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Abstract  
This work answers questions relevant to the determination of Scope 3 emissions from purchased 

goods: 1) how does the use of weight-based versus spend-based emissions factors (EF) affect the 
magnitude of emissions calculated, 2) how does using different sources for emissions factors within a 
same type of EF affect overall estimated emissions, and 3) what is needed to standardize and ease 
calculation of Scope 3 emissions across institutions, countries, and backgrounds such that the process can 
be automated and ensure replicable results. To answer these questions, a collaboration with seven 
universities across the United States was formed to share best practices and food purchasing data. This 
collaboration enabled the development of a python-based categorization tool to ease and standardize 
calculation of Scope 3 emissions from purchased foods and helped validate and expand the applicability 
of the results and methodologies. To understand the impact of different emissions factors on calculated 
emissions outcomes, the Stanford 2019 food purchasing data was used as a case study and both weight-
based (kg CO2-eq/kg item purchased) and spend-based (kg CO2-eq/$ item purchased) EFs were applied to 
this data set. It was found that for the 2019 Stanford food purchasing case study, the largest estimated 
emissions were about 2.5times larger than the smallest estimated emissions, and although the range of 
estimated emissions for the weight-based factors is larger than the range for the spend-based factors, the 
average is remarkably similar at 10,543 and 11,282 metric tons of CO2-eq respectively. 
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Chapter 1: Introduction  

1.1  Background 
New effects of climate change are being felt around the world every day. Thus, the urgency with 

which mitigation efforts must be implemented only grows. In the last decade, there has been significant 
research conducted related to the quantification of some types of emissions, such as those from power 
generation and from the use of internal combustion engine vehicles. However, there are large sectors of 
the economy for which calculating and tracking emissions have not historically been prioritized. 
Emissions must be quantified in order to be mitigated, thus no large source of emissions can be neglected 
if climate change targets are to be met. These historically neglected emissions have only grown in cultural 
and scientific relevance and the pressure to develop methodologies associated with these emissions has 
also grown as climate change and sustainability has steadily increased in importance in the public’s 
perception 1.  

 

Figure 1. Life-cycle phases for a produced good 2.  

A majority of the emissions associated with a purchased good are the greenhouse gas and other 
pollutants that are emitted during the life cycle of that good. These emissions can be determined through a 
process called a life cycle analysis (LCA). LCA analyzes emissions from making the product, using it, 
and eventually recycling or disposing of it, as can be seen in Figure 1. Each step in the life cycle can have 
emissions associated with it, however, not all products have emissions at each phase and products will 
have different distributions of impact at each stage. For example, a product such as gasoline will have a 
disproportionate amount of emissions during the use phase since this product is combusted, while a 
product that is not combusted, such as a table, will likely have a larger portion of its life cycle emissions 
attributable to the manufacturing phase as there are no use-phase emissions for a table.  

Individuals are often more accustomed to considering the emissions associated with products that 
have a disproportionate share of emissions during the use phase, as this is the phase most visible to 
consumers. However, it is important to bring to light that there are emissions associated with all the 
phases in order to quantify and eliminate them. There have been some improvements in understanding 
and acceptance by the general population of this concept, for example with the rise of vegetarianism and 



2 
 

veganism as mechanisms to reduce food-based emissions. However, there is still much work to be done to 
bring this understanding to needed levels across all demographics and economy sectors.  

 

Figure 2. Emission scopes as defined by the Greenhouse Gas Protocol 3. 

There are three categories of emissions based on their source as illustrated in Figure 2. Scope 1 
emissions are related to all emissions from onsite emissions from burning of fuels and other onsite 
reactions within the boundaries of an entity (e.g., any natural gas water heaters, vehicles). An entity 
within the context of this work is any unit that is calculating its emissions (for example, a company, 
university, person, country, etc.). Scope 2 emissions include offsite emissions such as from the electricity 
that is purchased from the grid, but also includes emissions from other shared large-scale systems, such as 
steam, if available for purchase from a district steam heating system. Scope 3 emissions are also offsite 
emissions related to all other upstream and downstream sources from the entity. These include 15 
categories which are listed in Figure 2, as defined by the Greenhouse Gas Protocol, the developers of the 
Scope 1, 2, 3 terminology. Not all 15 categories are relevant for every entity. For example, the processing 
of sold products would not apply to a university’s Scope 3 emissions because a university does not 
produce sold products. The types of emissions that the public, as well as most companies and universities 
have focused on in terms of reporting and reductions to date are Scope 1 and 2 emissions. However, there 
is growing interest in quantifying and setting targets for reducing Scope 3 emissions. 

Purchased items can have wildly different emissions associated with their production due to varying 
levels of complexity in the products themselves, the wide range of types and amounts of primary 
materials needed, and types of use. By studying an entity’s purchased goods and the emissions associated 
with their production, transportation, and end-of-life, that entity can then understand what categories of 
purchases contribute the most to the total emissions from purchased goods and take steps to mitigate these 
emissions. This can take many forms, including finding lower carbon intensive vendors for product 
categories that contribute significantly, determining if purchasing the historical quantities of these items 
are necessary, or even implementing refurbishment or recycling programs for items if applicable. 
Although Scope 3 emissions are considered indirect, they often make up a majority of emissions for many 
entities, and until every entity producing goods is actively keeping track of and attempting to mitigate its 
Scope 1 and Scope 2 emissions, it will be important for large entities with purchasing power and leverage 
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to put pressure on the markets when trying to minimize their Scope 3 emissions in order to attain the 
needed level of reporting and responsibility for emissions across the board. 

It is also important to remember that Scope 3 emissions are indirect emissions, and therefore they are 
another entity’s Scope 1 and Scope 2 emissions. Broad adoption of Scope 1 and 2 tracking for all entities 
will be necessary to minimize and mitigate climate change impacts in the future. A labeling system 
similar to the nutritional labels that exist for food products would ideally be created and standardized to 
easily pass on the emissions information from upstream for each and every product. This future is still 
distant, and until this is a reality, large entities that care about emissions and have made targets will need 
to put pressure on their supply chains to start accounting for and reducing their Scope 1 and 2 emissions 
such that the entities can claim reductions in Scope 3 emissions. By creating these pressures in the market 
and by making the emissions data readily available, entities and consumers will be able to make more 
informed decisions and the entire economy will move to be more environmentally conscious and 
emissions reduction will be attained at large scale.  

1.2  Methods for Quantifying Scope 3 Emissions 
One current methodology for determining the embodied emissions associated with any item is to take 

a representative quantity, such as weight/volume (weight-based), or cost (spend-based), and multiply that 
value by an appropriate emissions factor. These emissions factors are often determined through LCAs for 
items or product categories which analyze each process or phase that occurs during the life of that item 
and determine the emissions associated with each process or phase. By adding up each process or phase 
emissions, the life-cycle emissions can be determined.  

However, currently there is uncertainty when using these emissions factors and a gap in 
understanding the accuracy, precision, and specificity of emissions factors. It is not possible to get an 
item-specific emission factor in most cases without conducting a time intensive analysis of exactly how 
that one product was produced. Instead, studies have been conducted to determine the average or 
representative emissions factor for a broader category to obtain a representative value. Thus, to determine 
the emissions associated with purchased goods, purchases must be grouped into categories for which 
emissions factors exist. Then, appropriate emissions factors must be used to determine the overall 
emissions from those purchases. Depending on the category being studied, there can be a variety of 
emissions factors which include or exclude certain phases of the life cycle, which are spend- or weight-
based, which represent the emissions associated with an item produced in a specific region of the world, 
etc.  

There are a number of options for where to obtain emissions factors from. Many research publications 
exist which have conducted an LCA for a specific item under a strict set of assumptions, and other 
publications exist which have done literature reviews which attempt to aggregate many LCAs 4,5. Some 
tools exist which are developed by companies to help others calculate emissions, and there are also many 
governmental agencies which provide emissions factors for certain categories of products (e.g. EPA, 
DEFRA). Relevant examples from these categories are further detailed in Chapter 2: Literature Review. 
These tools and sources still require purchases to be grouped into the categories for which each of these 
have emissions factors for, and each of these has a different set of categories with varying amounts of 
specificity. Using these multiple tools and sources introduces uncertainty with regards to the emissions 
calculation results in large part due to different LCA assumptions and the different group categorizations 
needed for each source, in addition to differences in data vintages between tools.  
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This work aims to develop tools and methodologies to ease and create a standardized practice for 
Scope 3 emissions calculations for entities, as well as to quantify uncertainties inherent in using different 
emissions factors. To achieve this goal, food purchasing data was used as a case study to develop tools 
and answer questions that will be relevant for the quantification of emissions from all categories of 
purchased goods. Food data was selected as the case study for this research because of the ease of the 
availability of data both in terms of total weight purchased as well as total spend. 

This work will be relevant across many industries as many entities, including large companies and 
universities, have recently started to set targets for Scope 1, 2, and 3 emissions. In order to mitigate these 
emissions, they must be quantified, and this work is an important step towards that goal. With the rise in 
popularity and customer demands for companies to set emissions targets, work to develop standardized 
methodologies to estimate Scope 3 emissions will only continue to grow in importance.  

1.3  Stanford Food Purchasing Case Study 
In order to answer these questions related to Scope 3 methodologies and to develop the necessary 

tools, a real-world data set was needed. Stanford purchasing was selected to be the source of the data set 
due in part to ease of data availability for the work, but also because universities are on the forefront of 
entities creating Scope 3 commitments. Food purchasing was selected as a subset of purchasing data 
because it provides the ability to quantify the difference in estimates when using weight-based versus 
spend-based emissions factors because it is commonplace to consider both aspects of food. For example, 
people are used to thinking about food both in terms of 6 pounds of beef but also $30 of beef, whereas it 
is not common to think about 50 pounds of chair. This characteristic of food has allowed for systems 
which make keeping track of both spend and weight of food easier.      

This work is generally relevant not only due to the recent increase in public interest in climate change 
and greenhouse gas emissions, but also because it is particularly pertinent within the context of 
scholarship occurring at Stanford due to the announcement made by the Stanford Faculty Senate in 
November 2020. This announcement takes the first step towards prioritizing Scope 3 emissions 
calculations by approving a resolution which set a target for net-zero greenhouse gas emissions from 
Scope 3 emissions by 2040 6. To meet this goal, Stanford will need to quantify all categories in its Scope 
3 emissions, and this work provides the first step in doing so for purchased goods. The Faculty Senate 
committed to net-zero Scope 3 emissions and not a percent reduction, thus the true magnitude of the 
emissions is important, and therefore, careful development of the methodologies that Stanford employs in 
determining its Scope 3 emissions is crucial.  

Within the categories present in purchased goods, food can make up a large portion of a university’s 
Scope 3 emissions due to the sheer amount of food that must be purchased to keep a campus fed. In order 
to validate the tools and methodologies developed, a partnership was formed with the Sustainability 
Indicator Management & Analysis Platform (SIMAP) Nitrogen Working Group 7, through which the food 
purchasing data sets of seven other universities was acquired and the tools and methodologies were 
applied to these data sets and modified for improved performance as needed in order to validate the tool. 
All entities, regardless of their sector, purchase goods, thus any lessons learned or new methodological 
processes that apply for purchased goods within a university’s context will be relevant for a wide range of 
entities when they begin the Scope 3 emissions quantification process.  

