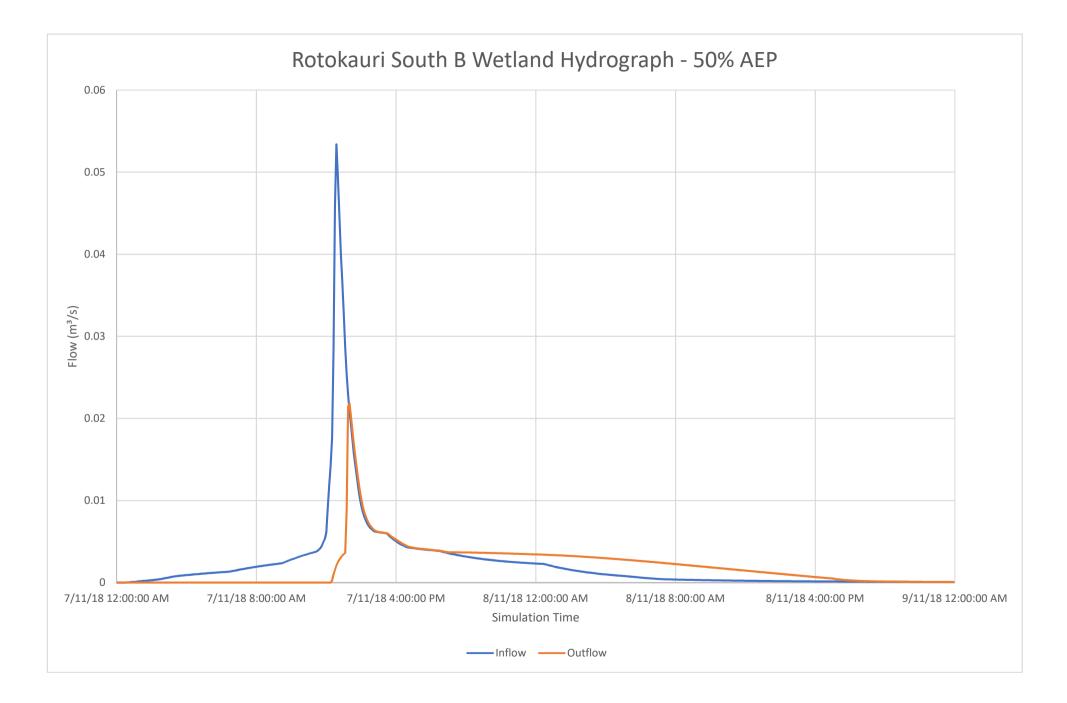


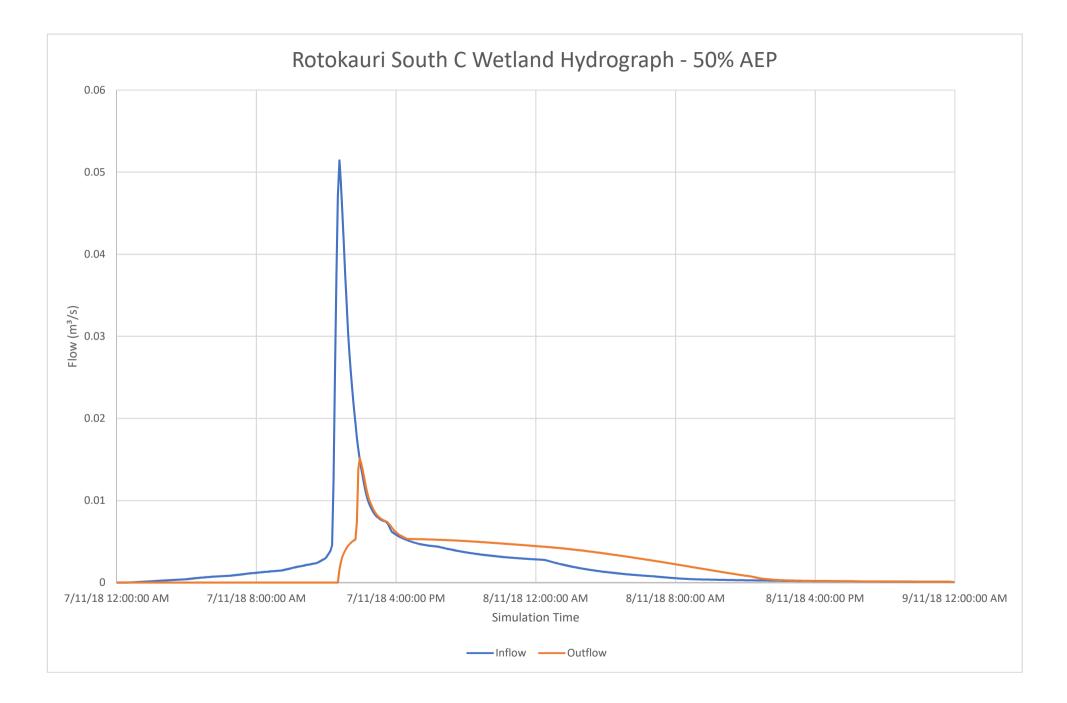


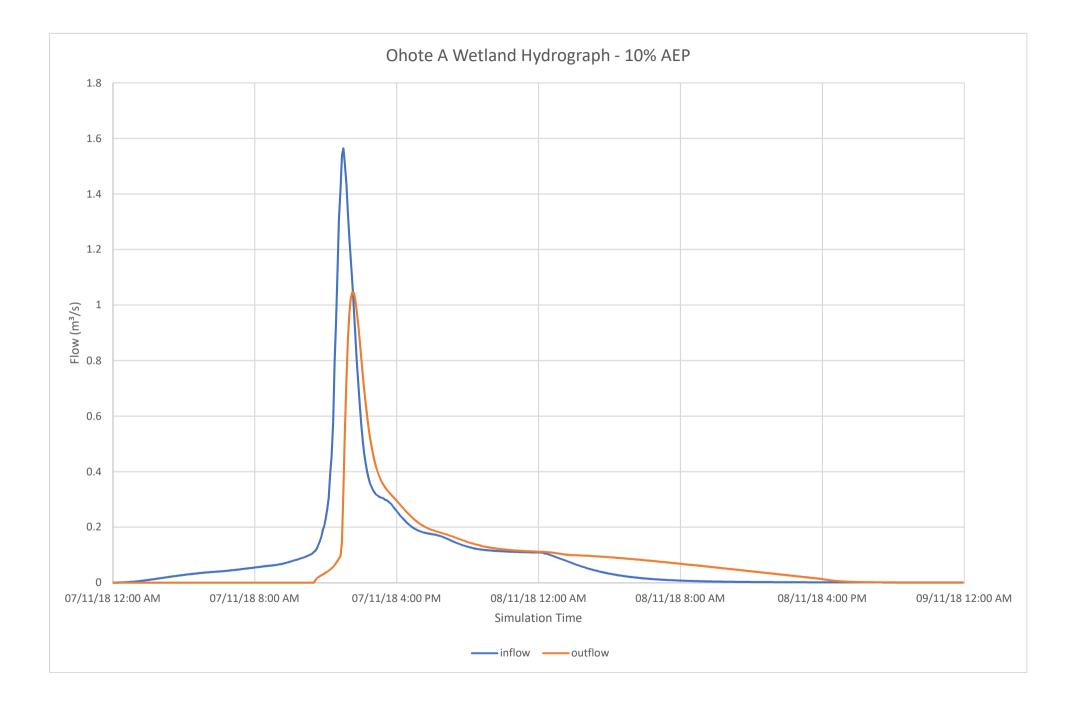


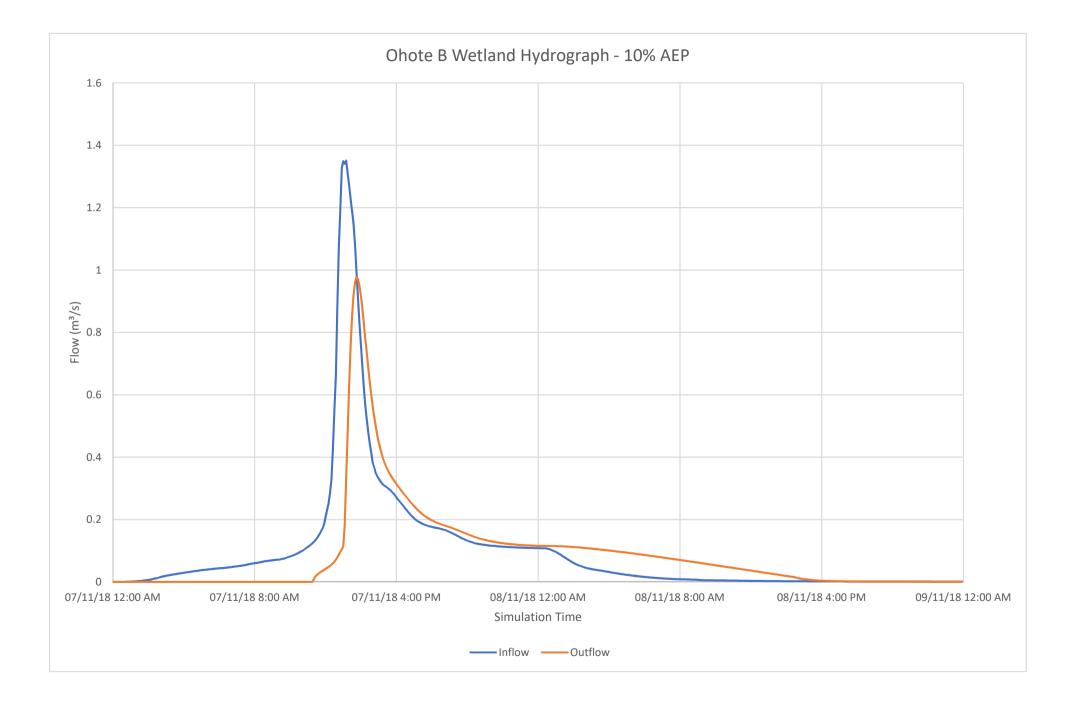


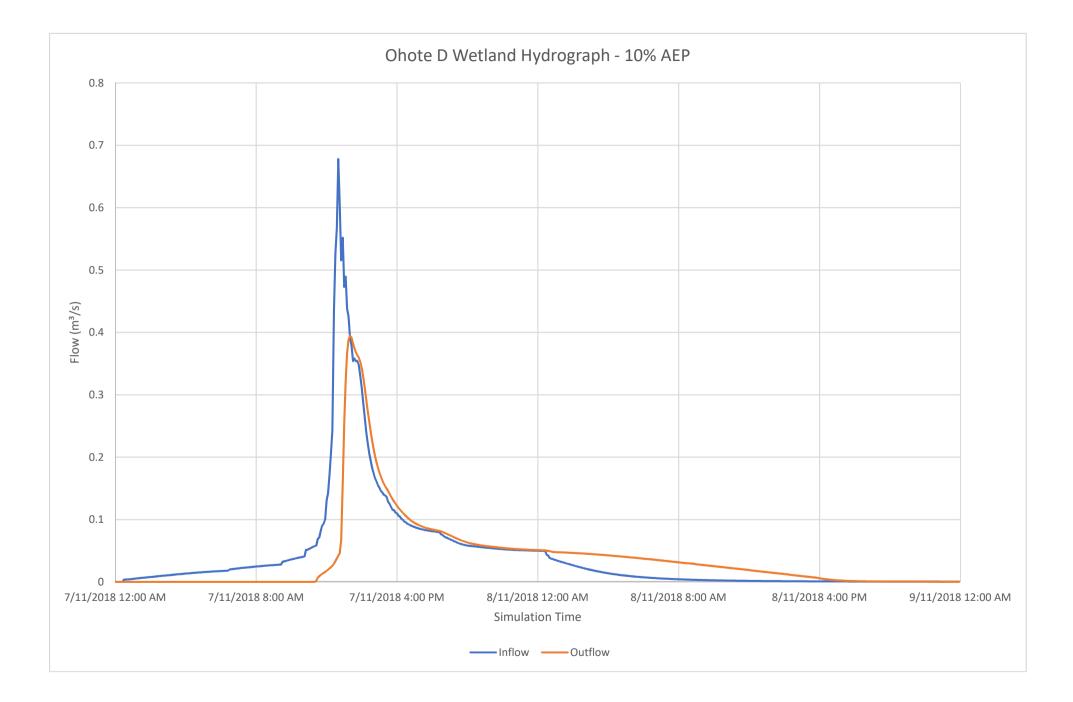


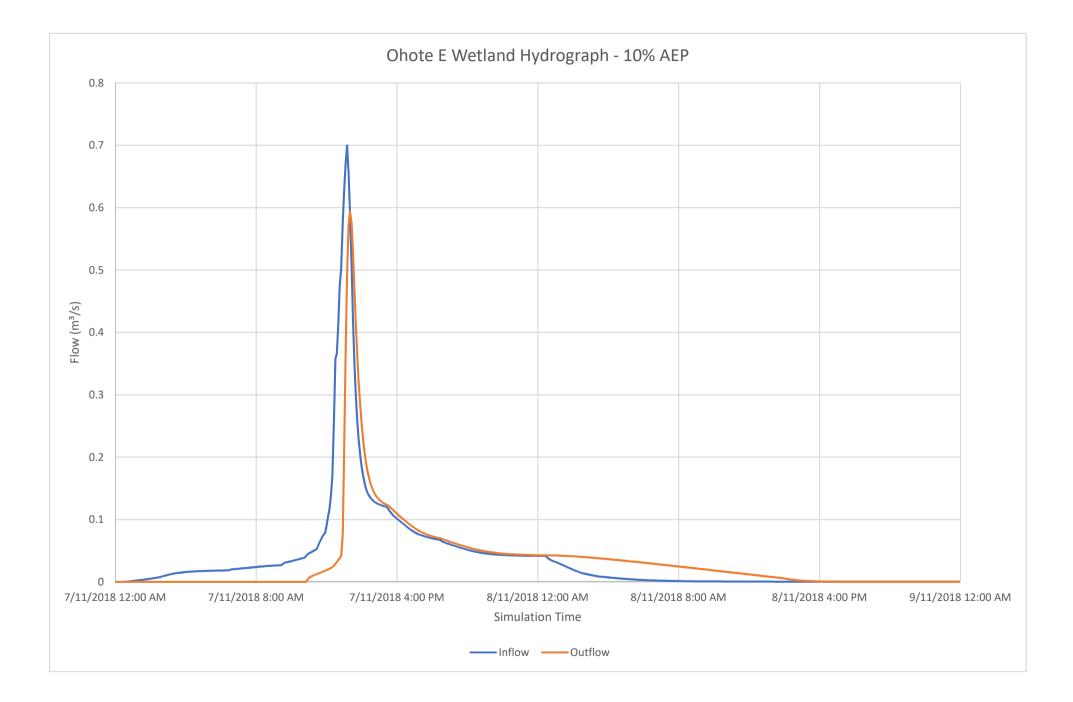


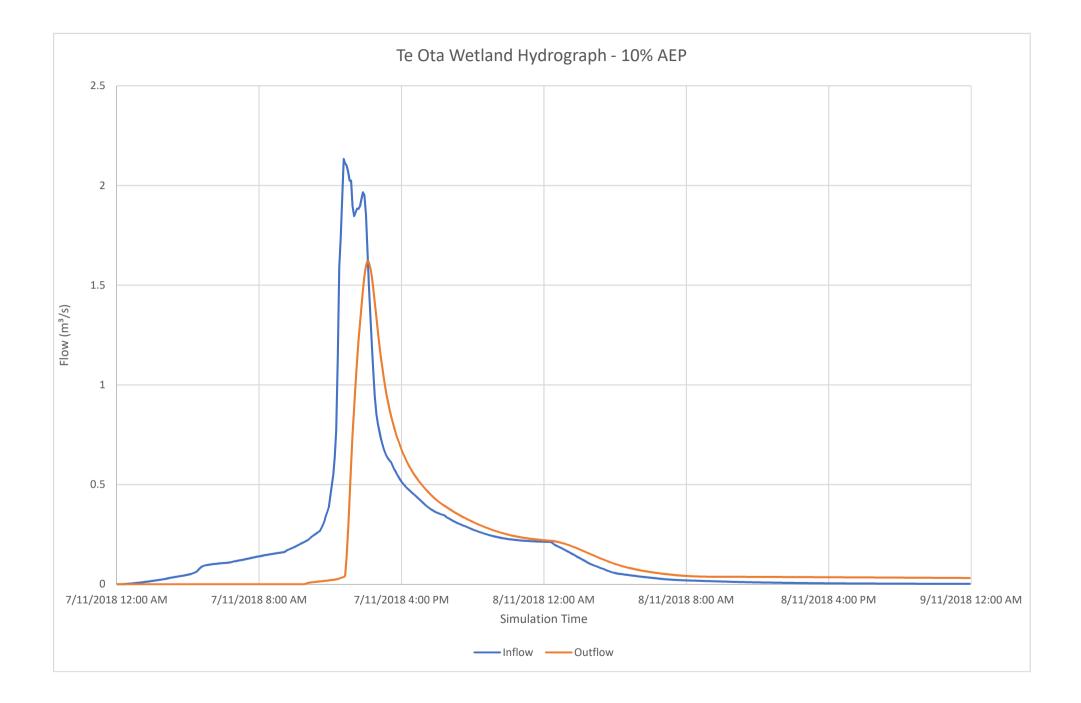


