

Dr. Antonio J. Jara

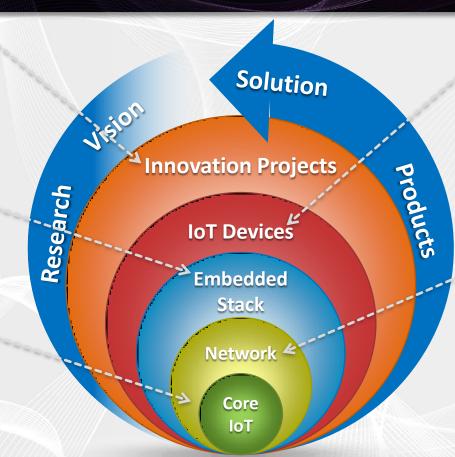
HOP Ubiquitous S.L. (CEO)

IEEE Communications Society Internet of Things Technical Committee (Vice-chair)

jara@ieee.org

HOP Ubiquitous

Innovation Projects


- H2020 INPUT
- ENIAC SAFESENS
- EIT ICT LAB

Embedded Stack

- Advanced Security& management
- Ease-to-use enabler
- Cloud Connectivity
- Standards

loT

- >8 years experience
- World-wide IoT reputation/recognition
- Vision & expertise

IoT Devices

- Bluetooth Smart
- Ubibox (Gateway)
- Mobile Set-up tool
- HOP Basic (Enabler)
- HOP Extended (All in one: Sensors and Kit)
- HOP Core (haku)

Network

- IPv6: GLoWBAL IPv6
- Security: Shifting Primes ECC and EAP
- Maintenance: TEPANOM
- OMA Device Mgmt.

HOP Products Ecosystem

OMA LWM2M App

RESTFul / CoAP communication between the Applications and Objects

OMA LWM2M Server

Device Management, Repository, Directory, Bootstraping Server, Security

Application Enablementt

Network

Interworking: Cellular & Capillary Configuration tools

OMA LWM2M Client

OMA Web Objects (Resources) Temperature, battery, firmware...

homard

CONNECTED PLATFORM

UDP,

/ COAP

HOPs HOPs: The value of our stack in a tiny device **HOP Extended HOP Basic HOP** keyring Connectivity (IPv6 / REST) Interoperability (Android & ios **HOP Wear** Versatility (Configurable) **HOP Haku HOP Core** haku Integrability (Tiny & comm int.) HOP Ubiquitous Overview | Commercial in confidence | © HOP Ubiquitous S.L. 2015 | www.hopu.eu | Page

LWM2M Sensor: HOP Core 30 x 15mm

GPIO

General Purpose Inputs and Outputs

Temperature & Humidty

Environmental monitor

Microphone

Activity analysis based on noise

LEDs

Notifications and status indication

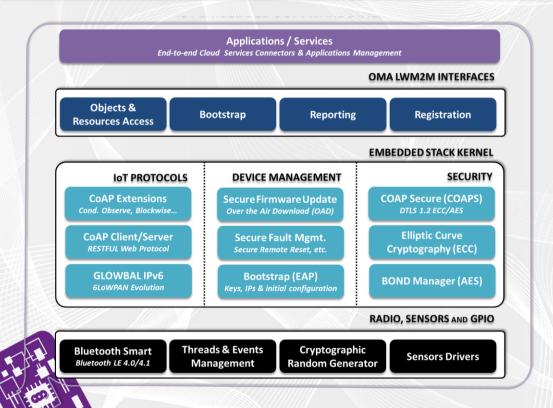
Buttons

Interaction with the User

Bluetooth Smart

System on Chip Bluetooth Smart and OMA LWM2M / CoAP / IPv6 transceiver

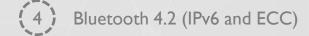
External Antenna


IPEX Connector for external Antenna for infrastructure deployments (10 - 90 meters coverage)

Antenna

Ceramic Antenna for personal area and proximity solutions (1 - 10 meters coverage)

IoT Embedded Stack: OMA Client





IPv6-oriented
(CoAP/UDP/DTLS)

Stream support (Real Time, Pub-Sub, Management)

IoT Embedded Stack (OMA LWM2M-compliant)

Security

Bootstrapping
Account Management
Logging and Tracking

Standards

Simplified Operations Control & Observe Device and Data Mamt.