1.4  Motivation  
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Preliminary estimates indicate that Scope 3 emissions are expected to represent a majority of an 
entity’s emissions 8, and thus must be quantified such that they can be incorporated into decision making 
efforts to mitigate the effects of climate change. Many companies have recently made sweeping Scope 3 
emissions commitments, including Microsoft 9 and Amazon 10. As more entities join in determining their 
Scope 3 emissions, it will become more important for there to be standard methodologies and tools to 
ease these calculations. As this field is still in relative infancy, there is much research and development of 
these methodologies and tools that must be done. 

In order to determine Scope 3 emissions from purchased food, the thousands of different food items 
that are purchased yearly by an entity must be placed into categories for which emissions factors exist. 
This process can be extremely time-intensive to do by hand, yet that is how many entities have 
approached this task previously. Thus, creating an automated, standardized way to categorize purchases 
can significantly decrease the activation energy associated with analyzing these purchased food data sets 
and be a gateway for widespread adoption of quantification of Scope 3 emissions from purchased food by 
a many entities. Starting with food purchasing can also be seen as a manageable starting point to quantify 
an entity’s Scope 3 emissions. Since entities up to now were free to categorize their food purchases as 
they saw most appropriate, the same item purchased at different entities may have been categorized 
differently between them. Thus, using a common, standardized, categorization tool enables entities to 
conduct fair comparisons between the calculated results.  

In addition to the discussion on the development of methodologies and tools to ease Scope 3 
calculations from purchased goods, this work also explores the impacts and attempts to quantify the 
uncertainty associated with using weight-based versus spend-based emissions factors. Emissions factors 
are a required input when calculating emissions associated with any item if a full LCA cannot be 
conducted, thus a determination of the impacts associated with using different emissions factors have 
applications far beyond purchased goods emissions calculations. The automated categorization tool is 
easily adaptable to have applications beyond the sole categorization of food items.  

1.5  Objectives 
This work aims to answer the following questions relevant to the determination of Scope 3 emissions 

from purchased goods:  

1) How does the use of weight-based versus spend-based emissions factors (EF) affect the 
magnitude of emissions calculated for a data set?  

2) How does using different sources for emissions factors within a same type of EF affect overall 
estimated emissions? 

3) What is needed to standardize and ease calculation of Scope 3 emissions across countries and 
backgrounds such that the process can be automated and replicable results can be ensured? 

To answer these questions, food purchases from Stanford in 2019 were used as a case study to 
develop methodologies for categorization of purchased items as well as to quantify uncertainties in 
calculated emissions when considering the same data but using different emissions factors. Emissions 
factors were collected from a variety of commercial and public tools and databases for emissions 
calculations and include both weight-based and spend-based factors to determine the possible range of 
quantified emissions from the data sets studied. In addition, this work aims to develop and leverage 
partnerships with other entities to validate and standardize methodologies and tools to ease the process for 
others to quantify their Scope 3 emissions in the future.  
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Chapter 2: Literature Review 
Although research has previously been conducted with regards to portions of this work, there is not 

much identified research that combines spend- and weight-based analyses, comparisons of sets of 
emissions factors, and the analysis of a real-world data set. There has also not been significant research 
conducted with regards to categorization methodology for determining Scope 3 emissions from purchased 
goods and analyzing how different categorizations may impact the final emissions calculation. Many of 
the identified studies are more academic in nature and do not deal with the practical concerns associated 
with categorization of large numbers of purchases. Below are summarized the relevant literature for this 
research.     

2.1 Life-Cycle Analysis (LCA) 
 The fundamental basis of most emissions factors is life-cycle analysis. As discussed in Chapter 

1.1  Background, the assumptions and boundaries which are considered whenever an LCA is 
conducted are very important and impact significantly the total emissions calculated for an item. It is also 
important to be aware of the boundaries of LCAs when attempting to compare the results from using 
emissions factors derived from various LCAs. In the Poore et al. 5 paper, which will be further discussed 
in this section, significant efforts were made to harmonize assumptions before compiling aggregated data 
from many LCAs. The boundaries for all the LCAs used in this work vary, with some being cradle-to-
grave, others being cradle-to-gate, and some including land use emissions or indirect supply chain 
emissions.  

2.2 Weight-Based Emissions Factors 

2.2.1 SIMAP Emissions Basis: Heller et al. 2014 4 

This study conducted a meta-analysis of various emissions factors from the literature to develop 
representative emissions factors for different food types, and it focuses mostly on estimating the 
emissions of the average American diet and the impacts of food loss in the United States. In order to 
achieve this goal, the emissions for food groups were determined by calculating the average emission 
factors for each food category from the literature. These emissions factors are not intended to provide an 
exact result for each food type – instead, they are supposed to provide a reasonable range for expected 
emissions values. This study includes the emissions associated with the production of food that is wasted 
at both the retail and consumer levels and considers the possible impacts of shifts in dietary habits, but 
does not include the emissions associated with the disposal of the wasted food. These losses are estimated 
to be approximately 1.3 billion metric tons per year of food in 2014, which represents almost 1/3rd of food 
produced for human consumption. Plate waste by consumers in included in the analysis but the paper 
does not include impacts of waste from retailers due to appearance or issues such as pest infestations, 
mold, and other spoilage factors. The emissions factors were compiled from a literature review and the 
average of the reported values were used in the calculations presented here. In addition, the data were 
collected from around the world because US-specific data were limited. This paper determines that the 
losses associated with food contribute an average of 1.4 kg CO2-eq per capita per day in the US, which is 
approximately equivalent to emissions from 33 million passenger vehicles per year. By using the 
minimum and maximum emissions factors for each food category, the paper also found that the possible 
range of emissions associated with food consumption per capita in the US is between 2.5 and 9.2 kg CO2-
eq per day. 
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In addition to calculating the emissions associated with food loss and consumption, this study also 
noted several other interesting findings. For example, it was found that while beef makes up 
approximately 4% of the retail food supply by weight, it makes up 36% of the diet-related emissions. 
Direct emissions from agriculture were estimated to represent between 10 and 12 % of global emissions, 
but this range increased to 17-32% when indirect emissions, such as fertilizers, chemical production, fuel 
use, and agriculturally induced land-use, were included in the calculations. In addition, when compared to 
processing and other phases, agricultural production dominates the LCA emissions associated with the 
food commodity.  

This study also highlights several important topics that are relevant to the rest of this work. For 
example, the analysis found that Economic Input Output models often produce larger emissions estimates 
by virtue of including the impact of indirect emissions in their calculations—emissions which are usually 
excluded in process level LCA studies, such as emissions associated with producing capital equipment. 
Finally, it is mentioned that comparisons between LCAs are difficult due to differences in system 
boundaries, allocation procedures, and geographic idiosyncrasies that include electricity grid mix and 
typical production methods. Finally, one other comparison was done with the UK-specific Hoolohan et al. 
(2013) emissions factors which found that the total food emissions was 17% greater than the emissions 
calculated using the average Heller et al. emissions factors.     

2.2.1.1 Heller et al. 2014 Edits for Use in SIMAP 4 

SIMAP is a tool developed by the University of New Hampshire that aims to help universities 
calculate their Scope 1 and 2 emissions. The tool includes food purchasing in its metrics for analysis due 
to SIMAP’s focus on nitrogen foot-printing. SIMAP has developed an emissions calculator that measures 
these emissions that is used by many universities across the US. The emissions factors used by SIMAP 
for food purchasing are based on the Heller et al. 2014 emissions factors. These factors have been 
available for a longer period and existed when SIMAP added food purchasing emissions to its calculator; 
however, some edits were put in place in order to make the tool more flexible and capable of handling 
more specific data sets. For example, users can tag purchases as organic and local, and the Heller et. al 
2014 emissions factors are edited to reflect these impacts. If a food purchase is tagged as local, the Heller 
et al. values are modified to reduce the transportation emissions. It is assumed that transportation from 
producer to retail accounts for approximately 4% of greenhouse gas emissions from food 11. This means 
that for local foods, the Heller et al. 2014 values are reduced by 3% to account for a 75% reduction in 
transported miles.  

2.2.2 US-Based Food Impacts Literature Review- Heller et al. 2018  

The same authors as the Heller et al. 2014 paper conducted a new study in 2018 to understand the 
environmental impact of individual self-selected diets in the US by performing a 1-day dietary recall of 
16,800 Americans. To determine the emissions of these diets, Heller et al. updated their food emissions 
factors from the limited 2014 values by conducting a more exhaustive literature review and including 
updated data. This was in part possible due to a larger number of food LCAs conducted between 2014 and 
2018 due to increased interest in the field. However, it is important to note that there are still many gaps 
in the food LCA literature, including analyses related to nuts, legumes, and meat substitutes, and that the 
current literature is biased towards European studies. In addition, this study used a more refined food type 
characterization as compared to the 2014 study: the new emissions factors were calculated by considering 
13 different categories, and an average of the literature review for each of these categories was used. The 
categories were made up of 841 different LCA data points that were organized into 172 foods. These data 
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were combined to create the database of Food Impacts on the Environment for Linking to Diets 
(dataFIELD).  

To be included in this literature review, papers had to be publicly available, in English, published 
between 2005 and 2016, and LCAs for one or more food products. The functional unit considered was 
one kilogram of food, except for meat and fish/seafood, for which the functional unit was adjusted to 
represent one kilogram of edible boneless weight. LCAs for heated greenhouse vegetable production and 
for beef from dairy herds were not included in dataFIELD because information on the market share of 
these production methods was either not available or unreliable. In addition, for juices, vinegar, and 
maple syrup, additional sources were used to develop valid emissions estimates that possibly were not in 
English or primary source documents. The LCA boundaries considered for the emissions factors in this 
study are cradle-to-farm gate. Because most of these commodity foods are used as ingredients and are 
further processed before being eaten, considering the phases after farm gate would not reflect the actual 
impacts of the food consumed. However, flours, refined sugars, vegetable oils, and other foods that 
require processing before becoming ingredients had the emissions associated with these processing steps 
included in their LCA boundaries. More information on this methodology is available in the 
supplementary information for the Heller et al. paper. The food losses included in the LCA were 
calculated using the USDA’s loss-adjusted food availability and included losses from retail sites such as 
supermarkets and restaurants as well as consumer losses from cooking losses and uneaten food. 
Importantly, this study included an emissions factor for beverages which up to this point were not often 
identified as a separate food group but ended up being the third largest food group in terms of emissions 
in this work. This is particularly important because the packaging and use phase portions of the LCA 
phases are not included in the emissions factors, both of which are high for beverages due to, for example, 
packaging for soda, and brewing coffee or heating water for other drinks. 

The study, unlike previous studies, looked at the impacts of the variability across the LCA studies on 
the mean self-selected diet emissions and found it caused a ±19% range to this value. This was done by 
calculating upper and lower bounds for the impacts of the food types and carrying these through to the 
diet-level impact calculations. The variability in the LCA studies is believed to be due to differences in 
food production locations (and thus climatic conditions), production practices, and LCA allocation 
methods for co-products, all characteristics which cannot currently be evaluated for individual diet 
decisions. Variability is also introduced because many foods referenced in the diet surveys are complex 
recipes, such as lasagna, or are items which have not yet been studied in life cycle assessment literature, 
such as blackberries. Thus, appropriate proxies for emissions factors must be used for these items.  