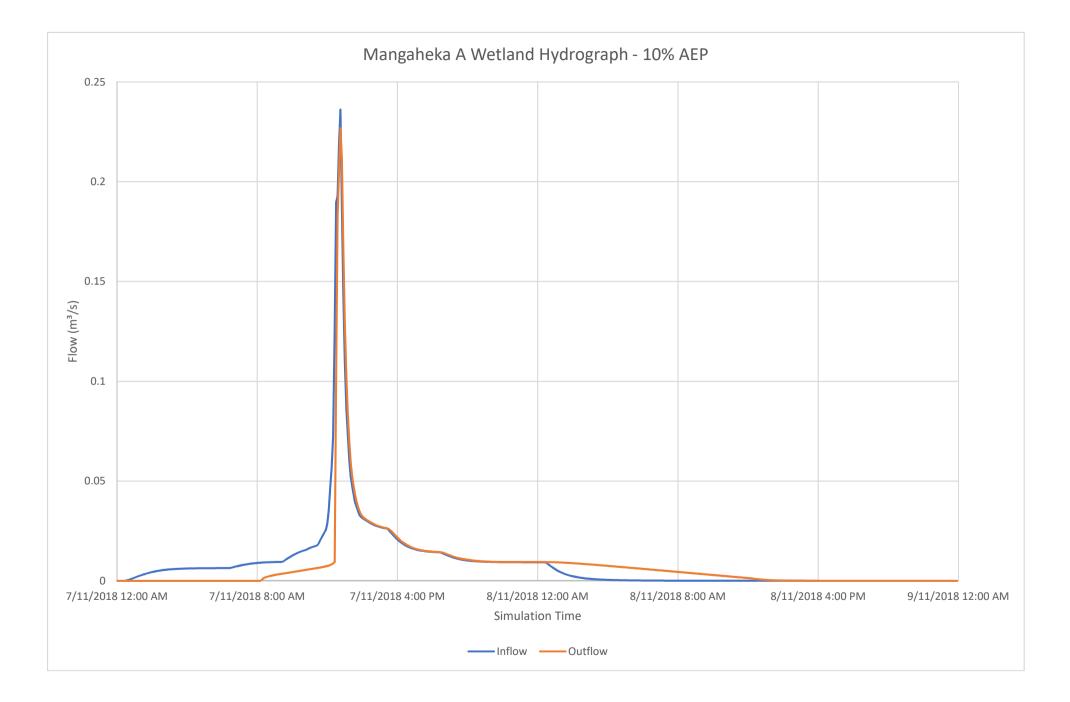


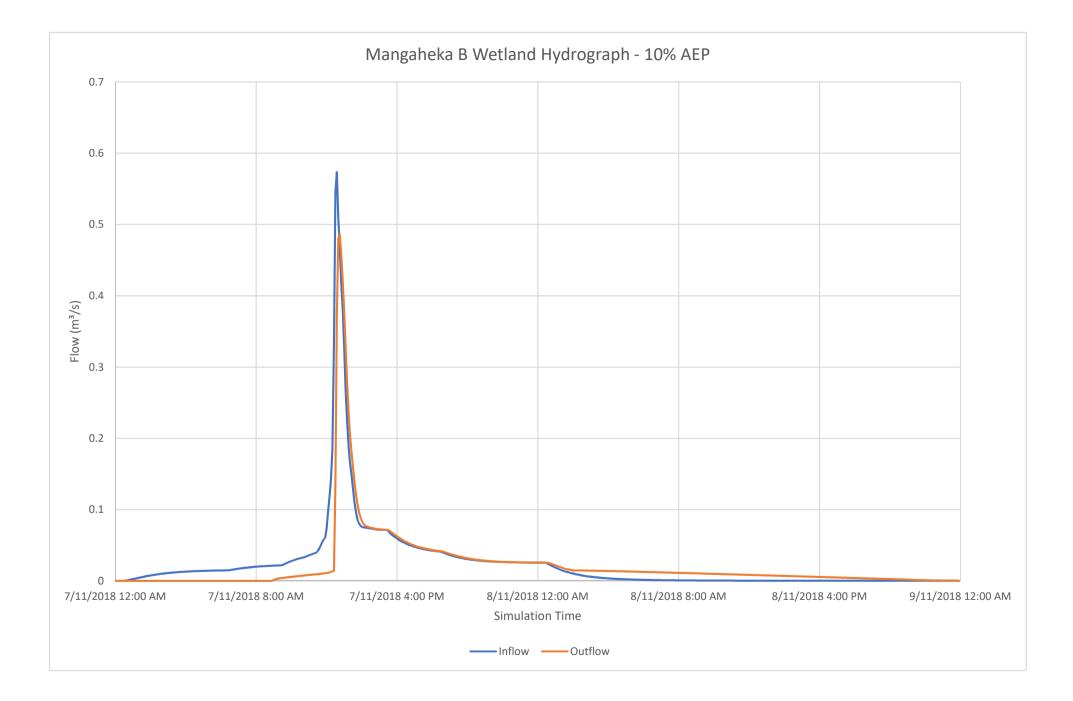


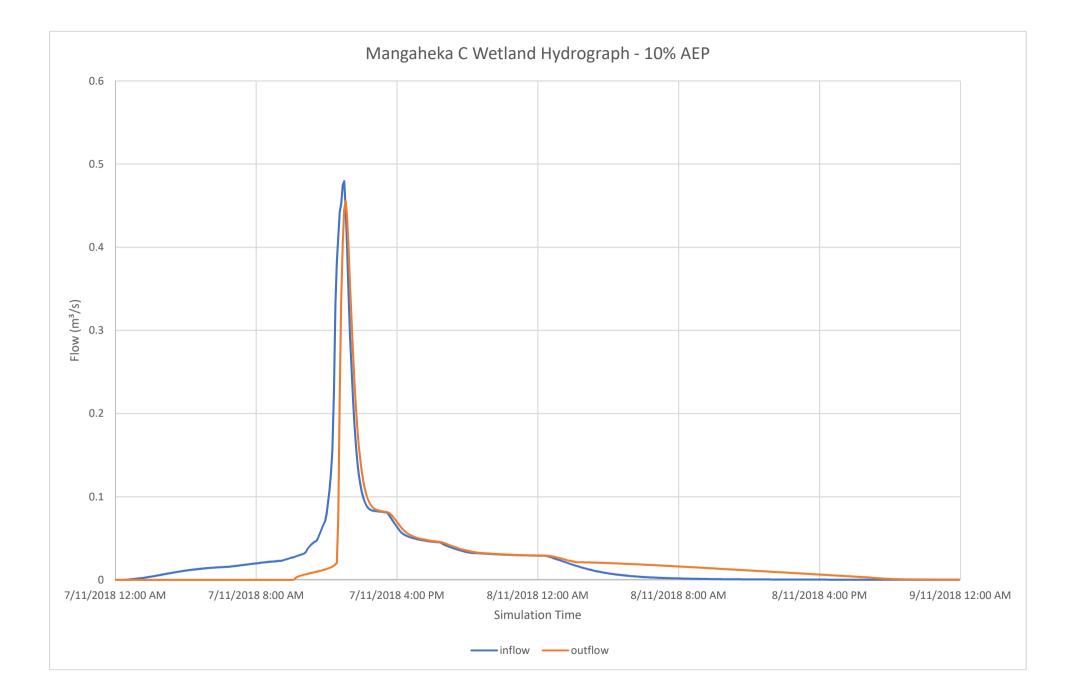


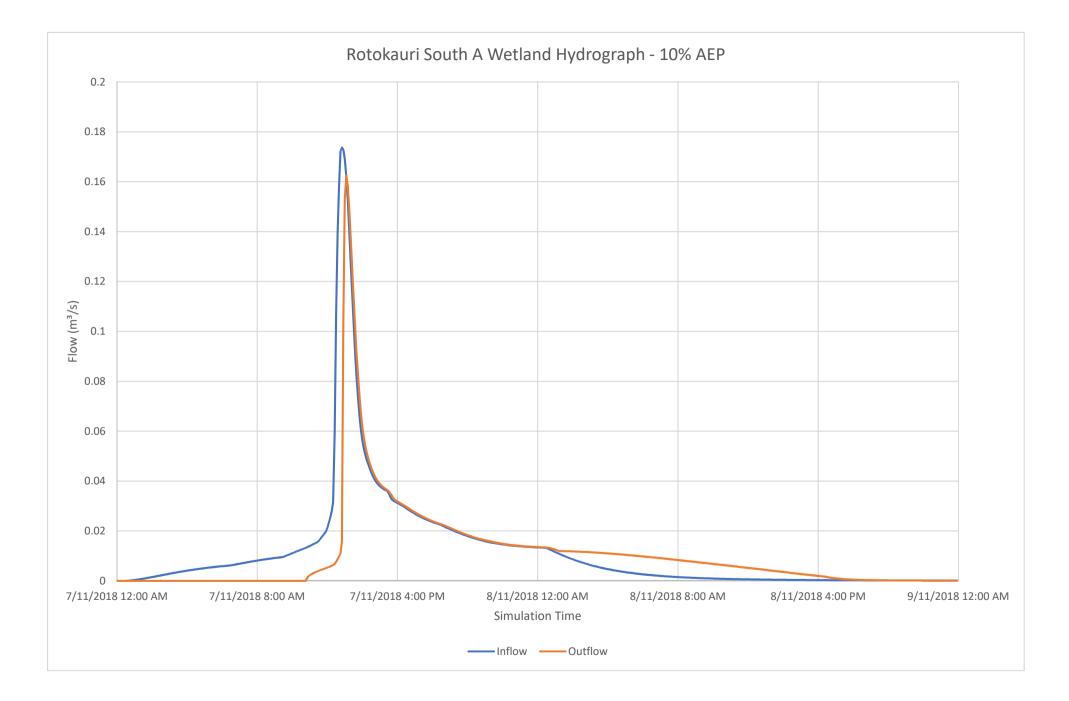


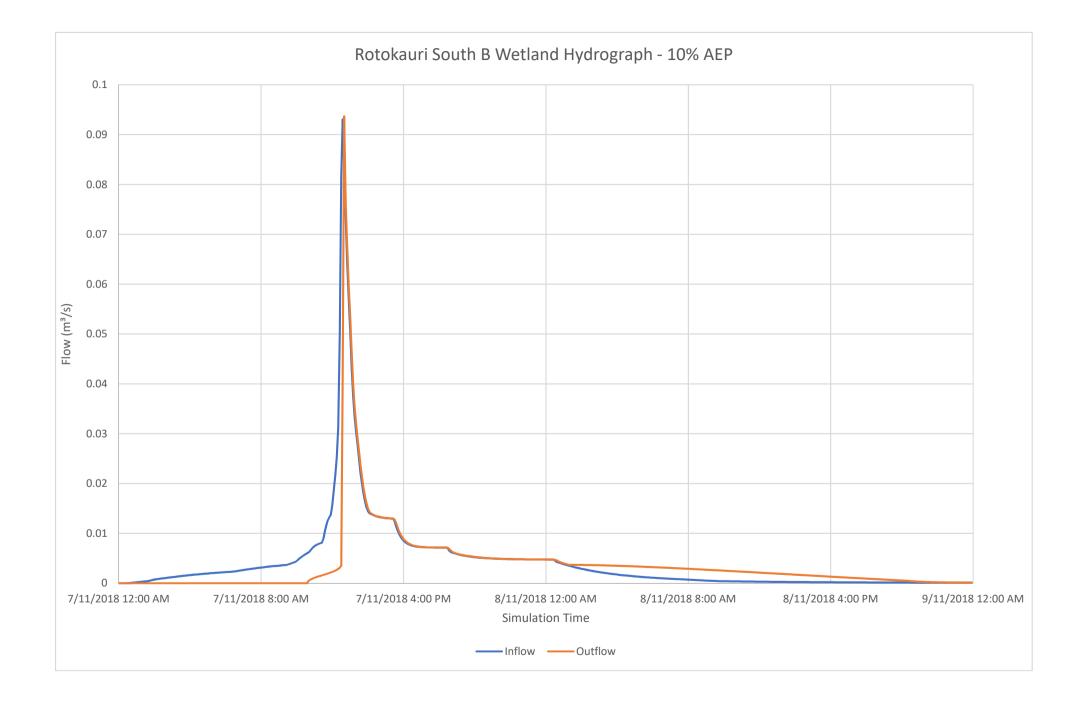


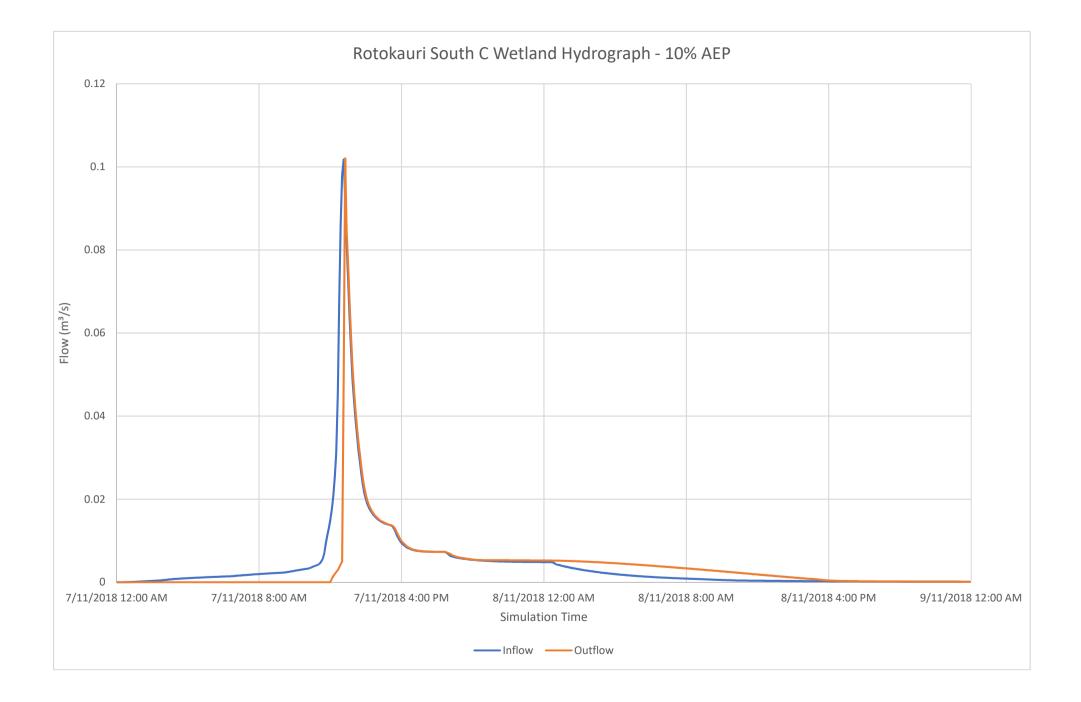


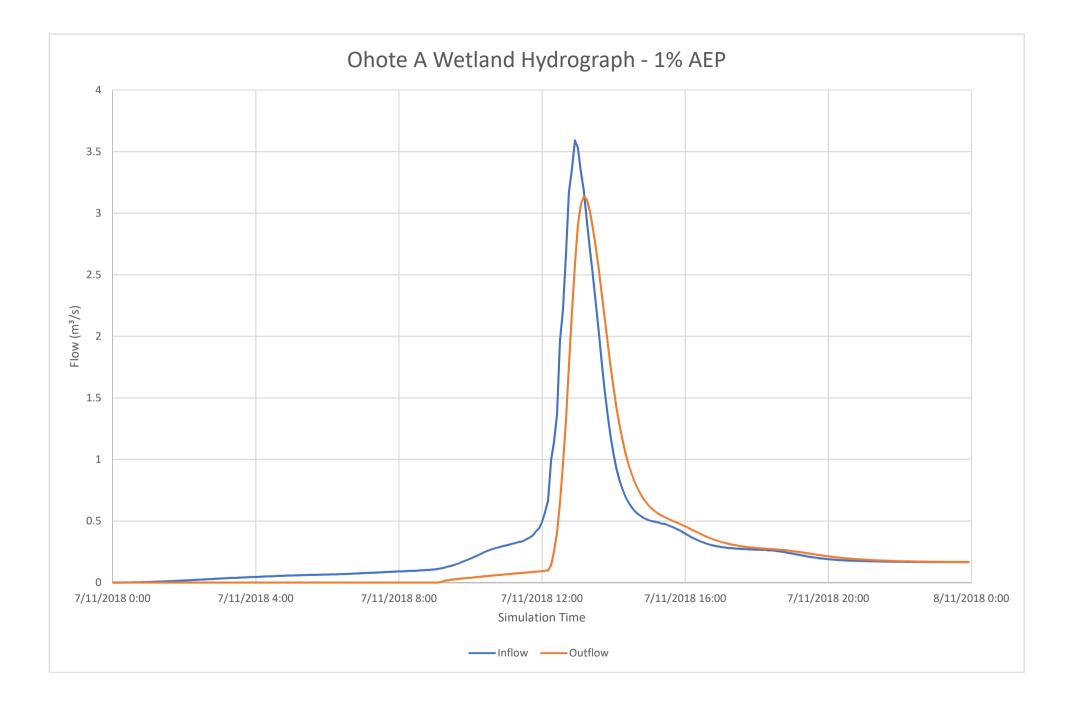