Ease-to-use

Over-the-Air Firmware Remote Management Upgrade / Maintenance

Data modelling

OMA Web Objects Interoperability Semantic Description

loT Embedded Stack

End-to-end

Cloud to Sensors
Value Chain

Commissioning & management Tools

HOP Engineer Tool

HOP Configurator

An engineering tool that presents the capabilities from HOP Ubiquitous for device management

Discovery & commissioning

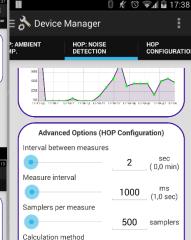
Scan, discovery and set-up of security / bonding

Services Analysis

Services description, interfaces for read/set and subscription

Interfaces

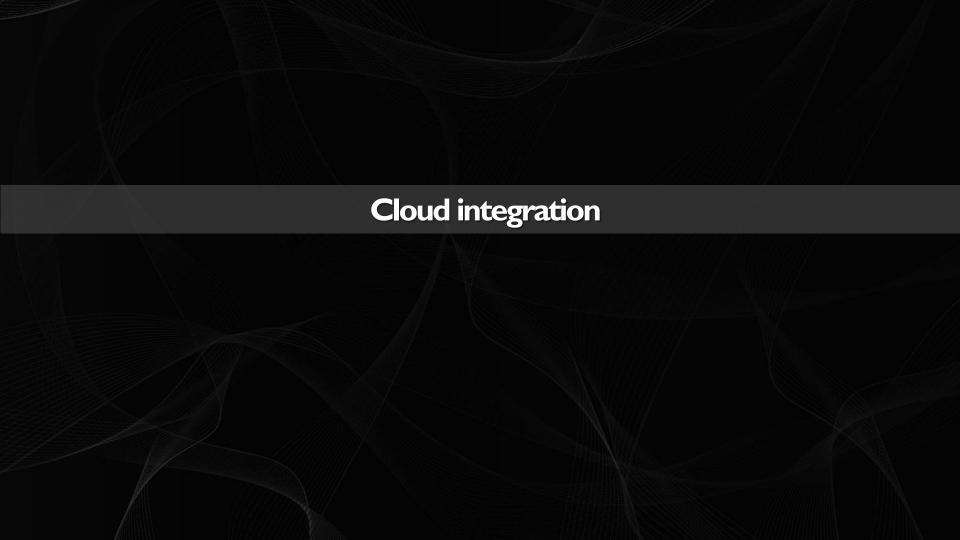
Interfaces Tests and Sensors interfaces



nable Notifications

Advanced Options (HOP Configuration)

Maximum Average


Establish settings


Cloud Repository & firmware update

What does a Thing need from the Cloud?

Control & Observe

Support Web APIs

Service
Discovery &
Registration

Support Autonomy

Alert users & systems

Support Real Time

How do we make all this simple, standard and easy?

Information, language and data model

Support Interoperability

Why is required to connect Things to the Cloud?

Maintain a device session Connectivity

Set and monitor of device and Healing Control

Stream Processing

Applications

Devices

Analytics (Insights, Storage Data Historical Data Persistant

APIs and Interoperability Cooperation WEB.

IoT Services Platform: oneM2M

The M2M market is highly fragmented with many players across numerous vertical domains.

oneM2M members are working on a standardized horizontal service platform for M2M interoperability (coordination role among the key regional Standardization organizations: ETSI/ARIB/ATIS/CCSA/TIA/TTA/TTC

Background

Global standards with over 200 member organizations

Functionalities across different industry segments/silos

Interworking between cellular and capillary providers (broadband forum, ZigBee Alliance, IPSO Alliance, Continua Alliance, Home Gateway Imitative...)