In addition, the study concluded that the meat categories contributed 57% of the average dietary 
greenhouse gas emissions. Within the meats categories, for the total population, 80.6% of the emissions 
were due to beef consumption, 9.5% from poultry consumption, and 8.5% from pork consumption. 
Surprisingly, this study found that the 20% of diets that have the largest carbon footprint account for 
45.5% of the total diet related emissions in the United States. The greenhouse gas emissions of the 5th 
quintile were almost 8 times the emissions of the 1st quintile and were 3 times that of the middle quintile. 
This is in part due to the fact that the 5th quintile consumes on average 2.25 times the number of 
kilocalories as the 1st quintile. Thus, if the 5th quintile shifted such that their emissions were equivalent to 
the mean emissions impact of diets, this would be equivalent to reducing emissions in the US by 0.27 
million metric tons of CO2-eq per day or the equivalent of eliminating 661 million average passenger 
vehicle miles. Thus, behavior change offers an important opportunity for emissions reductions in the US. 
This study also shows that foods for which LCAs do not currently exist do not contribute significantly to 
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the overall emissions from food consumption in the US as long as appropriate proxies are selected from 
available literature.  

Finally, in order to estimate the emissions associated with the LCA boundaries not considered in the 
main study, the US EPA EEIO model was used and the estimated contribution of the disregarded phases 
was 15% of the total cradle-to-processor gate emissions. More information on this methodology can be 
found in the supporting information for this study. However, these EEIO models consider the food and 
agricultural sectors in aggregate, thus, they cannot be applied evenly across different food types or for 
specific diets and are only applicable to the mean.    

It is important to consider that these diet-level estimates were conducted using self-reported diets, 
which usually understate actual food consumption, and that since the boundaries for the study are cradle-
to-farm gate, these emissions values should be considered underestimates of the total emissions associated 
with food consumed in the US. 

2.2.3 Global Food Production Impacts Literature Review - Poore et al.5 

This study evaluates the impacts of food production on five different environmental factors (land use, 
freshwater withdrawals, greenhouse gas emissions, acidification, and eutrophication) using data from 
38,700 farms, and 1,600 processors, packing types, and retailers. It found that the total impact can vary up 
to 50 times among producers of the same food product. This range of emissions is due to the fact that 
there are millions of producers of food and a large range of farming techniques, all of which have 
different impacts associated with them. Different methodologies were accounted for between the LCAs 
included in the analysis, and were harmonized and reconciled among the global data that was gathered. 
The data was gathered from 1,530 studies, and 11 criteria were used to standardize the methodology 
between the LCAs. This led to the incorporation of 570 of these articles, which had a median reference 
year of 2010. The data from the studies were available because of a recent rapid expansion in literature 
associated with LCAs, which are done in part by surveying producers around the world. The data 
included in the analysis represented more than 38,000 farms in 119 countries and 40 products, which 
make up about 90% of global protein and calorie consumption, and were used to produce emissions 
factors for 59 food categories. They estimate that the food supply chain emits 13.7 billion metric tons of 
CO2-eq per year, which makes up 26% of anthropogenic emissions. The breakdown of the emissions per 
food category as well as the contributions from each life cycle phase to each food’s total emissions can be 
found in Appendix I: Poore emissions breakdown. The life cycle analysis did not include emissions 
associated with consumer losses because of a lack of available data.  

Major conclusions from this study include the following. Due to the large variability in emissions 
between farms producing the same products, which can range from 2 to 130 times larger between the 90th 
percentile to the 10th percentile emissions, there is large potential for reduction in emissions if the largest 
emissions methods are able to switch to lower emissions methods. For example, across all the food 
categories, 25% of the products contribute on average 53% of the emissions from that food group. There 
are also relevant conclusions made within food groups. Methane emissions from flooded rice, enteric 
methane from ruminants, and concentrated feed for pigs and poultry make up 30% of emissions from 
food globally. Within this study, nuts are considered to have the potential for negative emissions due to 
the fact that they can temporarily sequester carbon when they replace croplands or pastures by 
sequestering carbon in the trees themselves. For food categories such as beef, the losses associated with 
distribution and retail can make up 12 to 15% of the total emissions for the category. Overall, the largest 
LCA phase contributor was the farm stage, which was found to account for 61% of the life cycle 
emissions for food. In addition, contrary to commonly held popular belief, the emissions associated with 
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transportation were not a major contributor to overall life cycle emissions as only 6% of the emissions 
came from transportation on average. 

In order to mitigate emissions, several recommendations were made: to develop systems for 
producers to monitor their own impacts; to meet environmental targets by choosing less carbon intensive 
farming methods; and to communicate impacts to consumers in order to encourage consumers to change 
dietary habits. Another option for lowering emissions is to switch from planting monocultures to 
diversified crops, which also improve degraded pastures and require less land use. Finally, in the US, the 
average meat consumption per capita is as much as three times the global average, thus, changes to 
dietary habits have a large potential for emissions reductions. By providing processors, retailers, and 
consumers with emissions values for the products, providers could encourage waste reduction and dietary 
changes where it matters most. 

2.2.3.1 Poore et al. Edits for Use in World Resources Institute Cool Food Pledge 12,13  

Edits were made to the Poore et al. emissions factors in order to develop a US-specific and Europe-
specific set of emissions factors to be used in the Cool Food Pledge emissions calculator developed by the 
World Resources Institute. The Cool Food Pledge aims to help entities reduce their climate impacts from 
food by encouraging shifts to plant-rich diets, and by providing support and methodologies to commit to 
and reach these science-based targets. To align with the IPCC goals, entities participating in the Cool 
Food Pledge must commit to reducing food emissions by 25% by 2030 as compared to food emissions in 
2015. Entities are required to report animal-based food purchases (ruminant meats, other meats, dairy, 
fish and seafood, legumes, grains/cereals (except rice), and plant-based milk substitutes), which were 
found to represent more than 80% of the total emissions from food, including supply chain emissions and 
carbon opportunity costs. Entities are not required but are encouraged to report purchases of fruits, 
vegetables, roots and tubers, sugars and sweeteners, vegetable oils, alcohol, and stimulants. 

The Cool Food Pledge considers agricultural supply chain emissions, land use, annualized carbon 
opportunity costs, and total calories in their calculations and commitments. The life cycle stages 
considered are cradle-to-point of purchase as well as carbon opportunity costs (COC), which are defined 
as the amount of carbon that could be stored if production of that food type was reduced and the land used 
by that food was restored to its native vegetation. Most LCAs do not translate the agricultural land use 
into COCs, and the data for COC were extracted from Searchinger et al. 14  The COCs are a way to 
interpret the pressure that entities’ food purchases cause on forests and other natural ecosystems and their 
related climate impacts.  

The emissions factors were developed based on the Poore et al. emissions factors, but the local 
(Europe and US) values were determined by using a weighted mean, by calculating the share of the 
national agricultural production that each analyzed LCA data point represented and the share each country 
represented for the global values. The losses during harvesting, transportation, processing, and packaging 
were included, but the analysis did not include retail-level emissions or losses, or post-retail stages such 
as consumer waste. In addition, the Cool Food Pledge calculator converts purchases of meats and fish into 
boneless equivalent weights for which the emissions factors were developed. It was found that the 
annualized COCs are larger than supply chain emissions for almost all the food categories. However, 
because the COCs have some elements associated with avoided emissions, they are not included in the 
standard Scope 3 GHG Inventory and must be reported separately from the supply chain emissions. 

Although the Cool Food Pledge documentation does include a comparison of the cradle-to-farm gate 
emissions factors for several food categories from several papers 5,15,16, there is no discussion as to how 



11 
 

these differences in emissions factors impact the analysis of a real-world food purchasing data set. This 
variation in emissions factors is explained by differences in production systems in different regions. 
These production differences include decisions related to production strategies, such as how to boost 
yields, reducing direct agricultural production emissions by improving input technologies, improving 
management, and how carbon is sequestered in soils in different regions. Because of the inclusion of the 
COCs, the Cool Food Pledge analysis shows that the benefits associated with shifting to more plant-based 
diets are larger than previously reported. 

2.2.4 Land Use Change Emissions  

There are various different approaches to accounting for land use change emissions within the LCA 
community. However, it is estimated that in 2010, land use change, including vegetation clearing and soil 
plowing, accounted for approximately 10% of anthropogenic GHG emissions, most of which was caused 
by agricultural expansion into forests and other natural ecosystems 13. It is also estimated that 
deforestation and other land-use changes have contributed between 25-33% of the total anthropogenic 
emissions since 1750 17. Typical LCAs often only consider land use in terms of hectares without 
converting to carbon emissions, and those that do often only consider land use carbon costs if the food 
produced directly cleared new land, or only consider costs for meat or milk because these crops are 
expanding into new lands 14. It is also important to consider that different production practices can 
significantly impact the land-use change emissions of a particular crop in a particular area. For example, 
because organically grown foods have yields that can be between 19-25% lower than non-organic 
production methods, the land-use carbon opportunity costs can be 23-33% higher 13, and the total land 
needed to grow the same amount of an organic crop would need to be larger than for the non-organic 
same crop.  

2.3  Spend-Based Emissions Factors 

2.3.1 Introduction to Economic Input-Output Tables 18 

Economic Input-Output (EIO) models are matrix representations of the monetary flows between the 
different industrial sectors and thus show what goods and services are consumed by other industries. Each 
row and column in the matrix representation is a single industrial sector. The intersections of the matrix 
show the monetary amount that is output by one industry (row) as an input for another (column). By 
utilizing linear algebra techniques, EIO models can be used to determine the direct effects (those that 
occur directly from the sector of interest to all other sectors), indirect effects (those that occur between all 
other sectors in order to meet the demand in those sectors needed to fulfill the demand of the sector of 
interest), and total effects of changes to the economy. Many nations create EIO models for their own 
economies, and each model has varying degrees of detail and data update frequency. The data to produce 
the EIO models comes from surveys sent to a sample of all operating facilities.  

These traditional EIO models can be expanded upon to determine not only the monetary flows 
between industries but also other flows, including energy, electricity, greenhouse gas emissions, and other 
environmental impacts. This idea of combining LCAs and EIOs into an Economic Input-Output Life 
Cycle Assessment (EIO-LCA) was developed by Wassily Leontief in the 1930s. The EIO-LCA is one 
mechanism of performing an LCA, and it is used to estimate the total emissions throughout a supply 
chain for a specific country. The EIO-LCA is effectively a traditional EIO matrix with an additional 
column representing the environment. The value of each row within the column represents the 
environmental impact of one industrial sector to the environment. Because both direct and indirect 
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interactions between the industries in an economy are included, the boundary of the LCA is considered to 
be broad and inclusive. In addition, EIO models include monetary transactions within a sector, thus any 
circularity effects of recycling or other circularity influences are included in these LCAs. EIO models are 
particularly useful when considering economies or large systems because the traditional LCA methods for 
single products are not scalable or practical for analysis of the entire economy. 

Several matrices are needed for an EIO model, and the data held within these matrices are usually in 
units of dollars (or other currency) such that all the items in an economy are in comparable units. A 
Matrix, often called A, represents the direct effects where the rows of A represent the amount of output 
from industry i which is needed to produce one dollar’s worth of output from industry j. If a Y vector 
represents the final demand of goods from each sector in an economy is defined, to determine the direct 
requirements from all sectors to meet the demand defined in Y, a new vector X can be defined as 𝑋 =

(1 − 𝐴)ିଵ where X includes both direct and indirect transactions between sectors. Now, another vector 

can be defined as 𝑅௜ =
௧௢௧௔௟ ௘௫௧௘௥௡௔௟ ௢௨௧௣௨௧

௑೔
 where Ri is he impact in sector i and Xi is the total dollar 

output for sector i. This is very similar conceptually to developing a carbon intensity of sector i. Finally, 
in order to determine the environmental impacts from meeting the demand in Y, a new vector of total 
external outputs can be defined as 𝐵௜ by multiplying the total economic output at each stage by the 
respective impact.  