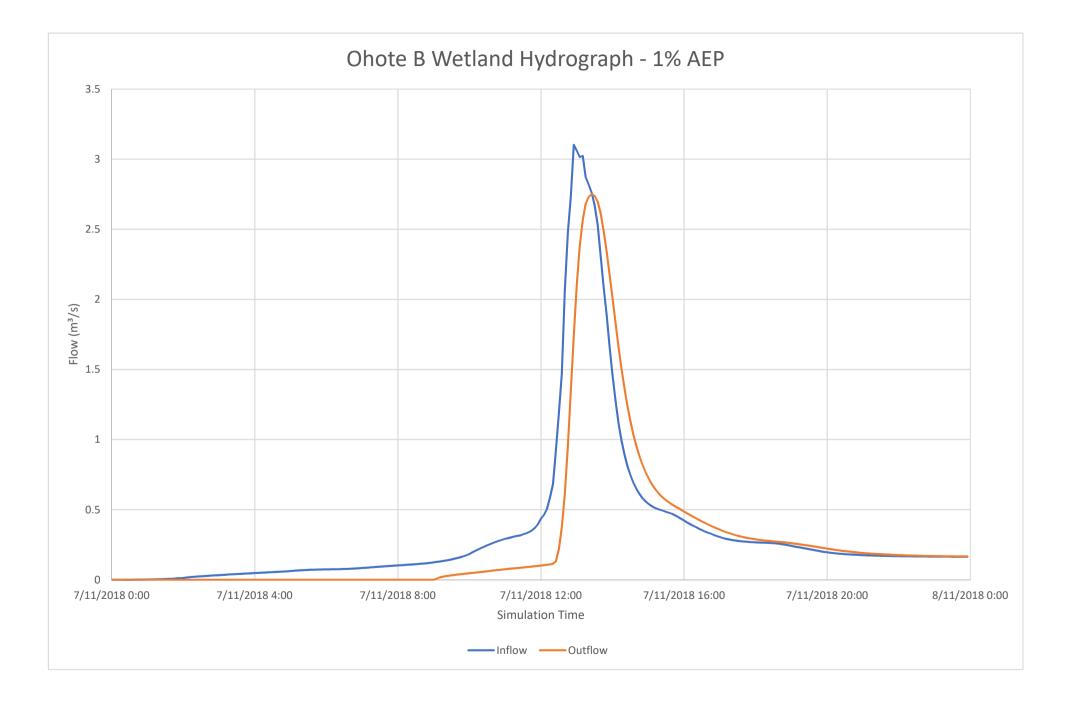


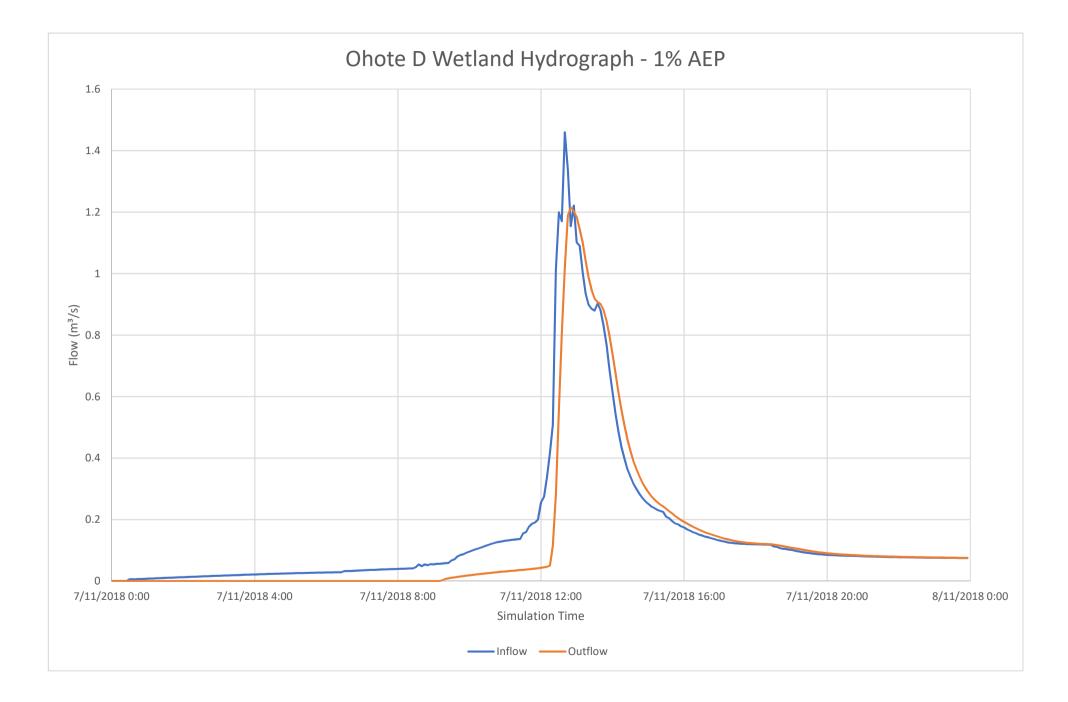


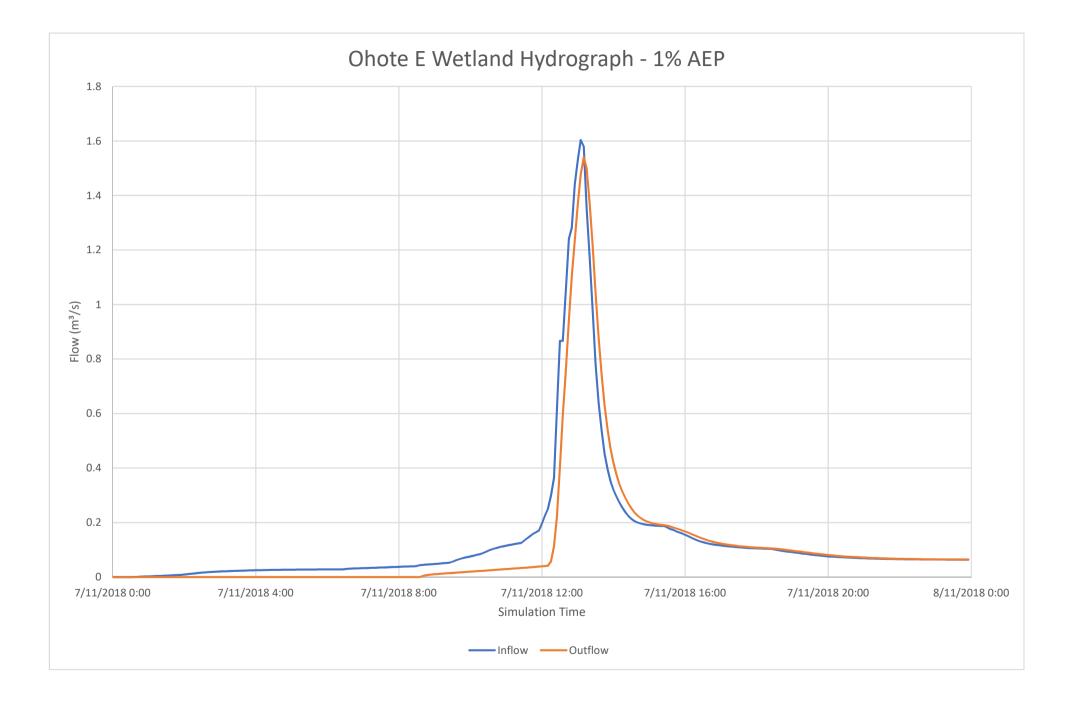


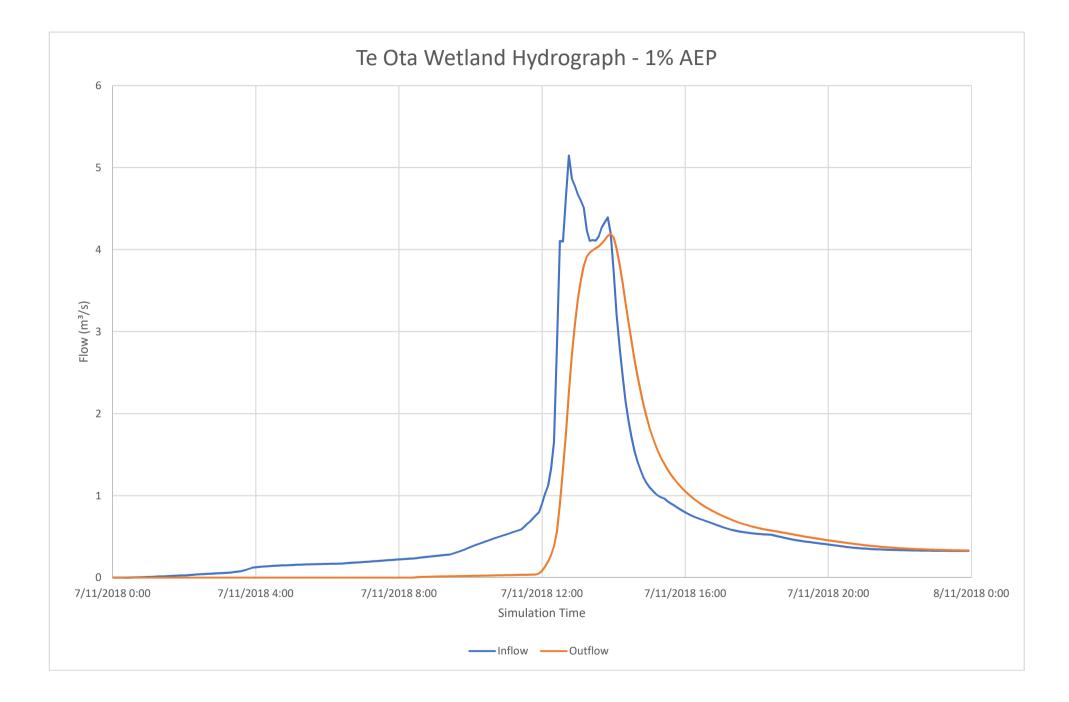


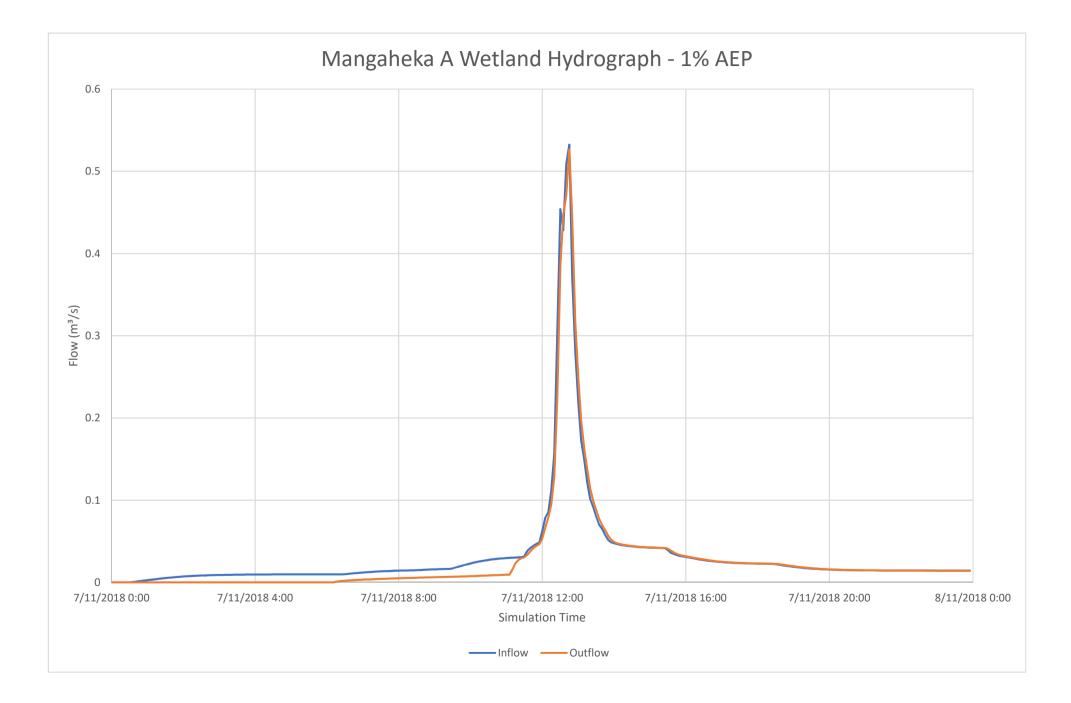


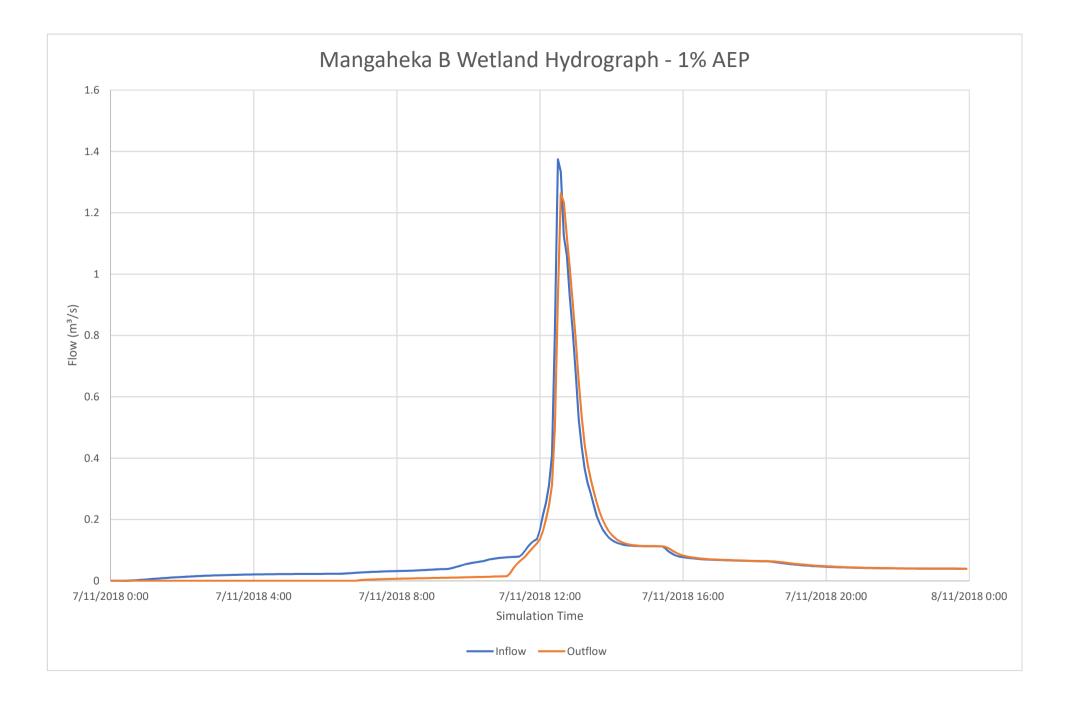