Horizontal architecture to combat fragmentation

Globalization

oneM2M Provides a Common Service y Layer including a set of common services for IoT/M2M interoperability

Software layer between the M2M application and the communication HW/SW hat provides data transport

It is designed for enabling distributed intelligence (device, gateway, clouds)

All the communications enabled with IP and Restful Web APIs

IoT/M2M service layer

TS-0001: Functional Architecture

TS-0002: Requirements

TS-0003: Security Solutions

TS-0005: Management – OMA LWM2M

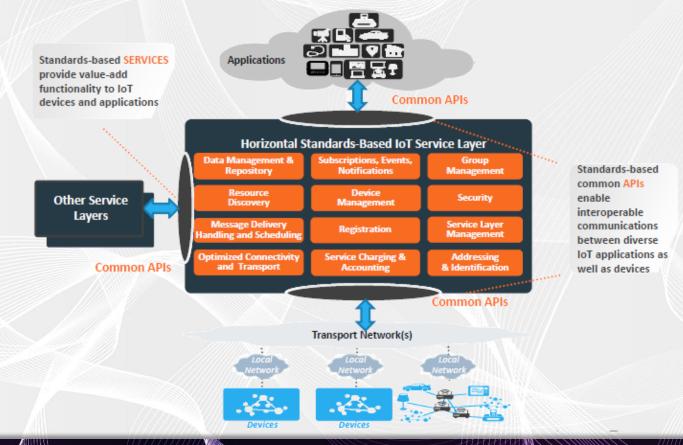
TS-0006: Management - BBF

TS-0007: Service components

Re-use IP-based protocols

TS-0004: Service layer core protocols

Mapping: TS-0008: CoAP


TS-0009: HTTP

TS-0010: MQTT (coming)

Tech. Specifications

Architecture Overview: Applications Enablement

OMA LWM2M: Introduction

Open Mobile Alliance (OMA) was established in 2002

OMA LWM2M is the evolution of the expertise from OMA in Device Management (DM) for addressing the new requirements from constrained devices and fill the gap between 3GPP, IETF COAP, ETSI and OMA-DM

Background

Define interfaces, protocols (SMS, CoAP) and security support between machines and the server/cloud

Define a Object and Resources Data Model (Semantic)

Leverage the expertise in Device Management with support for firmware update, connectivity, discovery, access control, bootstrapping and remote management

Goals

Bootstrapping: Preprovisioned of security credentials (keys, tokens), configuration of LWM2M Servers IP, etc.

Registration: Register the Client and its OMA Web Objects in the Resource Directory (Local or Cloud)

Management and Service: Operational mode to read, update, and manage objects/resources

Information Reporting:
Observation of Resources for
events notification

Functions/Interfaces

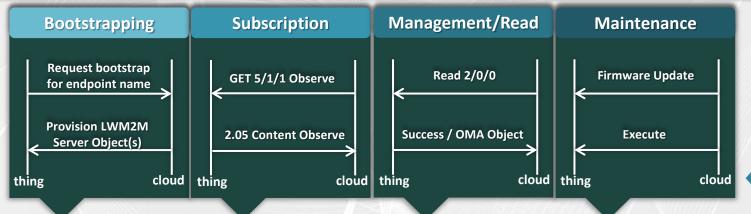
A device can have multiple Objects. An Object is a collection of resources. A resource is the atomic piece of data (e.g., temperature value, sampling frequency)

OMA and other SDOs ¹ can define and register Objects

Object Data Model presents a highly efficient payload

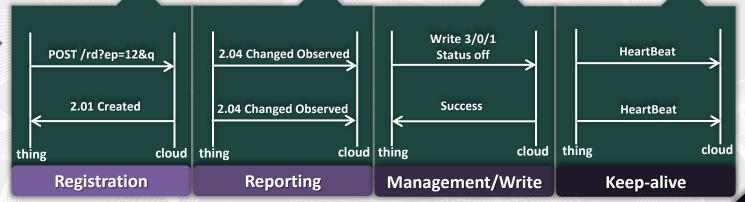
Objects and Resources can have multiple instances. /{Obj. ID}/{Obj. Instance}/{Res. ID}/

Supported meta-data for security control such as Access Control List (ACL)



1- HOP Ubiquitous is member of IPSO Alliance & OMA Web Objects Builder.

Object Data Model


OMA LWM2M: Example of communication exchange

time

Architecture Overview (Standards-driven perspective)

Clients

Web, RESTFul (CoAP, HTTP), Browsers

OMA LWM2M App

RESTFul / CoAP communication between the Applications and Objects

Application Entity (AE)

Fleet tracking App remote blood sugar App Power metering App

Mcc

) //

Backend

Servers, D
Data Centers, Cloud Dir

OMA LWM2M Server

Device Management, Repository, Directory, Bootstraping Server, Security

Common Services
Entity (CSE)

Data Mgmt, Device Mgmt, M2M Subscription, Location Service

Routers

Connectivity & security: Routers, Switches, NATs. Firewalls...