There are several caveats that should be made clear for consideration when using EIO-LCA models. 
These models do not include the use phase and the end-of-life phases, but there are some additional 
analyses that can be done using the EIO-LCA model to help understand the emissions of these phases as 
well. The data for the environmental impacts of sectors are often gathered using the North American 
industry classification system (NAICS) or other generic categorization systems (for example, the USDA 
uses crop types to categorize farms), but these categories do not exactly line up with the economic sectors 
defined within the EIO models. Thus, harmonization by using weighted averages or external sources must 
be conducted between the environmental impact categories and the EIO categories. In addition, these EIO 
models do not explicitly account for imports and exports, which can make up a significant amount of any 
economy’s transactions. Imports are handled by assuming that they have the same production 
characteristics as the comparable product made in the EIO model country. 

The data used in the EIO models also have several important characteristics which should be 
considered when using these models. The data can be several years old, and because the amount that these 
data change over time varies widely depending on the industry sector, care should be taken when using a 
model to replicate the current conditions. In particular, environmental impacts can change over time due 
to process improvements, such as increases in efficiency, or regulatory improvements, such as setting 
maximum levels of pollutants. In addition, all the data that is used in the EIO-LCA models are compiled 
from surveys which are submitted by players within the industries to their respective governments for 
national statistical purposes. Thus, there is an inherent uncertainty in the sampling, response rate, and 
missing or incomplete data which contribute to uncertainty in the EIO-LCA model results. Finally, the 
economic data that forms the basis of the EIO-LCA models represent the producer prices. These are the 
prices that a producer needs for its goods and services which include taxes and any applicable subsidies. 
In other words, it represents the costs of buying all the needed materials, running the facilities, paying 
workers, etc. The purchaser price, on the other hand, includes the producer price and any other costs 
associated with transporting the product to the point of sale and any wholesale or retail trade margins. 
Thus, for many physical goods, there can be a large disparity between the producer and purchaser prices.  
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2.3.2 Environmental Protection Agency (EPA) US Environmental 
Economic Input Output (EEIO) 19  

The US EEIO tool was developed by the EPA to provide an economic based LCA tool that was 
transparent, reproducible, open, and up to date. Thus, all files associated with the US EEIO are publicly 
available, unlike most other EEIO tools. The tool was developed in part to help organizations identify 
environmental impact hotspots in their supply chains. The US EEIO models use economic input output 
tables as discussed in the previous section. These EIO tables are updated at the detail level every 5 years 
and include information for almost 400 industry sectors 18. The data used for these economic input output 
tables is the same as are provided by the US Bureau of Economic Analysis (BEA) to determine the yearly 
US Gross Domestic Product. US EEIO v1.1 combines data on monetary flows between 389 industry 
sectors and environmental data for the same sectors to produce a life cycle model of 385 US goods and 
services with data from 2007. The data from the BEA is in the form of Make tables and Use tables, which 
are a slight variant of the standard IO tables developed by Stone et al in the 1960s in order to account for 
secondary products.  

Cradle-to-gate environmental impacts considered include land, water, energy, and mineral usage; 
emissions of greenhouse gases and criteria air pollutants; nutrient releases to water; and toxic releases to 
water, air and soil. The greenhouse gas emissions and sinks data come from the 2013 US GHG Inventory 
conducted by the US EPA and were collected into satellite tables. Assumptions, primarily that a single 
impact data point applies equally for all technologies in the sector, had to be made for some impact 
factors including greenhouse gas emissions for sectors that have mixed technologies. One difficulty 
associated with developing the satellite tables is that there are a variety of data sources, including both 
surveys and model simulations, that have varying degrees of quality and uncertainty associated with them. 
GHG emissions are considered to have average reliability within the model. Most of the data are gathered 
from individual facility reports which are compiled in the National Emissions Inventory, Toxic Release 
Inventory, and Discharge Monitoring Report. All the data are either discrete sources which report across 
the US or are based on average US conditions. The model makes two important assumptions with regard 
to how secondary products are produced: first is that all commodities which are produced by an industry 
have the same input structure, and second is that a given commodity has the same input structure 
regardless of where it is produced. 

There are several matrices from the USEEIO v1.1 model which are available for use in analyses of 
environmental impacts:  

 A Matrix (technology matrix, or direct requirements matrix): commodity inputs are the rows of the 
matrix, and the commodity outputs are the columns of the matrix. The data were derived from the 
2007 Input-Output tables developed by the US Bureau of Economic Analysis. This matrix is 
calculated by the IO model builder by multiplying the commodity-by-industry direct requirements 
gathered from the Use table by the market share industry-by-commodity matrix gathered from the 
Make table after the scrap adjustment procedure.  

 B Matrix (Environmental matrix): provides data on emissions or resource by commodity. Direct 
emissions and resource use needed to produce one 2013$ of a commodity are the rows of the matrix 
and the commodities are the columns of the matrix.   

 C Matrix (Characterization Factors Matrix): Indicators make up the rows of the matrix for a given 
emission or resource, which are the columns of the matrix.  
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 D Matrix (Direct Environmental Impacts): indicators are the rows of the matrix and commodities are 
the columns of the matrix. This matrix provides data on the direct environmental impacts associated 
with producing one 2013$ worth of a commodity. This matrix is calculated by multiplying the C and 
B matrices. 

 L Matrix (Leontif Inverse of the A Matrix): the total direct and indirect dollars of a commodity 
needed to produce one dollar of a commodity are the rows of the matrix and the commodities are the 
columns of the matrix. The matrix is calculated by calculating (I-A)-1.   

 LCI Matrix (Life Cycle Inventory Results): This matrix has the same rows and columns as the B 
Matrix, but the data represent both the direct and indirect resources or emissions associated with 
producing one 2013$ worth of a commodity. This matrix is calculated using the following formula: 
B*(1-A)-1.  

 U Matrix (Life Cycle Impact Assessment Results): This matrix has the same rows and columns as the 
D Matrix, but the data represent both direct and indirect environmental impacts associated with 
producing one 2013$ worth of a commodity. This matrix is calculated using the following formula: 
CB(1-A)-1.  

Yang et al.20 compared, as much as possible, US EEIO v1.1 to CEDA v4.6 and found that the sources 
for greenhouse gas emissions between the two were largely the same. A true quantitative comparison of 
results was not conducted because the two tools are based on different reference years. Yang et al. found 
that at the time of development, US EEIO included more current data, had more extensive consideration 
of impacts and resources, was more detailed in its interpretation, and included formal data quality 
evaluations when compared to other EEIO tools available at the time. Yang et al. also compared openIO 
1.4 (another EEIO tool) and CEDA v4.6 and found that it is not possible to determine which model is 
more accurate. Even though the fundamental environmental data sources for greenhouse gas emissions 
used to create the satellite tables were the same, there were significant differences in the results. Yang 
hypothesizes that this could be due to differences in allocation methodologies of emissions to different 
sectors or to differences in the use of primary or secondary sources. Due to a lack of documentation, it 
was not possible to ascertain exactly where the differences were in the creation of the satellite tables for 
both tools. Yang et al. also provided a framework for conducting a hotspot analysis for goods and services 
by using the US EEIO tool and conducted an analysis that showed the structure of the US economy is 
relatively slow to change. Because of this characteristic, EEIO models can be appropriate for use even 
when the economic and environmental data years do not necessarily match the year of the data being 
analyzed, as long as rapidly changing sectors are not the focus of analysis, and the prices are adjusted to 
the EIO year.  

At the time of the release of US EEIO v1.1, it was not common to evaluate uncertainty within EEIO 
models because there were no established methods for doing so. Since the development, it has become 
more common, but a formal structure still does not exist. Future iterations of the US EEIO model hope to 
include use and end-of-life emissions for commodities used by US households as well as regional-specific 
versions of the model for more specific applications than the broad US economy.  

2.3.3 Supply Chain Greenhouse gas Emissions Factors (SEF) 21 

The Supply Chain Greenhouse gas Emissions Factors (SEFs) were developed to provide a 
comprehensive set of supply chain emissions factors that cover all goods and services within the US 
economy. Emissions factors were developed for supply chain without margins (cradle-to-factory gate); 
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supply chain margin emissions (factory gate-to-shelf) which include emissions from transportation, 
storage and selling (both wholesale and retail) adjustments for price markups; and supply chain emissions 
with margins (cradle-to-shelf). None of the factors include emissions from the use or end-of-life phases 
and they do not include biogenic CO2 emissions nor emissions derived from biomass. The emissions 
factors are in terms of kilograms of greenhouse gas emissions per 2018$ purchaser price and procedures 
which are available in the original appendix were done in order to align the direct emissions factors with 
the dollar year of the IO table data.   

SEFs use the US EEIO v2.0 as a basis for the economic and environmental impact flows. US EEIO 
v2.0 uses 2012 IO tables from the BEA, the most recently available data set. These EIO tables were 
extended by researchers from the Yale University Center for Industrial Ecology and then further refined 
for the development of the SEFs. The two main differences between the SEFs and the original US EEIO 
v1.1 discussed above is that the emissions associated with the supply chain and marginal emissions are 
broken out and that the commodity prices in the SEFs represent purchaser price whereas US EEIO v1.1 
represent purchaser prices. Purchaser prices match spending data more closely and thus can be more 
accurate for emissions from spending analysis. Additionally, using purchaser prices reduces the 
uncertainty related to the margin emissions. In addition, the SEFs are available with greenhouse gas 
emissions specific data from 2010-2016; however, all of these years use the 2012 detail IO data. US EEIO 
v1.1 uses 2007 detail IO data and emissions factors from 2013 22. Like other EEIO models, the SEFs 
assume that imported commodities are produced in the same way they are in the US thus have the same 
emissions factors. In other words, international transportation emissions are not included in the margin 
emissions factors. The 2012 Personal Consumption Expenditures and Private Investment in Equipment 
bridge tables were used to develop the margin data for both the emissions factors as well as the price 
adjustments. These tables introduce some difficulties because these are also only updated every five years 
and their sector categories do not exactly match the sectors from the other data sources. 

Supply chain emissions factors can be commodity-based or industry-based which introduce more 
uncertainty with regards to the total magnitude of emissions estimate depending on which of these two 
modes is used. Commodity-based and industry-based factors are useful for determining emissions 
associated with purchases of a specific commodity or from a given industry respectively. Differences 
arise between these two methodologies when the same commodity is produced by many industries (for 
example when a commodity is the primary product of one industry and the secondary product of another 
industry), and each of the industries have varying supply chains. Industry-based and commodity-based 
SEFs are usually very similar for most sectors except for the utility section which had the largest 
difference between the two emissions factors, where the industry-based value was significantly larger.  