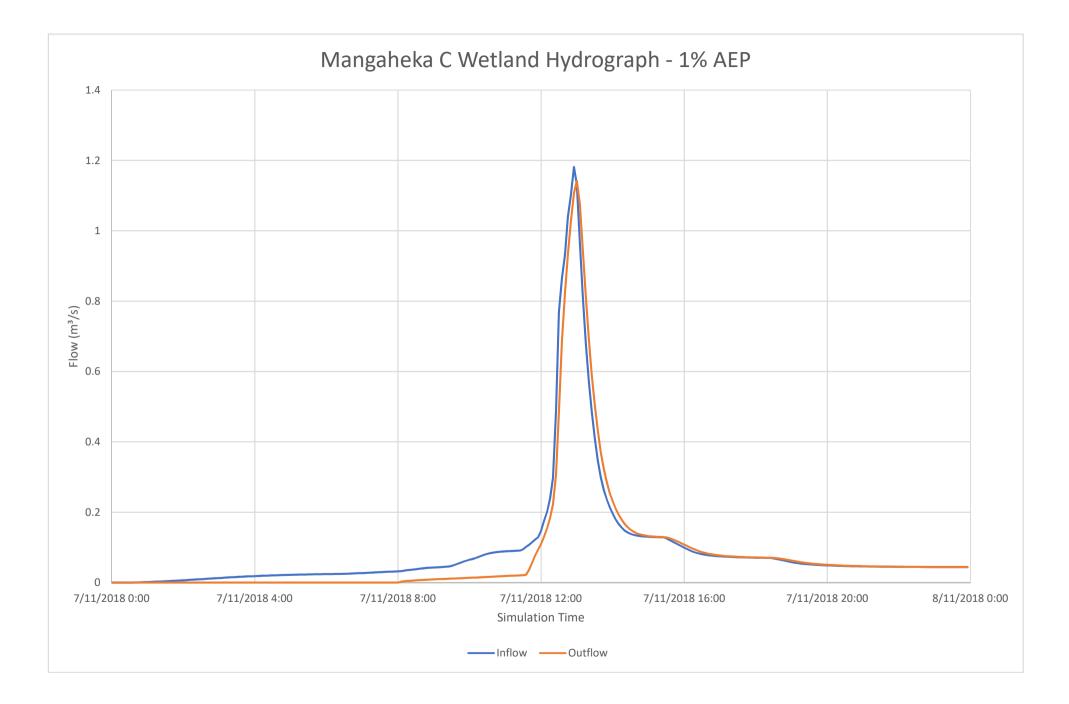


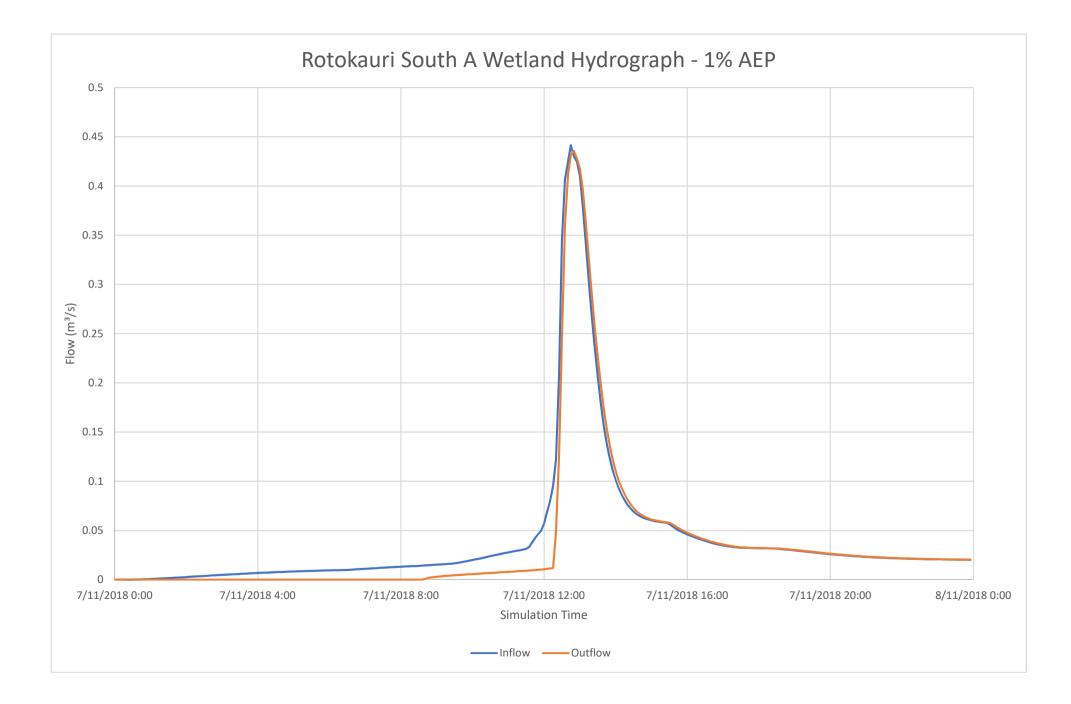


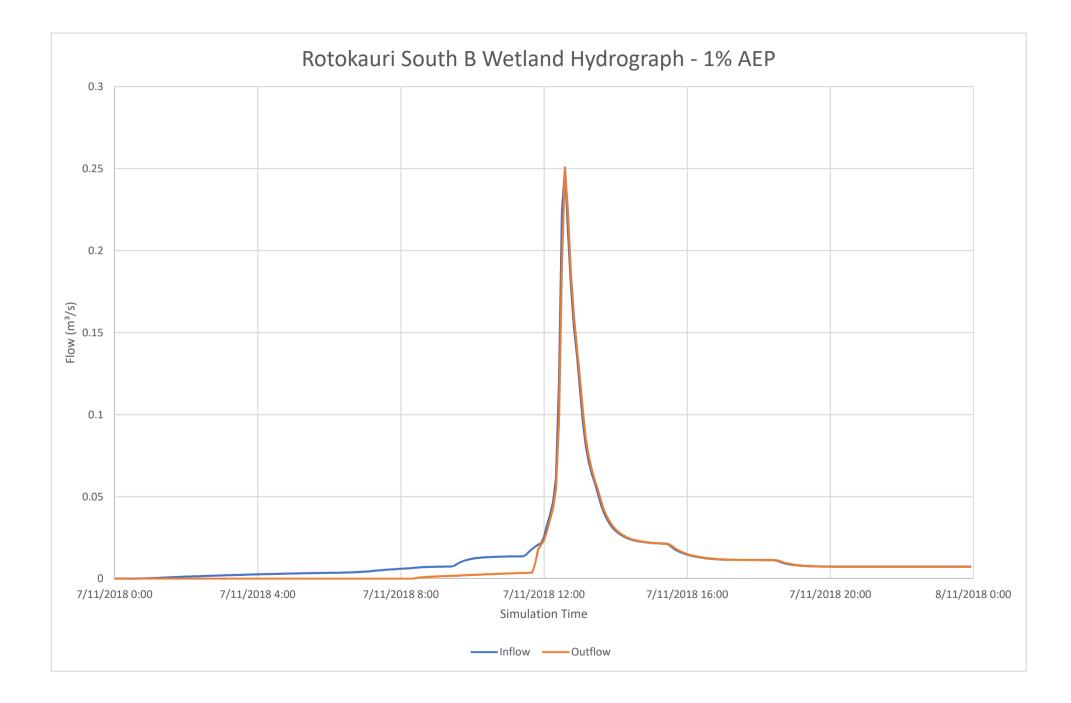


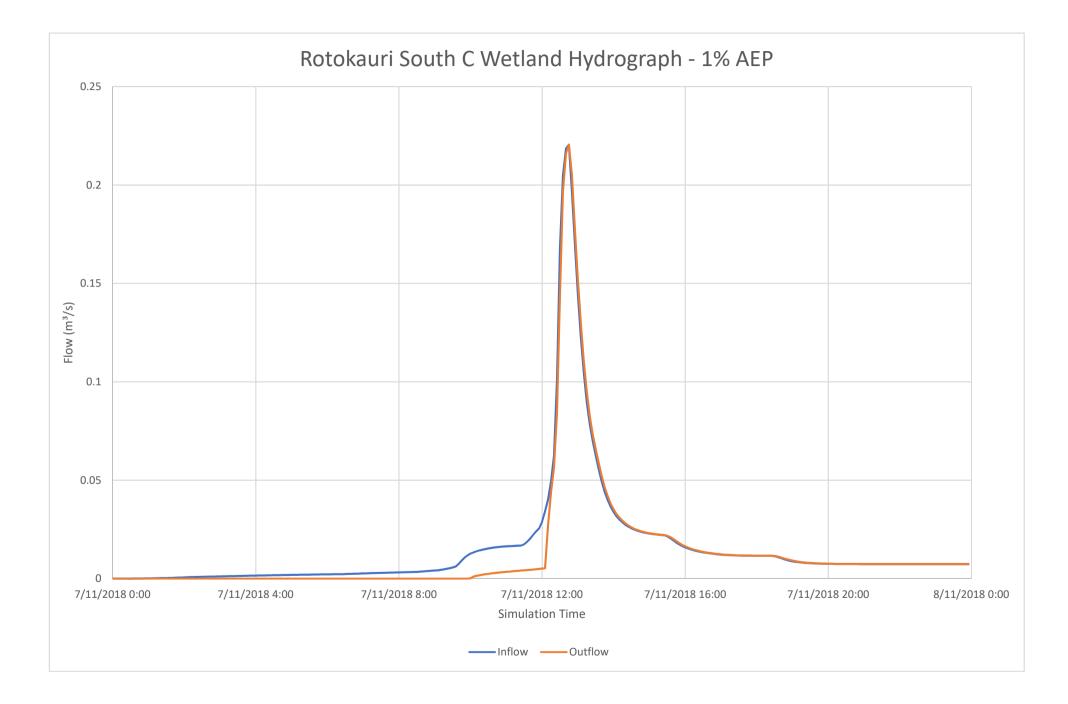












APPENDIX G – SWALE HYDRAULIC RESULTS

1% AEP_{cc} Hydraulic Results

Ohote A Catchment

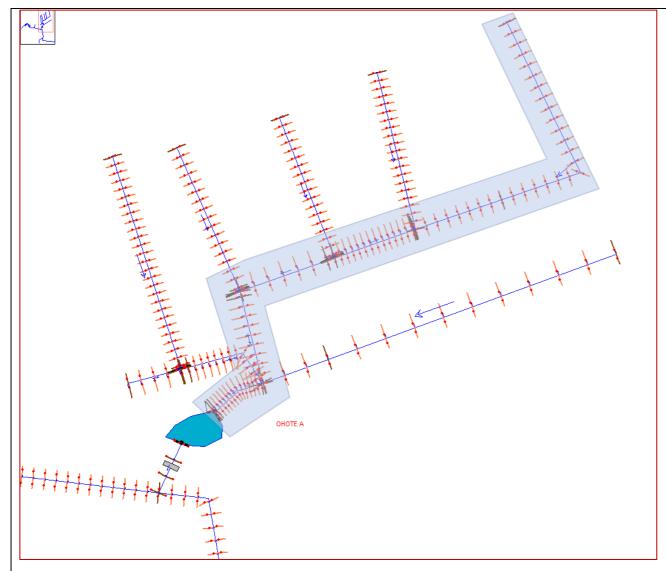