Network

Interworking: Cellular & Capillary

Network Services Entity (NSE)

Device Mgmt, Device Triggering, Addressing, Routing, QoS, Security

Resources

OMA LWM2M Client

IP(v6) Addressing, OMA Web Objects (Resources)
Transport (UDP/TCP), Temperature, battery, firmware...
Security (DTLS)

Application Dedicated

Node (ADN)

Sensors / Appliances Machines / Actuators

Applications

IoT Services platform (cloud-enabled)

Apps Enablement

9

Assemble / Compose (Builder)

Op **App Engine** (Templates & Enablers)

Marketplace (Services/Apps/3^{ed} party)

Analytics & Visualization

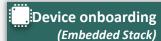
Big Data& Visualization (Insights)

Maintenance

Security

Management

Monetization



Connectivity

IoT Platform = Services Platform + IoT/OMA LWM2M

Services Platform

K X **Connection API** (CoAP / HTTP)

IoT / OMA LWM2M

Device Mgmt.

Device Virtualization

Device Protocol Interpreter (Abstraction)

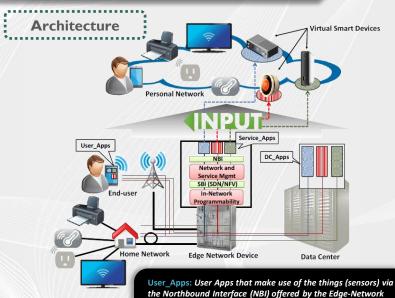
Registration & Discovery

INPUT H2020 Project (IoT, Virtualization and Personal Cloud)

In-Network Programmability for next-generation personal cloUd service supporT

Virtual Image

Things virtualization to provide functionalities (protocols, algorithms...) through the cloud Offloading storage and computational tasks from the end-device



Personal Cloud

Private clouds closer to the user (in-network)

Orchestration

Cooperation of edgenetwork with backend (Data Centers / Cloud)

CIN LE ERICSSON STELECOM

HORIZ N 2020

Start Date: 01/2015

Kick-off Meeting: 2nd February 2015

Service_Apps: Virtualized functionalies in the edge-network of the Things - programmble with the Southbound Interface (SBI) DC Apps: Virtualized functions in the cloud that requires higher

Months: 36 months

storage and computing capabilities

Functions & Benefits

Solution

Information Technology

Analytics, reporting, audit, composition, data sharing and process integration

Problems Prevention

Data

Events Forecasting

Assets Management

Operational Technology

Automation, optimization, performance enhancement __and alerts detection__

Automation & Monitoring

Reuse/share

Sensor

Sensing, user interaction, device management, data modeling, security and monitoring

Connectivity & Management

Sensors & Actuators

Senso

Morrisons: Ambient Monitor (haku)

Cloud Connectivity

HTTP/CoAP with enhanced security and OMA LWM2M (oneM2M) for scalable device management, remote monitoring and interoperability

Sensors and operational monitoring

Sensing capabilities for monitoring the cold chain and detection of anomalies based on activity (e.g. noise)

Humidity Temperature Activity

User interaction

Interaction with the customers through the red button, in order to inform about problems, stockout, request help...

Services Beyond: iBeacon - proximity marketing

Haku is based on Bluetooth Smart and enabled with iBeacon technology for propagating marketing information to smart phones (iOS / Android OS)

Morrisons: Process

Automation

 Report every 60s of humidity, activity, and temperature for logging and audit purpose.

Analytics

• Operational efficiency with the correlation of event to provide real-time decisions

Anticipate problems

 Predictive maintenance of assets to optimize maintenance costs and eliminate breakdowns

Sensing

Alerting

Checking

Fixing

Preventing

Events Detection

 The sensor detects anomalies such as when the temperature goes over a threshold

Actuation

 Contact the technicians (SMS/email), order assets (ERP), and proactively schedule maintenance (external services)

Contact details