In addition, some comparisons were made when analyzing emissions at different levels of granularity 
available for the IO tables – at the detail level and the summary level. These refer to the number of sectors 
considered in the IO tables available from government agencies. The summary level is updated yearly but 
only includes 73 sectors whereas the detail level includes almost 400 sectors and is only updated every 
five years. The summary level factors have a larger aggregation error than the detail level factors because 
of how transactions are aggregated in the IO tables, but the detail level factors require the use of older 
economic data. The analysis was conducted by using the US EEIO models with the 2016 greenhouse gas 
emissions data and were converted to 2018$ producer price. The summary level methodology produces 
total commodity emissions equal to those reported by the National GHG Industry Attribution model, but 
the detail SEFs had a small difference between the sum and the overall emissions of less than -6% for 
both CO2 and N2O emissions in 2012. The total difference ranged from -12 to 7% when comparing the 
SEF data to the annual national reported values for the years 2010-2016, which shows there in inherent 
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uncertainty with regard to the results estimated using these tales. These differences arise due to the use of 
the 2012 IO tables which are the most recently available data for economic transactions between the 
sectors/commodities. Overall, for CO2 supply chain emissions factors, the summary level values were 
found to be smaller than the median detail level values. Specifically for food, the detail level factors for 
CO2 emissions had a range of 0.17-0.77 kg/$ with a median of 0.48 kg/$ whereas the summary level 
factor was 0.42 kg/$. Both the summary level and detail level methodologies provide an average of the 
commodity or industry performances in the US. Thus, differences in production technologies and 
practices, environmental controls, scales of production, or locations in the US are not captured in these 
SEFs. 

 In conclusion, for most commodities and industries, the indirect emissions are larger than the direct 
emissions, thus it is important to include the supply chain emissions in emissions calculations. EEIO 
models are the best equipped to calculate these supply chain emissions when compared to process based 
LCAs because they are more comprehensive in terms of inclusion of contributors to the supply chain. It 
was determined that the differences in SEFs across the different sectors are much larger than the 
variations within a sector between years, thus if determining the order of priority for emissions from 
purchased goods, using any of the available years should provide the same general result of important 
categories. However, the magnitude of total emissions calculated using factors from the range of years 
can change significantly as the relative change within a commodity or industry SEF from one year to the 
next was found to be up to 50% smaller, highlighting the importance of regularly updating emissions 
factors.  

2.3.4 Comprehensive Environmental Data Archive (CEDA) 5 VitalMetrics 
– Private Spend Based Emissions Tool 

CEDA is a private and proprietary EEIO tool managed by VitalMetrics. It considers cradle-to-gate 
emissions and includes factors for greenhouse gas emissions as well as other common pollutants and 
climate impact factors 23. The first version of CEDA was developed in 2000 and has been used since by 
the private sector for greenhouse gas accounting and life cycle assessments 23 and is updated annually. 
With CEDA, it is possible to quantify the supply chain footprint of a company by using spend data in 
order to identify key contributors 23. CEDA combines input-output tables, emissions, resource use 
statistics, and characterization factors from LCAs in order to determine environmental impacts 24. The 
2005 CEDA 3.0 used the US Bureau of Economic Analysis 1998 input output tables 24, and a more recent 
description of specific sources used for updated versions was not found. The aggregation of 
environmental data is not a straightforward one as many assumptions are needed as well as harmonization 
in order to collect often incompatible information from multiple sources 24. CEDA was developed for 
multiple intended possible uses including policy modeling, material flow analyses, substance flow 
analyses, LCAs, consumption and related environmental impact analyses, and selection of alternative 
materials for environmental design.   

The version of CEDA considered in this study is CEDA 5 which uses data available from 2014 and is 
focused on US specific IO tables and emissions 25, thus is intended for national or at most continental 
level analyses 24.  In 2017, CEDA was one of the three most used EEIO models 19. Although some 
documentation exists, it is not always clear what year is used for some data sources for the most recent 
versions of CEDA 19. CEDA 5 includes 389 industrial sectors 26 and includes data from 2700+ 
environmental exchanges 23.   

General conclusions found from the use of CEDA include that in order for progress in LCA 
methodology to continue, there needs to be significant collaboration between economic and 
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environmental statistics in order to collect appropriate data at a frequency high enough to develop 
meaningful emissions estimates 24. In addition, due to a large amount of data necessary for the 
development of CEDA, it was found to be difficult to quantitatively determine uncertainty with regards to 
specific data points 24. Similarly to other IO tables discussed, in CEDA 5, imports are assumed to have the 
same environmental impacts as products produced domestically, thus there is room for improvement with 
regards to the handling of imports. Although imports represent a small portion of the US economy in 
terms of marginal monetary terms, it is possible that the emissions associated with the imports are larger 
than monetary fraction of the economy 24. Finally, key sectors which contribute significantly to the 
emissions of the US economy would benefit from increased disaggregation for better understanding of the 
sector components that contribute significantly to emissions 24.    
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Chapter 3: Methodology 

3.1 Introduction 
In 2019, Stanford budgeted to spend $336.5 million dollars on materials and supplies of which most 

are for use in laboratories and research settings 27. These items range broadly from broths for bacterial 
growth to magnetic resonance imaging machines to desks to ketchup. Emissions from purchased goods 
are thought to comprise a large portion of Stanford’s, and any other research university’s Scope 3 
emissions. Food is estimated to be the 31st largest spend category among all Stanford purchased goods 
and services and was used to develop the tools and methodologies needed to ease and standardize 
calculations of Scope 3 emissions from purchased goods. In addition to the food purchasing data available 
from Stanford, data from other universities across the United States were gathered and used as a case 
study. These data were collected by reaching out to university dining hall coordinators, procurement 
offices, and through a partnership with the SIMAP Nitrogen Working Group (NWG).  

The methodology was split into various steps which are presented in Figure 3 and further elaborated 
in this chapter. First, food purchasing data was collected which included both weight and spend data, and 
appropriate weights were assigned to these purchases. A categorization tool was developed to group the 
purchases into appropriate categories for which emissions factors exist. This tool was validated using 
comparisons to previously hand-categorized data from partner universities from the SIMAP NWG. Once 
total weights and spends were assigned to categories, different emissions factors were used to calculate 
estimates for total emissions from the food purchases to determine differences and quantify uncertainty 
present when using spend-based and weight-based emissions factors.  

 

Figure 3. High level view of methodology for determination of emissions from food purchases using spend-based and weight-
based emissions factors. 

3.2 Data Collection 
A partnership with the Stanford Procurement Office, the Stanford Office of Sustainability, and 

Stanford Residential & Dining Enterprises (R&DE) allowed for the collection of purchasing data from 
three sources for 2019: Amazon for Business, SmartMart, and Dining Hall data. The data provided are in 
the form of Microsoft Excel sheets with each individually purchased item’s data recorded on a line of the 
excel file. A partnership with the SIMAP NWG facilitated the data gathering from other universities of 
six already hand-categorized data sets. This work considers $10,731,524 spent on 7,066 unique food 
items purchased for Stanford in 2019, including food purchased for all the dining halls on the Stanford 
campus as well as a subset of the food purchased through two purchasing platforms: 71% of the Amazon-
for-business and 92% of the SmartMart food purchases. A subset of the food purchased through these 
avenues was used because it was not possible to determine both weight and spend data for all food items 
purchased through these avenues. The dining hall data set was provided by Stanford R&DE, which is the 
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department which manages all the dining halls on campus. The Amazon-for-business and SmartMart data 
sets were provided by the Stanford Procurement office. 

3.2.1 Dining Hall  

Stanford R&DE is made up of Stanford Dining, Stanford Housing, Stanford Hospitality & 
Auxiliaries, and Stanford Conferences 28. The data provided for this project only encompasses data from 
Stanford Dining, which represents data from 13 different dining locations 29. Meals are available to 
undergraduate and graduate students as well as post-docs and Stanford Dining serves approximately 
12,000 meals every day 30. The dining halls have an internal centralized system for keeping track of food 
ordering and purchasing. Due to participating in other sustainability initiatives the dining halls already 
had weights assigned to much of the protein-based foods.  

3.2.2 Amazon for Business  

The Amazon for Business account is an account that is available to all departments at Stanford 
through the department’s staff members and that can be used to purchase any item available through 
Amazon. It is the preferred and recommended purchasing method for any item at Stanford 31. All 
purchases made through an Amazon for Business account are accessible by the Stanford Procurement 
department, and thus spending and purchasing reports are available and these are the reports that were 
used to determine food purchases in 2019 for this work. However, the data from these reports is not a full 
representation of all the purchases through Amazon at a university. It is also possible to purchase items 
for a department through a personal Amazon account and be reimbursed, and, depending on the 
department, the frequency of using a personal Amazon account as compared to the Amazon for Business 
accounts varies widely. Food purchased through the Amazon for Business account is usually made up of 
snacks for department break rooms or soda for department events.  

3.2.3 SmartMart 

SmartMart is an online catalog ordering system which is used by departments at Stanford to purchase 
items. Particularly, the vendors available through SmartMart are ones who have negotiated special pricing 
for Stanford 32. SmartMart is also used for purchases of goods and services which require a Stanford 
signature. SmartMart is often used to purchase lab and medical products because it has a wider 
availability of items, but it also includes items for purchase such as software, food, office supplies, and 
more depending on vendor. Food purchased through the SmartMart account is usually snacks for 
department break rooms or soda for department events. 

3.2.4 Categorized Data from Other Universities 

A partnership was formed with the Sustainability Indicator Management & Analysis Platform 
(SIMAP) Nitrogen Working Group which is a group of universities focused on their nitrogen footprint. At 
universities, over 50% of the nitrogen footprint can come from food purchases, thus this group of 
universities had previously done significant work to obtain and process their food purchases. SIMAP is a 
tool developed by the University of New Hampshire which aims to help universities calculate their Scope 
1 and 2 emissions and it includes food purchasing due to their focus on Nitrogen foot-printing. SIMAP 
has developed a tool to calculate these emissions which they call their emissions calculator, which is used 
by many universities across the US.  

Through the partnership with the SIMAP Nitrogen Working Group (NWG), previously hand 
categorized data sets were requested and obtained. The methodology implemented to obtain the food data 
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sets for the respective universities is outside the scope of this work but represent the best efforts of each 
of the universities to obtain relevant food data for input into the SIMAP emissions calculator. The 
universities who have calculated their food emissions through the SIMAP tool and are a part of the NWG 
are a self-selected group who are particularly interested in quantifying and mitigating these emissions and 
thus the data provided from these institutions are considered representative of the university’s food 
purchasing and as accurate as is possible. 

3.3 Data Cleaning 
The Amazon for Business and SmartMart purchasing reports include all items that were purchased in 

the calendar year 2019, not only the food purchases. Thus, data cleaning was necessary to extract the food 
data from these data sets. In addition, to obtain both weight and spend data for these data sets, differing 
amounts of additional effort were needed depending on the purchasing platform data set. These efforts are 
detailed in the following sections with specifics necessary for each purchasing platform. The Amazon for 
Business and SmartMart data sets do not inherently include weight data as a column in the reports. Due to 
R&DE sustainability related targets, weights for most of the protein rich foods purchased for the dining 
halls were included, such as Beef, Chicken, and Pork. However, additional analysis was conducted to 
obtain weights for other categories to obtain a more complete representation of all food purchasing for the 
dining halls, not just protein rich foods.  