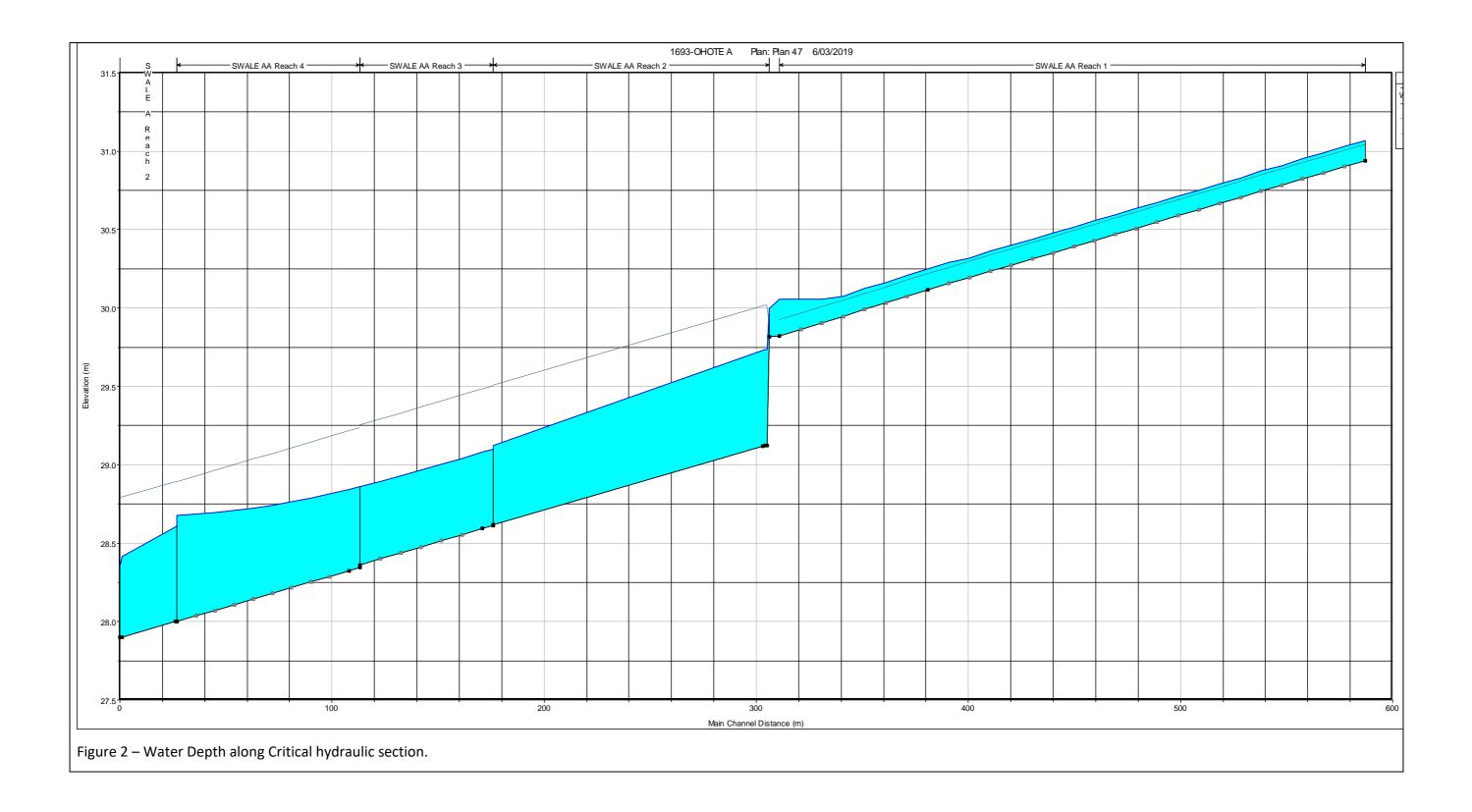
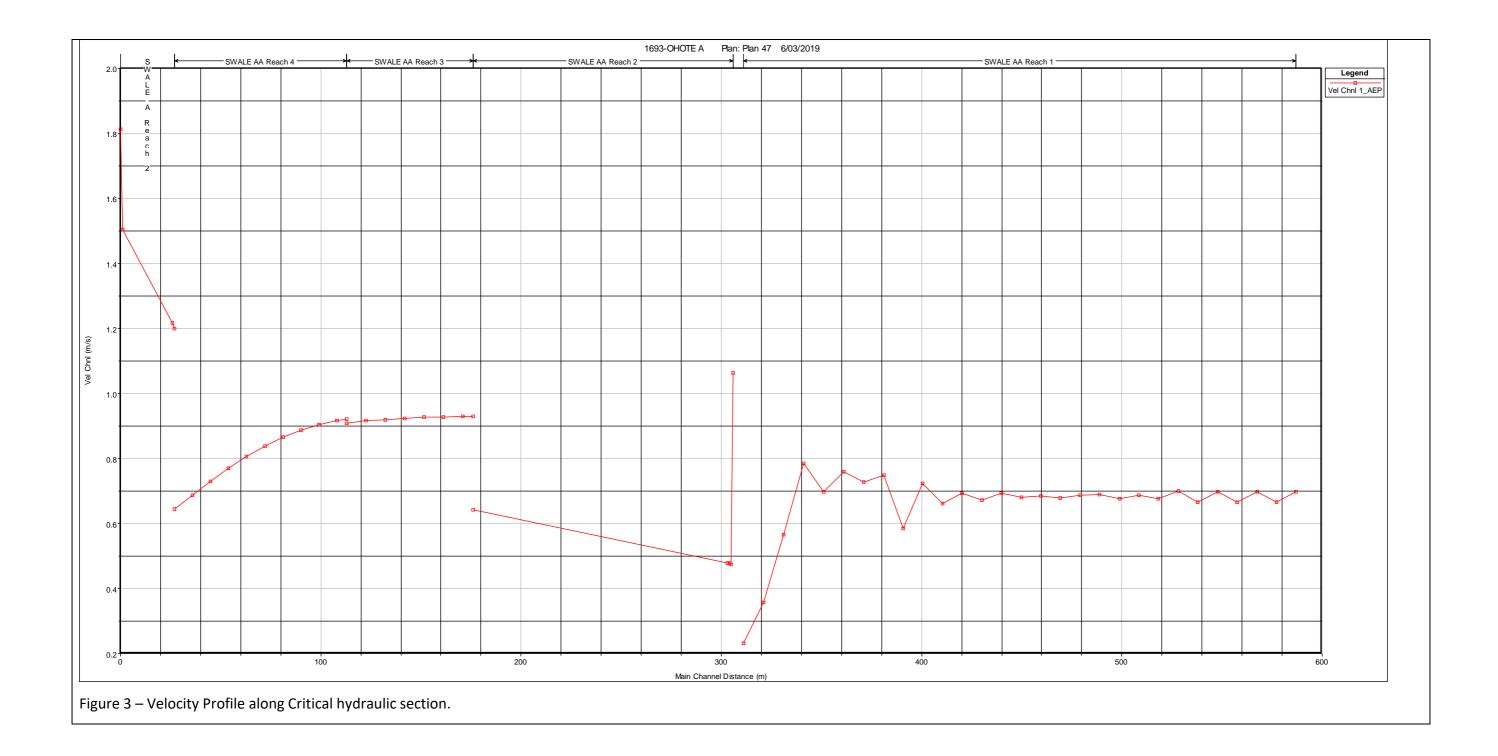
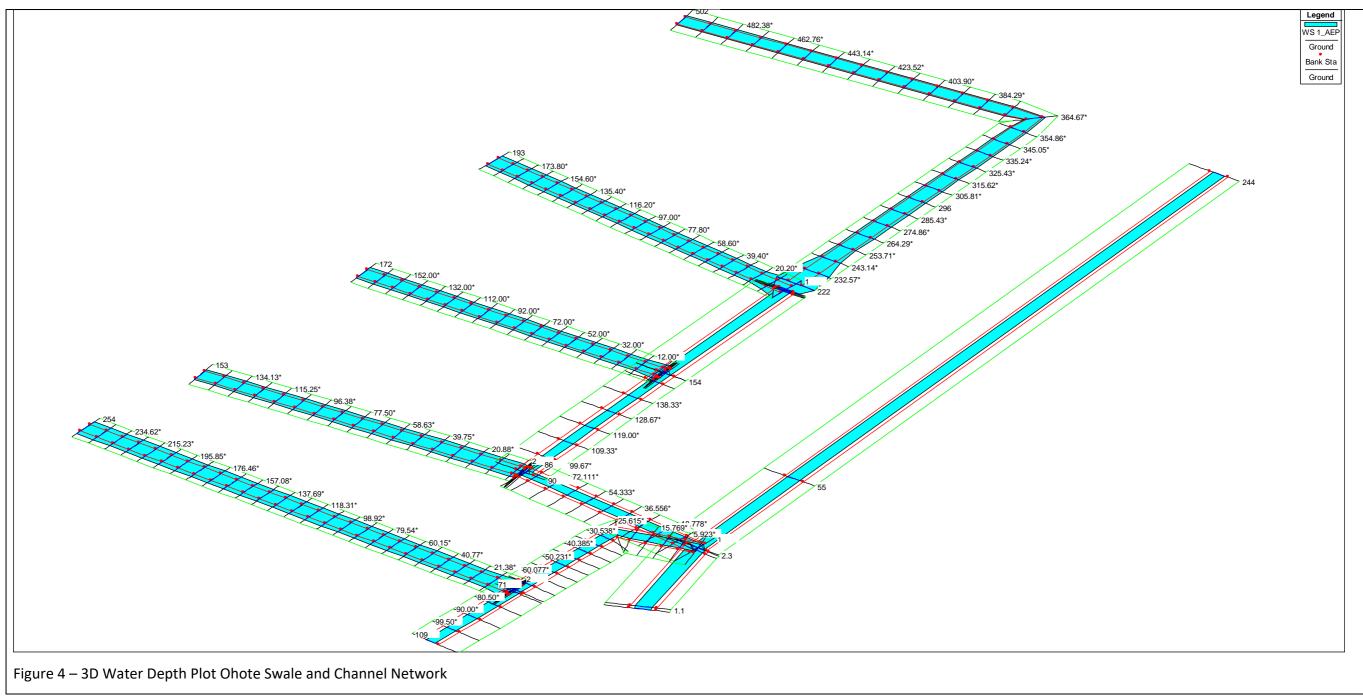
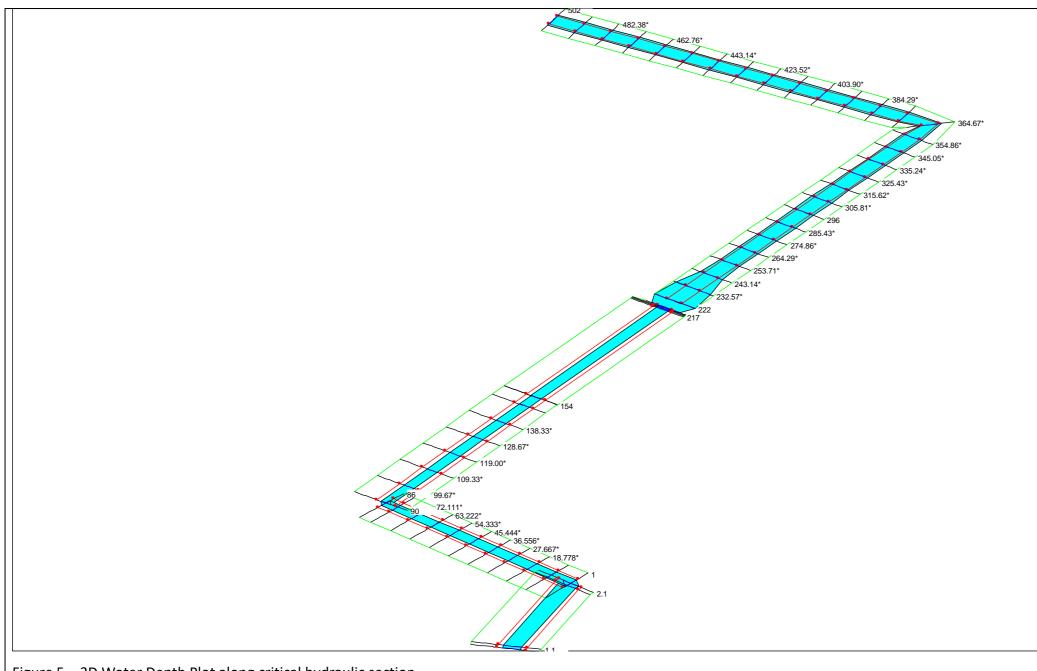
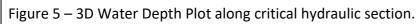
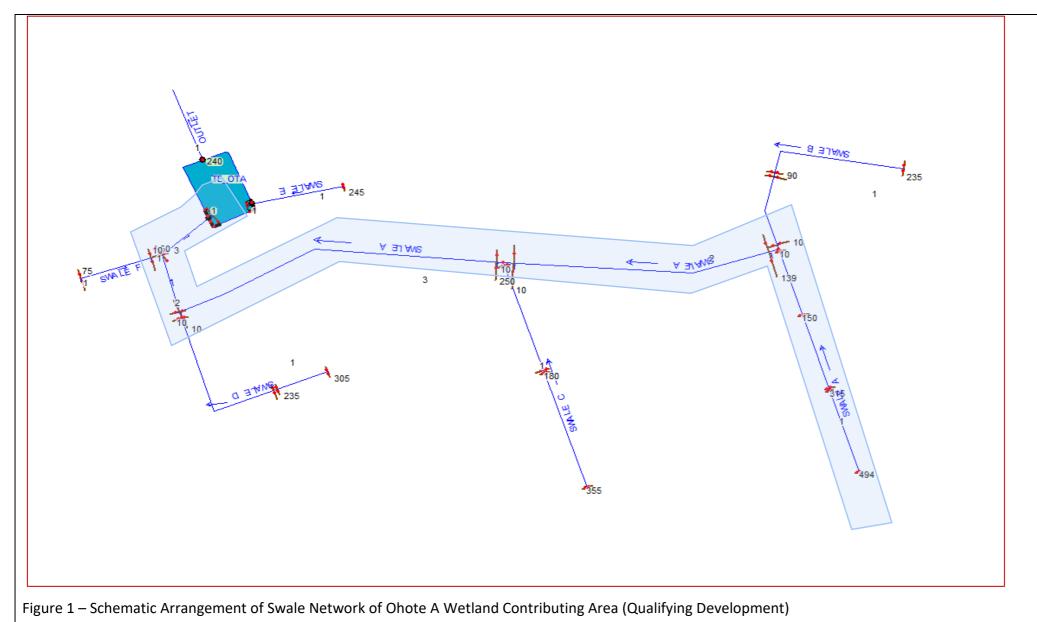
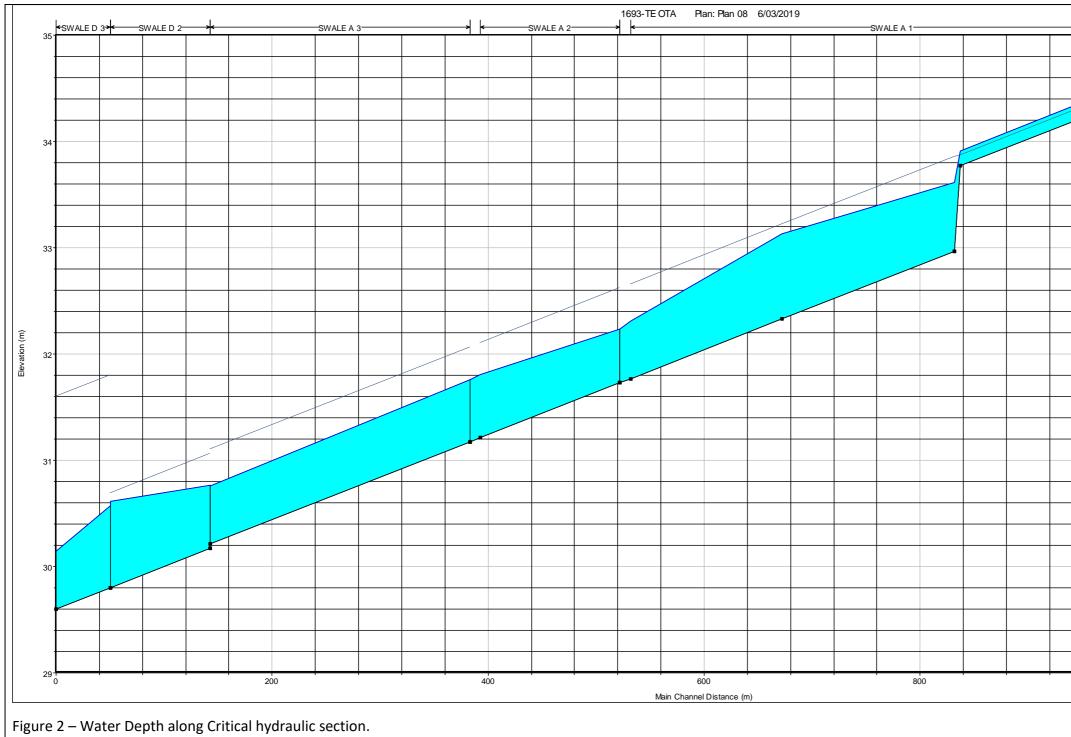





Figure 1 – Schematic Arrangement of Swale Network of Ohote A Wetland Contributing Area (Qualifying Development)

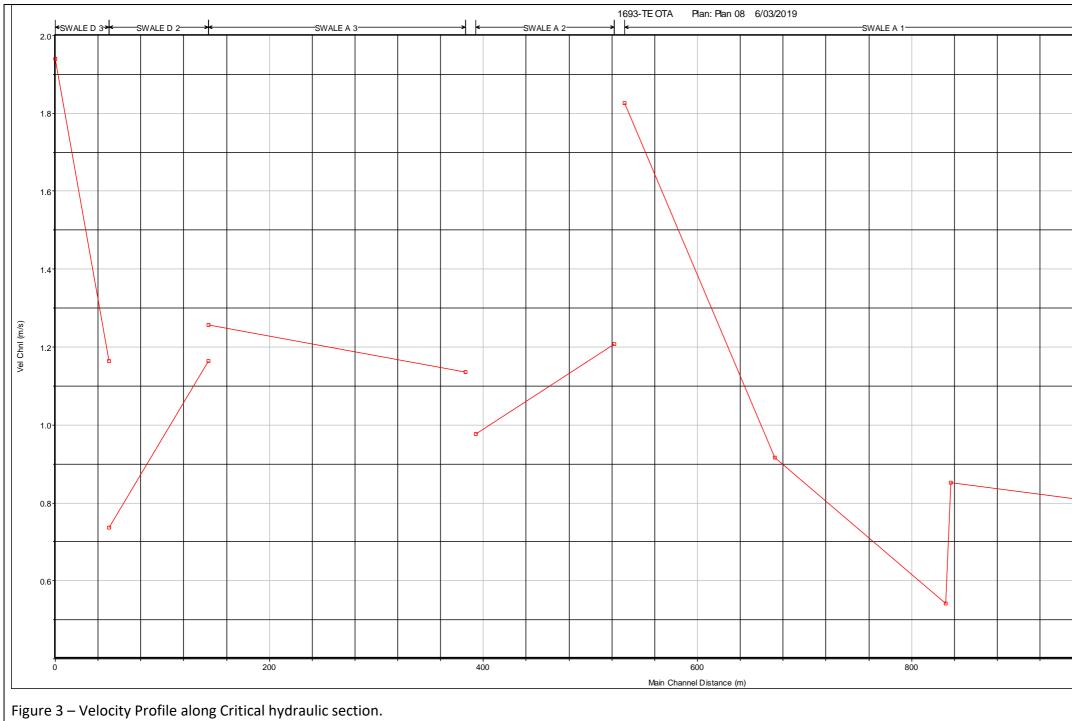

Critical hydraulic section shaded as per above.