One component of both the Amazon for Business and the SmartMart data set that was very helpful in 
extracting the food portions of the data sets was the inclusion of information on the purchased items 
United Nations Standard Products and Services Codes (UNSPSC). A UNSPSC is a code which can be up 
to eight digits long and is standardized and used worldwide for accurate classification of products and 
services 33. Each set of two digits provides progressively more information about the item purchased as is 
illustrated in Figure 4. The first two digits of a UNSPSC code are called the segment and represent the 
general category of the item purchased. The following two digits are called the family name and give 
slightly more detail about the item category. The next two digits are called the class name and are even 
more specific, and finally the last two digits define the purchased item to a large amount of detail. 

 

Figure 4. United Nations Standard Products and Services Code (UNSPSC) example 34.  

Amazon and SmartMart both require UNSPSC codes to be present on the items available for purchase 
on their platforms, but they do not require a certain level of specificity, and there are frequently errors in 
the UNSPSC codes that are input by vendors on both platforms. In the case of food, the segment code is 
50, and there are situations where the data available from both data sets only include details up to the 
segment code, such as 50000000, whereas there are other items where the code is specific all the way 
down to the commodity level, such as 50202306 whose commodity name is soft drinks and represents a 
purchase of a case of Coca-Cola cans. 

3.3.1 Dining Hall Data 
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Stanford participates in the Association for the Advancement of Sustainability in Higher Education 
Sustainability Tracking, Assessment & Rating System (AASHE STARS) program, which is a reporting 
framework for both colleges and universities that measures and tracks their sustainability performances 
using a variety of metrics 35. For analysis related to food sustainability, STARS focuses particularly on the 
impacts and sustainability efforts involving animal products, which it defines as “meat, poultry, 
fish/seafood, eggs, and dairy products” 36. Because STARS only focuses on animal products, there were 
inconsistencies in the formatting of the animal product and non-animal product data, which had to be 
mitigated. The steps to assign weights to the data are explained in detail in Appendix II: Dining Hall 
Weight Assignments. 

The file provided included 145,991 line items which were delivered to dining halls during the 
calendar year 2019 and represent $11,333,616 in spend. The dining hall data set had mostly been 
previously scrubbed to remove non-food items, but some remained in the data set. To remove any 
lingering non-food data, items which were in the categories of KitchenSupply, CleaningSupply, and 
Disposables we removed from the data set. After creating a pivot table to consolidate items with the same 
name, there were 3,135 unique food items purchased for the dining halls in 2019. From those, 2,731 items 
were able to be assigned both weight and spend which represent $10,364,968 in spend.  

3.3.2 Amazon for Business 

The original data set provided for this work included 135,788 purchases made during the 2019 
calendar year. First, items whose “Order Status” was “Cancelled” were removed from consideration and 
items whose “Item Subtotal” was “Blank” were removed. This left 134,938 items purchased representing 
$8,639,308 in spend through Amazon for Business in 2019. To extract the food data, the items with the 
“Product Category” of “Pantry”, “Grocery”, and “Amazon Yum” were considered which brought the 
number of items down to 16,426 and represents $451,071 in spending. Thus, food makes up 12% of the 
items purchased through Amazon for Business and 5.2% of total spend in 2019.  

Then UNSPSC codes were used to filter out items that were not food but had been included in one of 
the “Product Category” listed above. Items in these product categories that were not food included items 
such as notebooks, lighters, soap, and hand creams. Next, items with an UNSPSC code that did not begin 
with 50 were removed as this represents the food category at the segment level. This decreased the data 
set to 15,699 items and $434,546 in spend. Then a pivot table was created to consolidate the items with 
the same name which resulted in 5,589 unique food items purchased through Amazon for Business.  

Once the food items were extracted from the larger purchasing data set, the items for which weights 
could be assigned had to be determined. Thus, items whose “Title” did not include any of the following 
key words which indicated that weight or volume data could be extracted from the purchased item name 
were removed: “lb”, “pound”, “fl oz”, “gallon”, “liter”, “gram”, “ml”, “gal”, “1.5L”, “2L”, “kg”, “g”, 
“oz”, “ounce”, “tea”, “k-cups”, and “k-cup”. By using only the items whose “Title” included one of these 
key words, both weight and spend based information could be extracted to achieve the goal of comparison 
between the two approaches for calculating emissions.    

Weights were assigned to the items left in the data set based on the weight or volume-based indicator 
that was present in the item “Title” along with some searching for the items on Amazon in order to assign 
an appropriate weight when the item “Title” description was confusing. In addition, the number of packs 
of items purchased was also taken into consideration (for example, 24 pack of 12 fl oz cans was 
considered a 288 fl oz purchase). Food items purchased through Amazon for Business that were included 
in the following analyses are 4,058 unique items purchased representing $308,597 in spend, which is 
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equivalent to 71% of the original items tagged as food. After the data cleaning outlined above, the 
Amazon food data was ready to be categorized.  

3.3.3 SmartMart 

The entire SmartMart data set represents 241,636 purchases at a total spend of $59,304,426. First the 
data set was trimmed to only include the items whose “Line Status” was “Approved”. The “Invoice Line 
Extended Price” was used as it represents the total spend based on the total quantity of an item and its 
associated individual price. Then UNSPSC codes were used to filter out items that were not food, and an 
additional analysis was done to remove all Mouse food items as those are not intended for human 
consumption but were still categorized under the 50 UNSPSC segment code. Mouse food items appear in 
the SmartMart purchasing data set because SmartMart is used in large part for laboratory supplies, 
including food for lab mice. Items with an UNSPSC code that did not begin with 50 were removed which 
left 2,726 food purchases which represent $62,893 in spend. Thus, food represents 1.1% of items 
purchased through SmartMart and 0.01% of spend in SmartMart in calendar year 2019.  

Then a pivot table was created to consolidate the items with the same name which resulted in 325 
unique food items purchased through SmartMart. Next, items whose “Product Name” did not include any 
of the following key words were removed: “lb”, “fl. oz”, “oz”, “gallon”, “1.5L”, “tea”, and “k-cups”. This 
left only items for which both weight and spend-based information could be extracted in order to achieve 
the goal of comparison between the two approaches for calculating emissions.    

Weights were assigned to the items left in the data set based on the weight or volume-based indicator 
that was present in the item “Product Name”. In addition, the number of boxes of items purchased was 
also taken into consideration (for example, 2Oz. Bags Box of 24 would be considered a 48 oz purchase). 
Food items purchased through SmartMart that were included in the following analyses are 277 unique 
items purchased representing $57,958 in spend, representing 92% of the items recognized as food. After 
the data cleaning outlined above, the SmartMart food data was ready to be categorized.  

3.4 Categorization Script 
To determine emissions from purchased goods, it is important to be able to sort purchased items 

accurately and consistently into the categories for which emissions factors exist. For example, at the 
current state of research in the field, it would not be feasible to have a different specific emissions factor 
for each food item purchased at a university because a detailed LCA would need to be conducted for each 
of these items. It is much more feasible to have an average emissions factor for the fruits category which 
considers many LCA studies that are conducted over many different types of fruits produced all over the 
world and can be applied as an average to all fruits purchased by the university. This same approach can 
be done for many different categories of foods or purchased goods. Preferably, there would be different 
emissions factors for each specific type of food, (or even more ideally, different types of foods produced 
in different regions of the world) but at the current stage of the field, the emissions factors that are 
available are at the level of detail which represents an average for a category unless a specific LCA is 
conducted for each item.  

These emissions factors can be used to determine the order of magnitude of emissions associated with 
purchased items but should not be considered an accurate methodology to determine the exact magnitude 
of emissions for those items. These emissions factors are beneficial because they do not require as much 
effort to develop because a smaller number of LCAs can be used to represent categories as a whole, but 
they also introduce some complexity when it comes to assigning purchased foods into these categories.  
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In the last couple of years, some universities have started quantifying their Scope 3 emissions, and the 
most popular categories to begin with are employee commuting, university sponsored travel, and food 
purchasing emissions because these are often the easiest to obtain data for. Many of the universities who 
have started embarking on this journey have resorted to hand categorizing their food purchasing data into 
the relevant categories. This means a person, usually someone from an office of sustainability or a 
member of the management team of a dining hall, must manually categorize the thousands of food items 
that a university purchases along the course of a year. This inherently takes many hours, makes 
comparisons between university results difficult because different universities can take different 
approaches to categorizing foods, and leaves significant room for human error.  

Many of the universities who have started looking at their Scope 3 emissions use SIMAP as a tool to 
calculate their food emissions. SIMAP is used by almost 150 institutions 37 and considers 18 food 
categories which are defined by Heller et al. 4 and for which they have selected emissions factors for from 
the same paper. However, SIMAP requires the input data to already be pre-categorized with up to three 
categories per item to account for multi-ingredient items. To facilitate the categorization process and to 
standardize and ease the emissions from food purchasing process, a python-based categorization script 
was developed and is further detailed below.  

 

Figure 5. Data flow through categorization script. Green components are script functions, blue components are food data flows, 
and gray components are external inputs into the script which aid in the categorization. 

Figure 5 represents a schematic of how the categorization script functions. It requires a user input 
with the food data which will be categorized and includes the optional user input of a list of local vendors.  
In addition, there are two required inputs which are provided: Keywords and Edge Cases. These two 
inputs have been developed over the course of this work and represent the needed keywords and edge 
cases which are used to categorize these food purchases. The development process to create these 
documents are further explained in Section 3.5 Development of Keywords and Edge Cases Documents. 
Keywords are words that, if present in the food purchase name, indicate that that purchase should be 
assigned to one of the 18 categories which are detailed in Table 1. For example, if the word apple appears 
in the food name, then that line should be assigned to Fruits, and if the word hamburger appears, then it 
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should be assigned to Beef. This assignment process occurs in the function called categorize_purchases 
shown in Figure 5, however, the categorize_purchases function only attempts to assign categories up to 
the dotted line present in Table 1. The rows after the dotted line are considered in the categorize_spices 
function. Each food item can be assigned to a maximum of three categories. If the output of this script is 
run through SIMAP, or if the category breakdown scripts (see 3.6 Category breakdown scripts) are 
run, the weight or spend for the line item will be evenly attributed to each of the assigned categories. For 
example, for a line item representing nine pounds of lasagna would be assigned to Beef, Vegetables, and 
Grains, and three pounds would be attributed to each of these categories. This follows the convention that 
SIMAP has created for multi-ingredient items. 

The Edge cases input document includes information to deal with situations where combinations of 
keywords (or combinations of words that are not included in the keywords document) interact such that 
the assignments from the keywords when considered separately becomes incorrect. For example, when 
the words yellow (not a keyword) and pepper (keyword for Spices) are present together in a food item 
name, the assignment to Spices should be removed and should be replaced with an assignment to 
Vegetables. Another example of this is when hamburger (keyword for Beef) and bun (keyword for 
Grains) are both present, and in this case, only the assignment to Beef should be removed. Dealing with 
these edge cases occurs in the do_edge_cases function in Figure 5. The edge cases function is also able to 
handle situations in which the order of the key words matters. For example, if the keyword chocolate and 
then the keyword milk appear in that order, the do_edge_cases function removes the assignment to Coffee 
and Tea, which is the correct categorization for chocolate, however, if the keyword milk appears and then 
the keyword chocolate, then the do_edge_cases function removes the assignment to Milk.  

Table 1. Extract from Keywords document including the first three keywords for each food category. 

 

As the extract from the keywords document in Table 1 shows, there are two separate vegetables 
keywords groupings. The first vegetables keywords grouping refers to vegetables which cannot also be 
spices. In other words, these are vegetables that cannot be dried and considered spices, for example, 
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lettuce, and carrots versus basil, chive, and garlic. When vegetables have been dried to be turned into a 
spice, they have a different emissions factor than when they are eaten fresh because the drying process 
requires energy input which in turn produces emissions. The spices category also includes keywords for 
things that cannot be vegetables such as pepper and salt. The categorization process considers the 
vegetables which, when fresh, are vegetables and, when dried, are spices separately because of two 
factors. First, spices should not be assigned to items where they do not make up a significant portion of 
the weight. For example, with the food item garlic bread it does make sense to assign it to Grains because 
of bread but it would not be accurate to assign this item to Spices because of the word garlic because 
garlic represents such a small portion of the total weight of any garlic bread. Therefore, the 
categorize_spices function in Figure 5 only considers lines that have not yet been assigned a category 
after passing through the first two functions. If the line name includes a keyword that is present in the 
second vegetables category, and it does not include the keywords flake(s), dried, powder, granulated, dry, 
spice, leaf, crushed, or herb, then it is tagged as a Vegetable. Finally, if the line includes any of the 
keywords for spices and has not been assigned to any category, it is assigned to spices.  

After the categorize_spices function has completed, most of the line items in the original food data 
should be categorized with the exception of some items whose names do not include any words that are 
keywords and items that are misspelled. To minimize the number of lines that are not categorized, the 
fix_spelling function only looks at lines where no categories have been assigned and leverages the 
pyspellchecker library 38, which uses a Levenshtein Distance algorithm to find insertion, deletion, 
replacement, and transposition permutations for words in a given dictionary. The dictionary used in this 
categorization script is created based on the words present in the keywords and edge cases document to 
ensure that words are only spellchecked to words that would be useful for further categorization (food 
related words). The script keeps track of what lines were updated and adds the spellchecked word to the 
end of the line item for ease in visual verification by the user at the end of the process. The default setting 
for fix_spelling is to only consider the most likely autocorrection as defined by the pyspellchecker library, 
but the user can select the option to check all possible autocorrections by changing the setting to 
Advanced Autocorrect. This is more likely to find the correct autocorrection if a word is badly misspelled 
but is also more likely to incorrectly add autocorrections if a word is only slightly misspelled and is close 
to several keywords. Once the misspelled lines have been autocorrected, only those lines go through the 
loop again of categorize_purchases, do_edge_cases, and categorize_spices.  

Next, the function tag_organic looks at the item names again, and if the item includes keywords 
which would indicate that that item is organic, such as organic, org, orgnc then that item is tagged in 
organic in the appropriate column. Finally, if the user provided any vendors which should be considered 
local, the tag_local function will look at the vendor for each line and if it is included in the list of vendors 
which are local, that line will be tagged as local in the appropriate column. The file that is created at the 
end of the script is in the correct format for direct input into the SIMAP emissions calculation tool. The 
file includes information on all the items that the script could not categorize, the autocorrected lines, and, 
if selected, the breakdown of spend and weight by category which is further explained in Chapter 3.6
 Category breakdown scripts.   

3.5 Development of Keywords and Edge Cases Documents 
In partnership with the SIMAP Nitrogen Working Group 39, food purchasing data from the 

universities listed in Table 2 was used to test, improve, and validate the Categorization Model. In 
aggregate, this data represents over 13,600 metric tons of food and more than 37,000 lines of food 
purchases. By utilizing these data sets, keywords and edge cases were added to their respective 
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documents to accurately categorize a larger proportion of these data sets. Each university’s data was run 
through the script, and the uncategorized lines were analyzed to determine what additional keywords 
would be necessary to categorize these lines. After all reasonable keywords were added, that university’s 
data was re-run through the program in an iterative fashion until a minimum level of uncategorized data 
was achieved. In some cases, this represented zero items that the script could not categorize, but in other 
cases, items could not be categorized due to lack of clarity on what the item was.  

Some universities provided hand categorizations that had been conducted for previous years food 
purchases, and a comparison script was developed to determine which line items had been categorized 
differently between the hand categorization and the script categorization. The lines which had been 
categorized differently were analyzed and relevant edge cases were added to the edge cases document 
when it was determined that the script was incorrectly categorizing an item. These steps were conducted 
for each university data set and repeated iteratively to ensure that the addition of a keyword or edge case 
from a different university data set did not negatively affect the categorization of another university’s data 
set.  

Table 2. University data sets used to develop edge cases and key words document as well as to determine accuracy of 
categorization script. 

 

3.6 Category breakdown scripts 
To calculate the total emissions from a data set after categorization, it is helpful to be able to 

determine the total spend or weight assigned to each of the food categories for which emissions factors 
exist. To facilitate this determination, an additional functionality was added to the categorization script 
which calculates the breakdown per category. Users can determine if they would like the total spend, the 
total weight, or both to be calculated per category.  

Figure 6 represents a schematic of how the categorization breakdown script functions. The output of 
the categorization script is taken in as an input, and a user selects the breakdown of interest, either spend, 
weight, or both. The do_counts function determines the number of categories that are assigned for each 
line item as the weight or spend data will be evenly divided between all the categories for which each line 
is assigned to. The do_conversions function converts all the weights to kilograms using the unit 
conversions as defined by SIMAP 40, which are available in the Appendix III: SIMAP Unit Conversions, 
in order to accurately provide one weight value per category. The calc_category_breakdowns function 
goes through each item in the data set and cumulatively adds the weight or spend divided by the number 
of categories assigned to the item for the appropriate categories for that item. When the toggle to calculate 
the total spend or weight per category is selected, the final excel file includes a tab for the total weight 
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and/or a tab for the total spend per category. These values can then be multiplied by the emissions factors 
for each category as described in Chapter 3.8 Calculating Total Food Emissions. 

  

 

Figure 6. Data flow through category breakdown script.  Green components are script functions, blue components are food data 
flows, and gray components are external inputs into the script which determine which breakdown is calculated.  

3.7 Website 
To facilitate wide use of the categorization tool developed, a website was created in which users can 

upload their own food data sets using templates provided on the website and run the categorization script 
to directly download the categorized data. The website is currently in beta mode and can be found by 
going to https://food-emissions-categorization.wl.r.appspot.com/. The website is supported by Google 
cloud platform and is slightly slower than using the python script locally. A copy of the python script can 
be obtained by reaching out to the author and through the author’s GitHub. A visual representation of the 
website is available in Figure 7. All the functionality described above is available through use of the 
website, except for comparisons between hand-categorized and script-categorized data sets. This website 
has begun to be shared with various groups, including the Ivy Plus Sustainability Consortium 41, to 
determine their emissions associated with food purchasing. Discussions are underway to recommend the 
tool for use with several other groups.  
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Figure 7. Screenshot of website created to facilitate access to categorization script. 

3.8 Calculating Total Food Emissions 
Emissions factors are the values which are multiplied by the unit quantity of a relevant item to 

determine the emissions associated with that item as illustrated by Equation 1 and Equation 2. In terms of 
environmental impact, CO2 equivalent emissions are the focus within the context of this work, although 
there are many other emissions and environmental impacts that can be considered including nitrogen, 
acidification, eutrophication, land use, etc. There are many sources available for emissions factors and 
they are integral to the process of translating purchasing or consumption data into emissions from those 
items.  

Some emissions factors are easier to determine, for example, the emissions factor associated with the 
burning of a fuel (Scope 1) is directly related to the chemical composition of the fuel and the chemical 
reactions that occur when they are burned, which are relatively straightforward to determine. However, 
for items which are not burned, the majority of emissions associated with them are instead the Scope 3 
emissions, thus the life cycle emissions are dominated by the phases other than the use-phase such as their 
production and transportation. As can be seen in Figure 8, there are many types of emissions factors, and 
different levels of transparency associated with each source. In this work, the private emissions factor 
sources are defined as sources or tools which are perceived by the user as a black box, and where the 
emissions factors themselves are not readily available. In these cases, the raw data is provided to the 
source or tool, and a result is returned which contains the quantity of emissions for the data in aggregate, 
or occasionally, some category breakdown is available. These private sources or tools are not particularly 
transparent with regards to the assumptions made nor the methodology used to determine the emissions 
factors themselves. All the private emissions factors considered in this work were spend-based.  
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Figure 8. Sources and intersections for different types of emissions factors. 

The public emissions factors are defined as ones where the emissions per category are easily 
accessible and information about methodology and assumptions are readily available. Most of the public 
emissions factors that were found for food were weight-based except for the US Environmental Protection 
Agency EEIO Model which is spend-based. Once the emissions factors are gathered and the total weight 
or spend for each group for which an emissions factor is available is known, Equation 1 and Equation 2 
can be used to determine the CO2 associated with that item or category.  

𝐶𝑂ଶ௜௧௘௠ ௣௨௥௖௛௔௦௘ௗ
= 𝑘𝑔௜௧௘௠ ௣௨௥௖௛௔௦௘ௗ  ∗ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 ቈ

𝑘𝑔 𝐶𝑂ଶ

𝑘𝑔௜௧௘௠ ௣௨௥௖௛௔௦௘ௗ
቉ 

Equation 1. Calculation for determining the emissions when weight-based emissions factors are used. 

𝐶𝑂ଶ =  $௜௧௘௠ ௣௨௥௖௛௔௦௘ௗ  ∗ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 ቈ
𝑘𝑔 𝐶𝑂ଶ

$௜௧௘௠ ௣௨௥௖௛௔௦௘ௗ
቉ 

Equation 2. Calculation for determining the emissions when spend-based emissions factors are used.  

Weight- and spend-based emissions factors each have their respective pros and cons, mostly in the 
form of sources of uncertainty, which are summarized in Table 3. Weight-based emissions factors are 
often determined through a bottoms-up analysis, whereas spend-based emissions factors are more often 
determined through a top-down analysis. Part of the appeal of spend-based emissions factors comes from 
the fact that the economy is used to tracking dollars spent but has been less historically interested in 
keeping track of weights of items as they pass through an economy during an item’s lifespan. For 
example, when considering a purchase of chairs, an entity might reasonably keep track of the $500 that 
was spent on the chairs, and/or keep track that five chairs were purchased, however, it is very difficult to 
image that an entity would keep track that 100 kg of chairs were purchased. With the rise in e-commerce, 
and the subsequent need to ship individual items to consumers, the data to keep track of the weights of 
items has begun to become more readily available, but there is no evidence that this data has been 
leveraged for emissions calculations.  
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Table 3. Summary of pros and cons for weight-based and spend-based emissions factors. 

 

Because this weight-based data is not currently easily kept track of, using weight-based emissions 
factors introduce a certain level of uncertainty as is discussed in section 3.3 Data Cleaning as well 
as 3.9 Determining Outliers. Weight data is not often directly available, thus creative solutions must be 
implemented to obtain this data which currently require human input, and thus, human error. Methods can 
be implemented to decrease this human error, for example, by creating automated categorization scripts as 
described in section 3.4 Categorization Script. In both the weight-based and spend-based emissions, there 
is inherent uncertainty due to the need to put the purchases into categories in the first place. By 
aggregating the data into categories, detail is lost, and error is introduced.  

3.9 Determining Outliers in Data Set 
As previously mentioned, there is inherent uncertainty when using weight-based emissions factors 

due to the additional analysis required to obtain weights of items purchased since this data is not readily 
available. One way to mitigate this uncertainty from weight-based calculations is to use the spend based 
data to identify outliers since there is basically 100% certainty with regards to the spend data for each 
item purchased.  