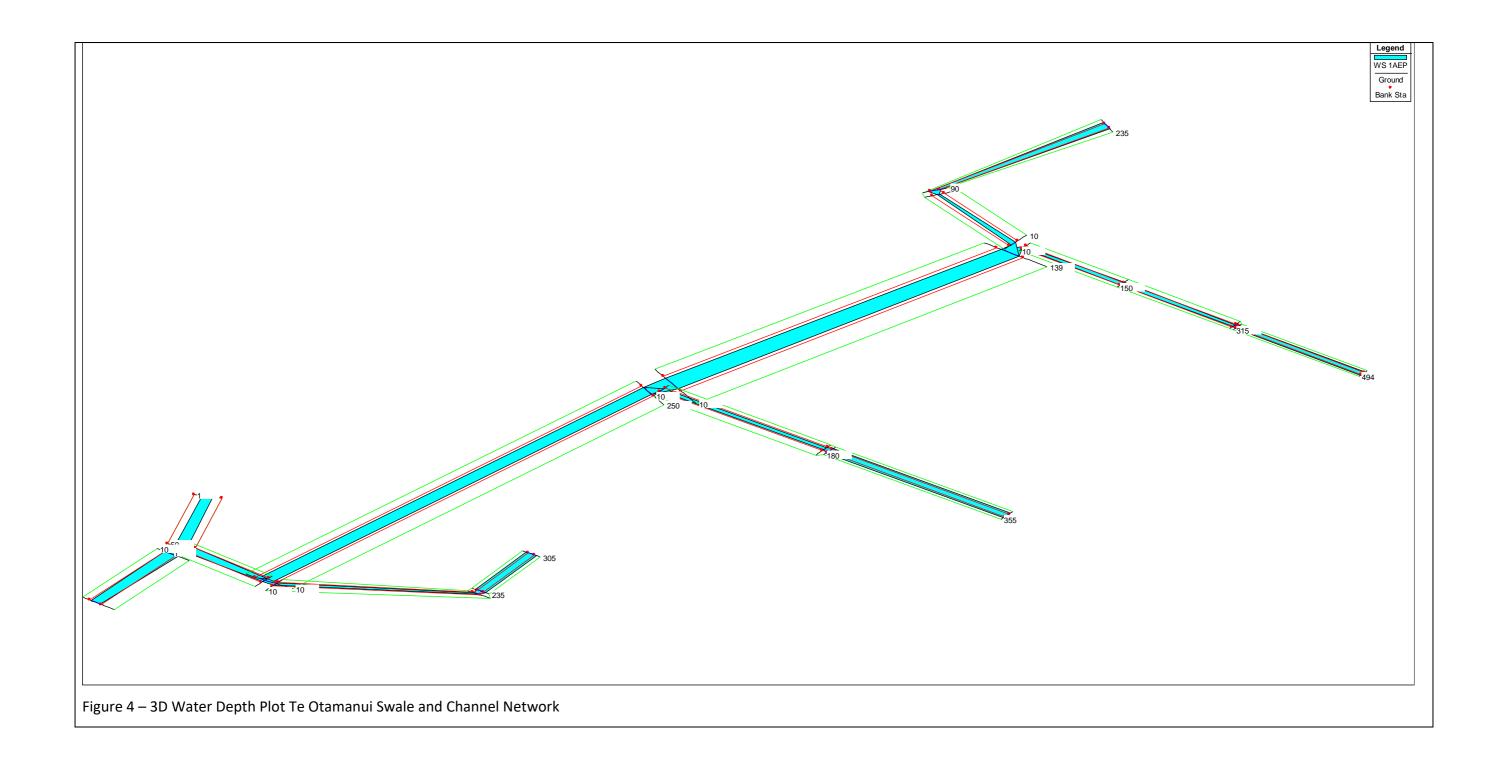


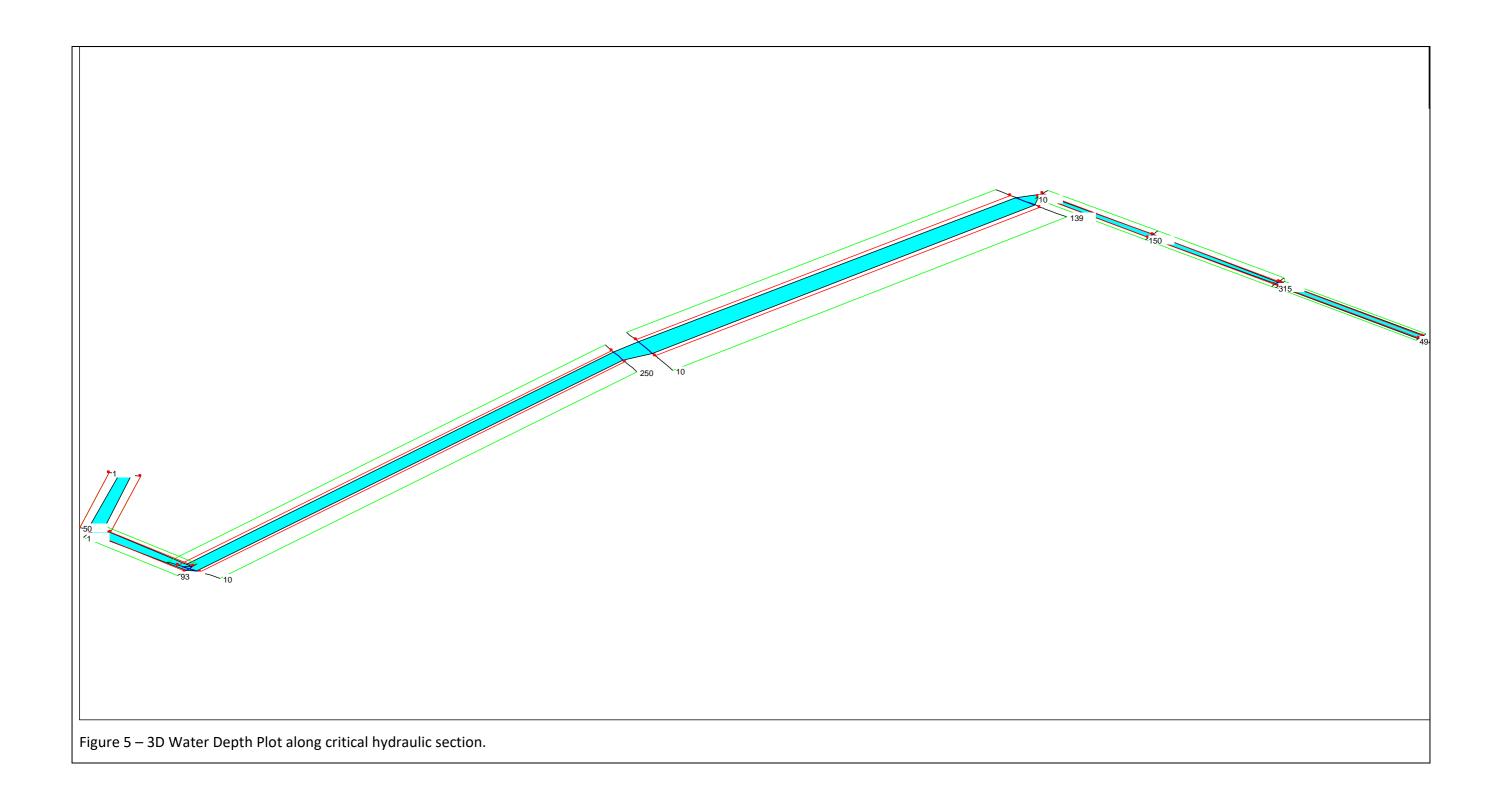




Legend
WS 1_AEP
Ground Bank Sta
Ground


Te Otamanui Catchment


Critical hydraulic section shaded as per above.



			<u>ו</u> ן
			1
			ĪĽ
			1
	 	 _	
 	 	 	1
 	 	 	-
 	 		-
 	 	 	+
 	 	 	-
 	 	 	┨
 			+
	 	 	+
	 	 	+
	 		+
	 	 	1
 1000	 	 	1 200

				Vel (
	Ð			
10	00		12	200

APPENDIX H – OHOTE STREAM MODEL FIGURE

FW Drawn By: Date: 14/02/2019 Checked By: Date: Approved By: Date: Plot Date: **14/02/2019**

Signed:

Signed:

Signed:

This drawing and design remains the property of, and may not be reworked or altered, without the written permission of McKenzie and Company Consultants Limited. No liability shall be accepted for the unauthorised use of this drawing.

Private Plan Change (PPC) GREENSEED CONSULTANTS LTD All dimensions to be checked; Do not scale from drawing.

Rotokauri North

Project:

Title: SENSITIVITY ANALYSIS Ohote Stream

Legend

- Rotokauri North PPC Area WRC/HCC TA Boundary

 - Ohote Stream
 - Approximate Centre Line

Modeled Sections

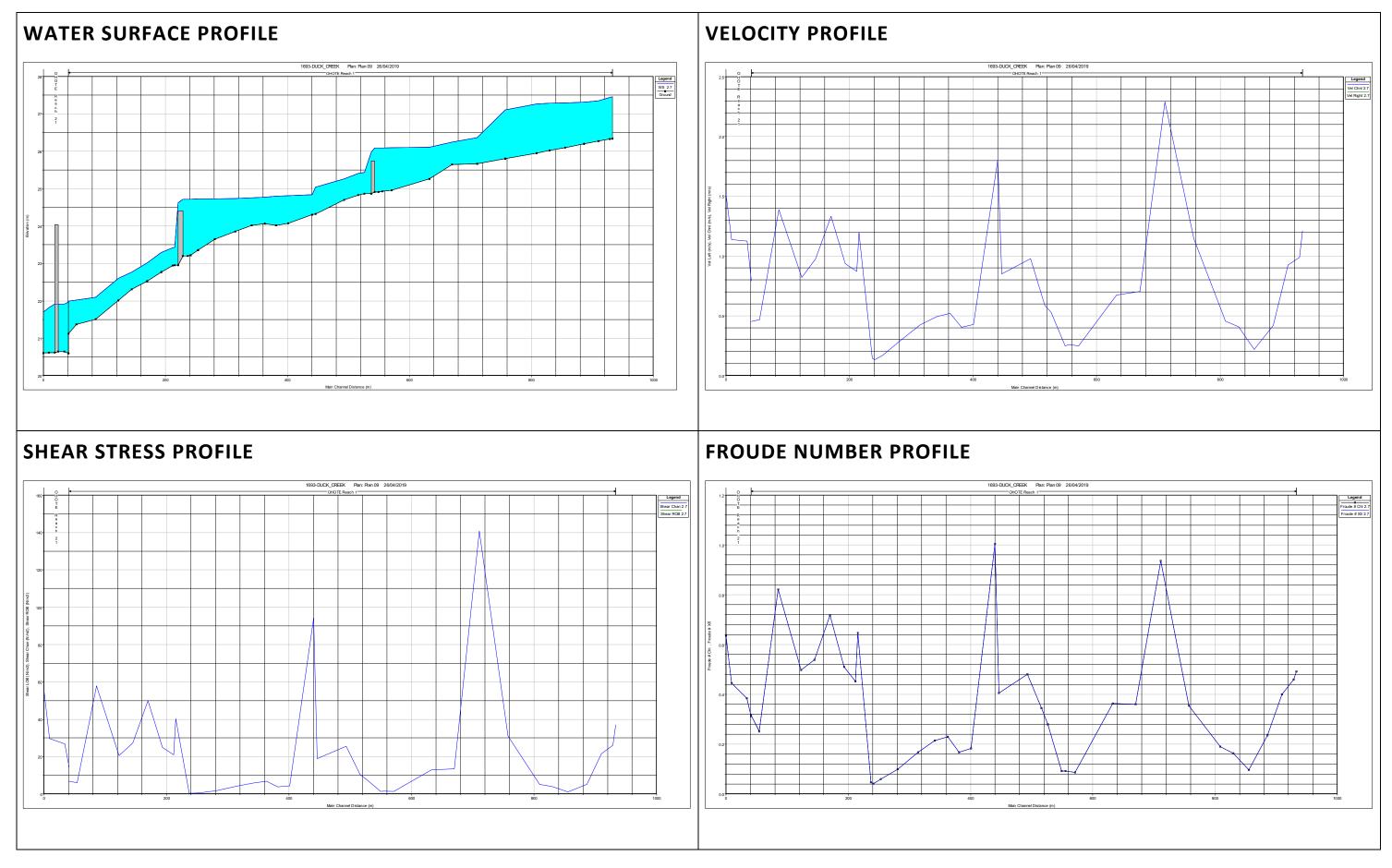
– Sensitive

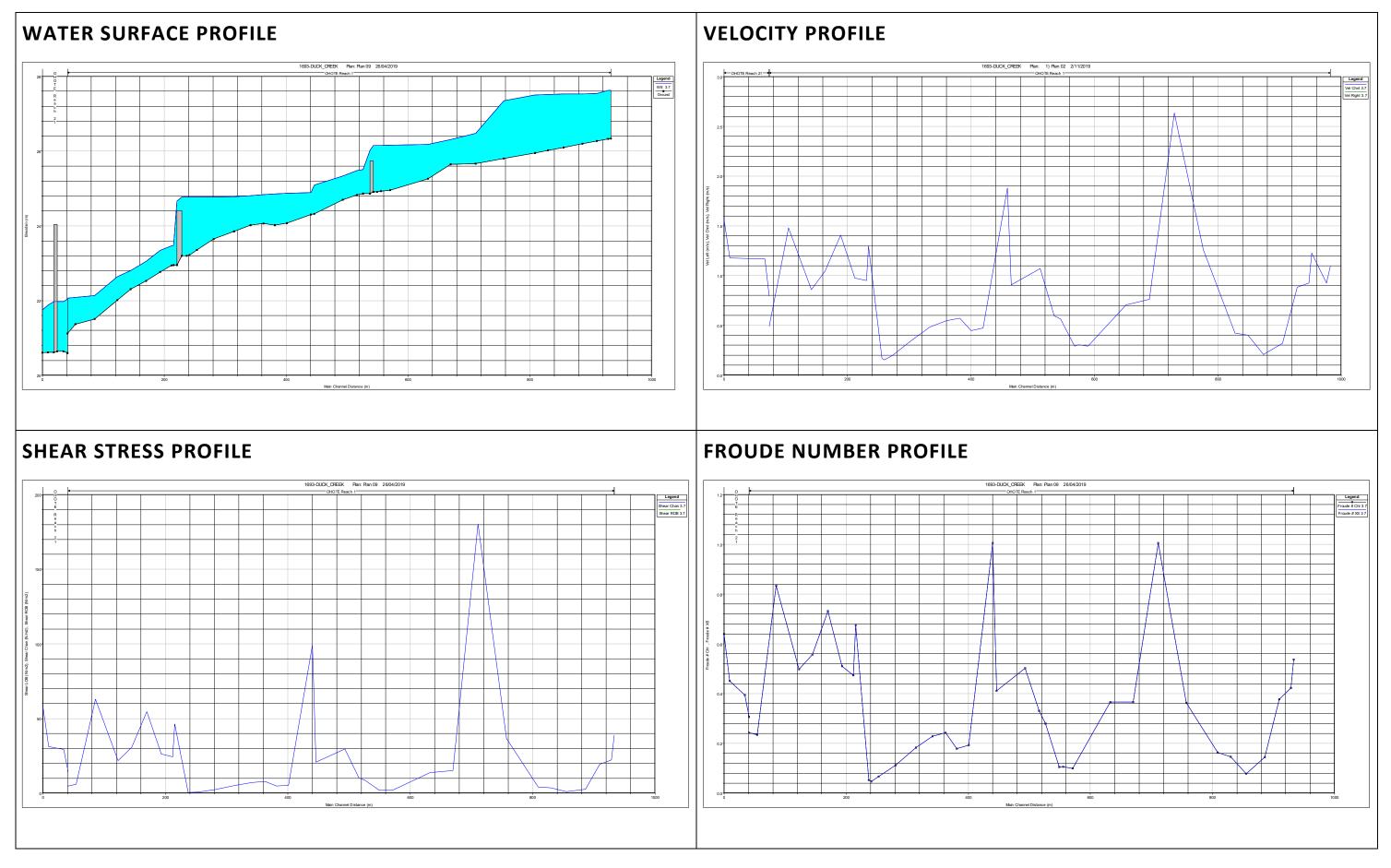
Not Sensitive

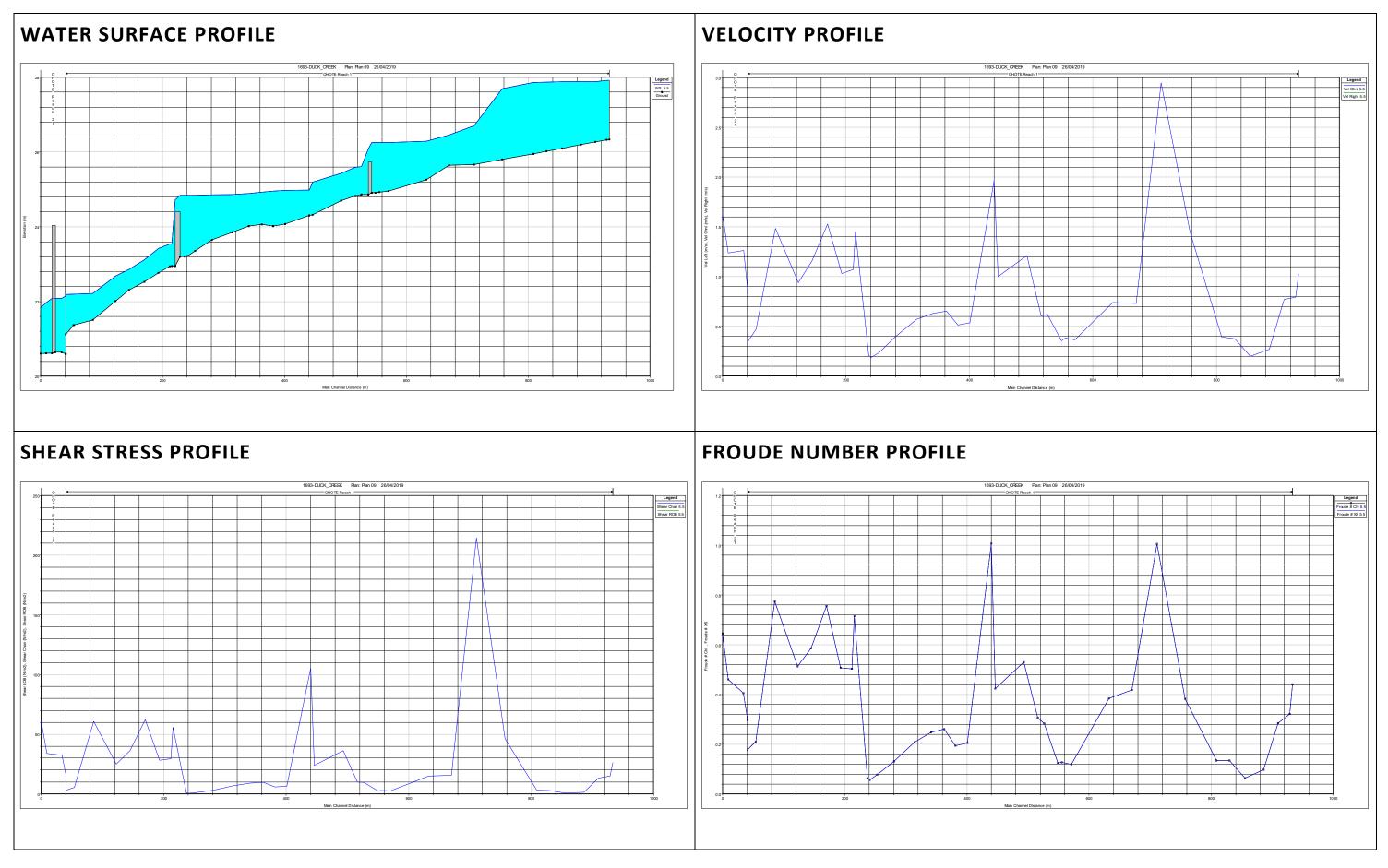
Data License:

Data by Hamilton City Council and Land Information New Zealand is licensed under CC BY 4.0 NZ.

Map Projection: NZGD2000 / Mount Eden 2000 (EPSG: 2105)

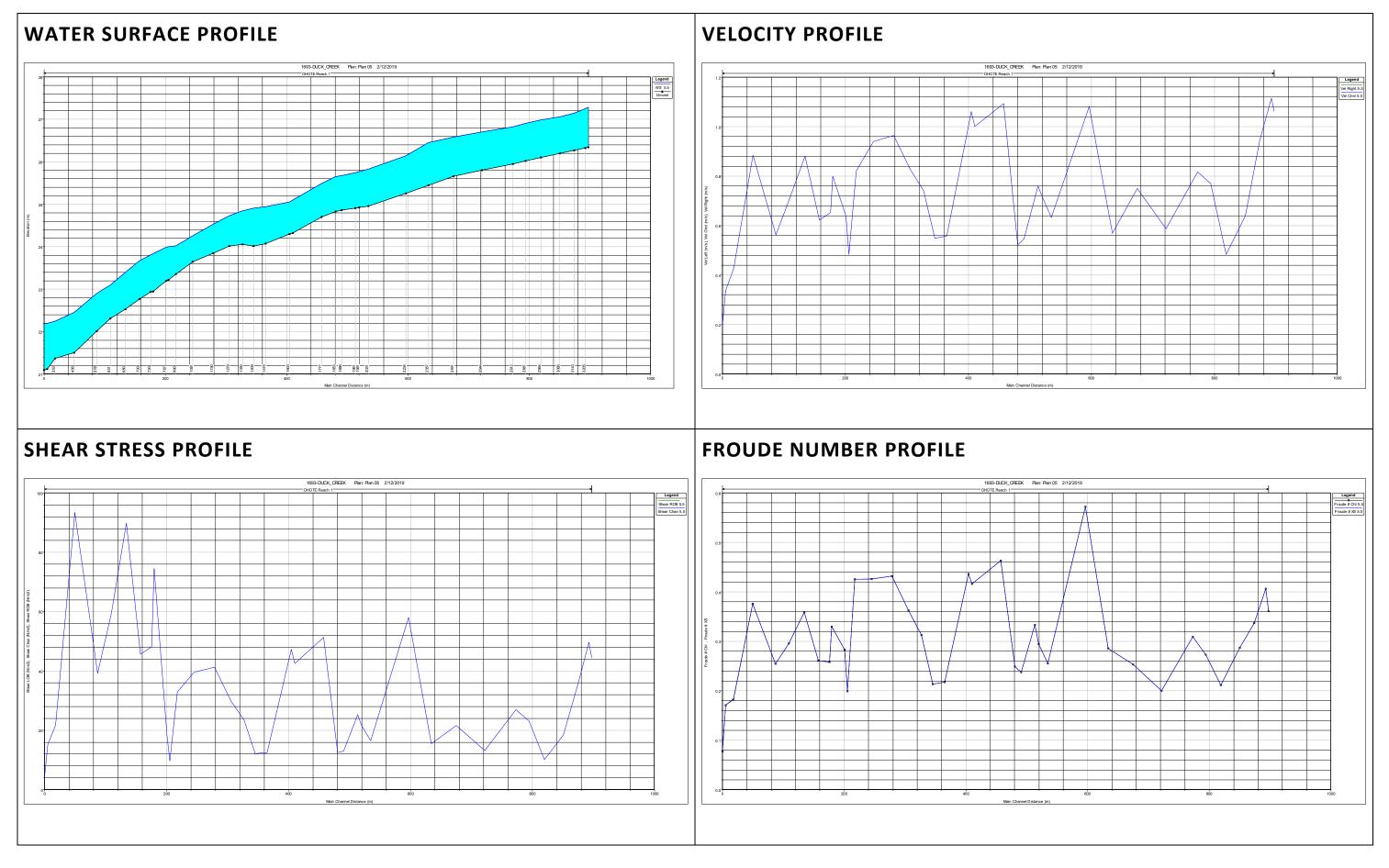

MCKENZIE&CS

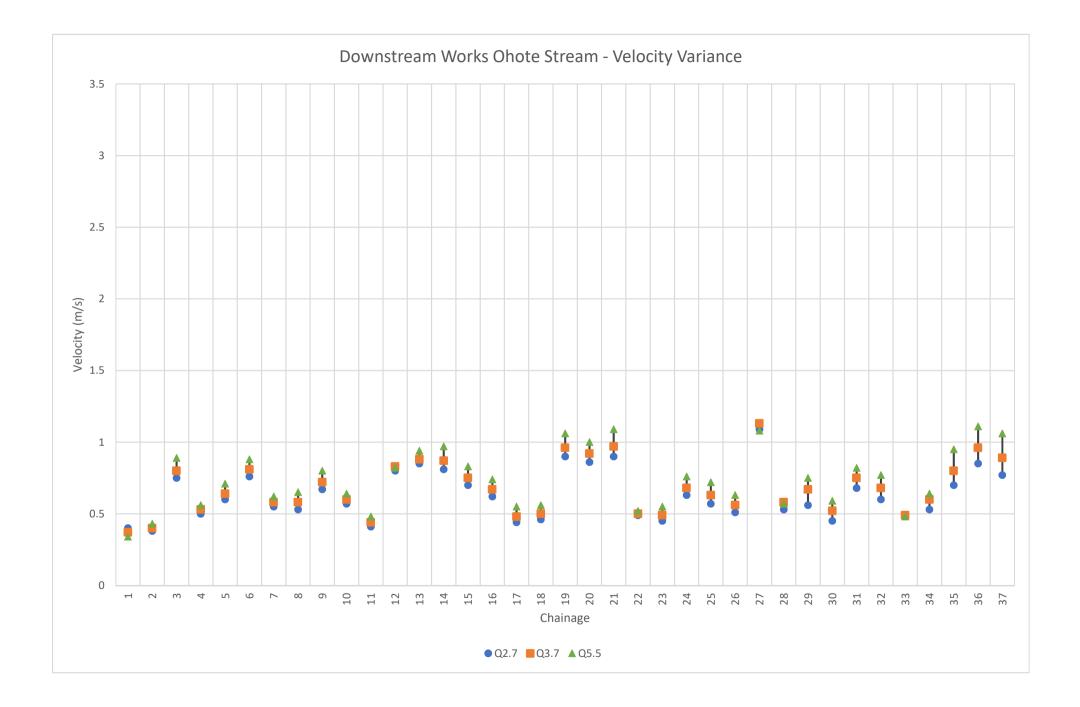

ssue Status: Project Number: Drawing Number: Revision: A3 Scale:

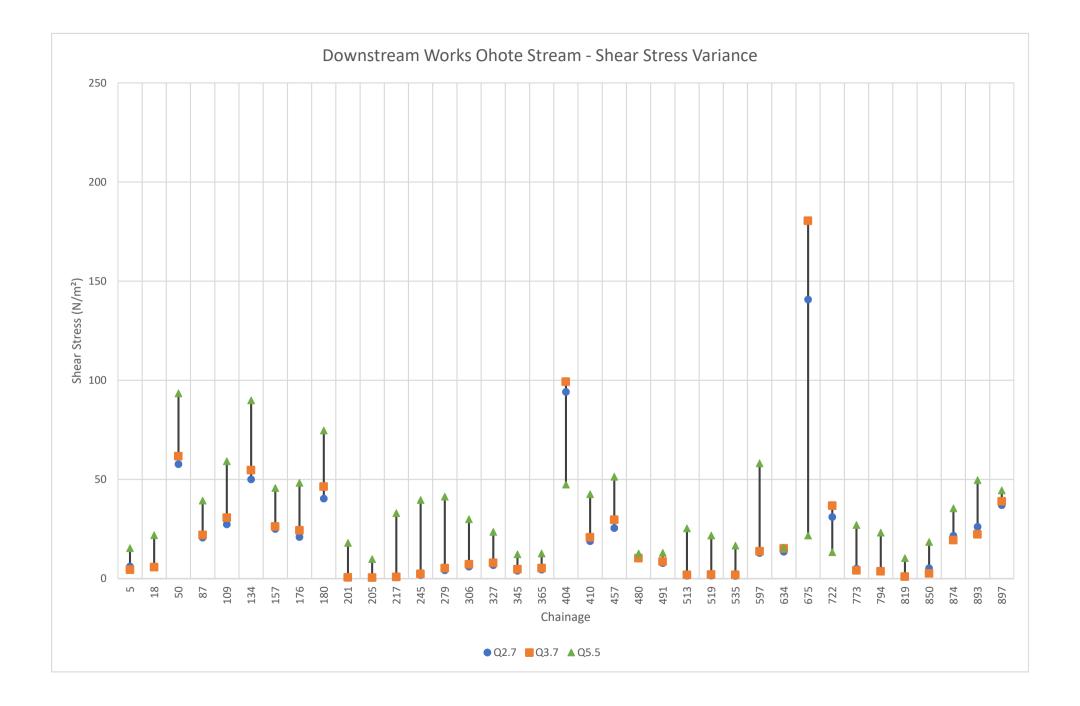

For Information 1693 340 Α 1:3500

APPENDIX I – EXISTING OHOTE STREAM HYDRAULICS

BASE CASE (2.7 m³/s)






APPENDIX J – DOWNSTREAM WORKS OHOTE STREAM HYDRAULICS