After the categorization step has been completed, an analysis can be conducted for single ingredient 
items to determine if there are any outliers in this data set in terms of dollars spent per kg of item for each 
purchase. Because the items are categorized, statistically relevant indicators within each category of food 
can be analyzed including the median, mode, minimum and maximum values, and inter quartile range 
(IQR) which is defined by Equation 3,.  

𝐼𝑄𝑅௙௢௥ ௔ ௙௢௢ௗ ௖௔௧௘௚௢௥௬ =  
$

𝑘𝑔
ொଷ ௙௢௥ ௔ ௙௢௢ௗ ௖௔௧௘௚௢௥௬

−  
$

𝑘𝑔
ொଵ ௙௢௥ ௔ ௙௢௢ௗ ௖௔௧௘௚௢௥௬

 

Equation 3. Interquartile Range definition. 

The spend per kilogram of item can be calculated for each line item, and Equation 4 and Equation 5 
can be used to determine if each item can be considered an outlier either because the spend per kilogram 
is too high or because the spend per kilogram is too low.  

$

𝑘𝑔
𝑜𝑢𝑡𝑙𝑖𝑒𝑟

>  
$

𝑘𝑔
𝑄3 𝑓𝑜𝑟 𝑎 𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

+ ൫1.5 ∗  𝐼𝑄𝑅
𝑓𝑜𝑟 𝑎 𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

൯ 

Equation 4. Outlier definition for spend per kilogram which is too large.  
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$

𝑘𝑔
𝑜𝑢𝑡𝑙𝑖𝑒𝑟

<  
$

𝑘𝑔
𝑄1 𝑓𝑜𝑟 𝑎 𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

− ൫1.5 ∗  𝐼𝑄𝑅
𝑓𝑜𝑟 𝑎 𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

൯ 

Equation 5. Outlier definition for spend per kilogram which is too small. 

When the spend per kilogram is too large compared to the values for a particular category of food, 
this is a strong indication that the weight assigned to that item is too small, likely because it is not 
possible to determine from the item name that the purchase includes some kind of pack or multiple items 
within a purchase. When the spend per kilogram is too small, this is a strong indication that the weight 
assigned to that item is too large. This can happen when the volume or weight in the title of an item is 
inaccurate, or if there was a difference in unit counting within the data.  

The base case for this work is that all the weights and spend data are considered to be accurate. 
However, there are two options that are possible in order to mitigate the impacts of these outliers if they 
are in fact incorrect. The first of which is called the Removal Scenario which involves simply not 
considering any items which are determined to be outliers based on the methodology described 
previously. The second option which is called the New Outlier Weight Scenario is to allocate a new 
weight to the items which are considered outliers by assuming that the spend data is correct and 
attributing that spend an appropriate weight for that food category based on the median as illustrated by 
Equation 6.  

𝑁𝑒𝑤 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑝𝑒𝑛𝑑 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚

$
𝑘𝑔

௠௘ௗ௜௔௡ ௙௢௥ ௔ ௙௢௢ௗ ௖௔௧௘௚௢௥௬

 

Equation 6. Formula for allocating the new weight for each line item that was previously tagged as an outlier. 

The results from the outlier analysis for both these scenarios as well as the base case are shown in 
Chapter 4.4  Outlier Analysis.  

3.10 Methodology Take-aways 
After validating the categorization script and categorizing the data, emissions factors determined 

using different methods can be compared to quantify the uncertainty present in the data set. Figure 8 
illustrates the types of emissions factors used in this analysis. Public emissions factors are considered 
such because the methodology and the emissions factors themselves are readily accessible in published 
literature or government websites. The private emissions factors are ones which can be considered “black 
boxes” as the data is provided by a user to the emissions calculation tool and the aggregate emissions are 
returned. These private emissions factors are embedded in these tools, and the emissions factors 
themselves are unknown for specific categories. 

The weight-based emissions factors used in this analysis were obtained from journal articles 4,5,15. The 
US EPA publishes an economic environmental input output model as detailed in Chapter 2: Literature 
Review, which includes emissions factors for many US economy sectors, is spend-based, and is also 
publicly accessible. There are several private emissions calculating tools which are managed by 
companies which are spend-based. As of this study, no private weight-based emissions factors had been 
encountered.   
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Chapter 4: Results and Discussion  
In this section, the results of the validation of the categorization script will be introduced which 

compare the script categorization output to the hand categorization when they were available. In addition, 
the results are presented of the comparison of the total emissions estimated for the Stanford case study 
using different emissions factors found in literature and from private tools. In this section, many of the 
results will be compared to the SIMAP results because it is the most widely used method for university 
carbon footprint applications. This is not meant to imply that the SIMAP results are correct in comparison 
to other methods. 

4.1  Categorization Script Validation 
Several universities provided hand-categorized food purchasing data sets that had been analyzed 

previously for input into SIMAP. These hand-categorized data sets provided the opportunity to conduct a 
validation of the categorization script by comparing the categorization script output to the hand 
categorized output for the same data. The summary of the data provided by the universities and the 
outcomes from the script analyzed are detailed in Table 4. Total uncategorized items by the script 
represent 0.99% of the lines in the original provided data sets, but only 0.39% of the total weight of all the 
data sets. In the case of the universities where a much larger percent of the weight was not categorized as 
compared to the average among the universities, a few items make up a large amount of the uncategorized 
weight. For example, in the University E data set only three items: 21 oz 1-ls 24 core spar, 5 gallon 1-ls 
core spar, and 2.5 gallon 1-ls core spar make up 61.7% of the uncategorized weight.  

Table 4. Summary of University Data Sets Analyzed Using Categorization Script. Deleted lines are items which the script was not 
able to categorize thus were not considered in the final analysis for emissions. Among all the data sets the total percent of 
weight that was not categorized by the data set is only 0.39% however this value ranges from 0.00 to 2.48% depending on the 
data set. 

 

The results for runtime required for each university data set is presented in Figure 9. The runtime 
shows a very linear relationship (with an R2 of 0.9944) between the number of lines in the data set to be 
categorized and the number of seconds required for categorization. The relationship is not exactly linear 
for each data set because of the additional loop through the categorize_purchases, do_edge_cases, and 
categorize_spices functions that data that was autocorrected must go through as shown in Figure 5. Thus, 
data sets that appear below the linear best fit line had a number of lines that were autocorrected that is less 
than the average among all the data sets, and those that are above the line had a larger number of lines that 
were autocorrected.      
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Figure 9. Required time to categorize each data set based on running the script locally. 

A total calculated emissions comparison was then conducted using the assignments from the hand 
categorization and from the script categorization to determine the impact on estimated emissions from 
hand categorizations and from the script categorization. The emissions comparison was conducted using 
the emissions factors available in SIMAP in 2021 37. Because the university data was categorized for use 
in SIMAP, the categories were the same for the hand categorization and the script categorization. The 
difference in emissions arises from items being categorized into different categories for which the 
emissions factors are different. For each university, the percent difference between the calculated 
emissions was determined using Equation 7 for the entire university’s data set as well as the difference in 
weight assigned to each of the 18 food categories and those results are illustrated in Table 5 and Table 6 
respectively. 

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠௛௔௡ௗ ௖௔௧௘௚௢௥௜௭௔௧௜௢௡ − 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠௦௖௥௜௣௧ ௖௔௧௘௚௢௥௜௭௔௧௜௢௡

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠௛௔௡ௗ ௖௔௧௘௚௢௥௜௭௔௧௜௢௡
∗ 100 

Equation 7. Definition of percent difference for emissions. 

The goal of the validation is not necessarily to obtain percent differences as close as possible to zero 
because the hand categorized data sets are not perfectly categorized. For example, from analyzing the 
items that were categorized differently by the script as compared to the hand categorization it was 
determined that there is a reasonable amount of human error in these data sets. For example, occasionally 
items were simply categorized in the wrong category. Examples of this include: misreading meat less and 
categorizing as meat, as well as occasions where identical items were categorized differently because they 
were hundreds of lines apart in the data set and it would be practically impossible for someone doing a 
hand categorization to ensure that all items with the same or similar name are categorized exactly the 
same way throughout the data set, particularly when there are thousands of items in a data set.  

In addition, there are inherent differences between the emissions calculated for the hand 
categorization and for the script categorization because the script is not always able to categorize all the 
items in a data set, but the hand categorization that was provided includes categorizations for every item 
in the data set. Thus, the total calculated emissions will be different if there is some data that was not 
categorized in the script because it will be missing from the total weights in that data set. In this case, it 
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would be expected that the percent difference would be positive, which helps explain in part some of the 
differences between the two methods of categorization. However, referring to Table 4, the maximum 
amount of weight that was not considered by the script categorization because it was not able to 
categorize it was in the data set for University E at 2.48%, which only had a percent difference in total 
calculated emissions of 0.58%, which is by no means the largest magnitude difference in emissions from 
these data set. Thus, the omission of parts of the data because the script was not able to categorize the 
items does not explain 100% of the difference in aggregate emissions for each data set.  

Table 5. Percent Difference between total calculated carbon footprint between script and hand categorization for SIMAP NWG 
partner universities. 

 

It is interesting to note that most of the percent differences between the methods are positive, and as 
can be seen in Equation 7, because of the definition being used for percent difference, a positive percent 
difference indicates that many of the universities had previously categorized their food data in a way that 
indicated a higher amount of emissions than would be calculated based on the categorization from the 
script. Although the magnitude emissions difference between most of the university’s data sets is less 
than 1 percent, in some cases there is almost a 5 percent difference. However, as can be noted in Table 6, 
the differences in weights assigned to the categories can have a much larger magnitude difference as 
defined by Equation 8.  

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =
𝑤𝑒𝑖𝑔ℎ𝑡௛௔௡ௗ ௖௔௧௘௚௢௥௜௭௔௧௜௢௡ − 𝑤𝑒𝑖𝑔ℎ𝑡௦௖௥௜௣௧ ௖௔௧௘௚௢௥௜௭௔௧௜௢௡

𝑤𝑒𝑖𝑔ℎ𝑡௛௔௡ௗ ௖௔௧௘௚௢௥௜௭௔௧௜௢௡
∗ 100 

Equation 8. Definition of percent difference for weight. 

The blue cells in Table 6 represent larger differences in weight assigned to the categories when 
comparing the hand categorization to the script categorization, both for positive and negative percent 
differences. The blue cells represent values of percent difference in weight closer to the 10th and 90th 
percentile for each university while the yellow cells represent values closer to the median of the values for 
each university. As can be noted visually from the table, the blue cells are concentrated in the lower 
portions of the table, for which the food categories on the left are ordered in terms of emissions factors, 
where the highest emissions factors are at the top and the lowest emissions factors are at the bottom. 
Thus, very large differences in weight assigned to the categories at the bottom do not translate to large 
changes in calculated emissions for the data set as a whole. More details on what contributed to these 
differences in emissions can be found in Appendix IV: Script and Hand Categorization Differences.  

Table 6. Percent difference in weight assigned to each food category for each university. Blue cells indicate data points that are 
further from the median values for the percent differences assigned to each food category for each university based on the hand 
and script categorizations. 



35 
 

 

 

Overall, the categorization script was found to provide an accurate characterization of both the food 
purchases as well as the emissions when compared to previously hand-categorized data sets. Although the 
categorization script omits some of data because it cannot categorize it, this number of items is relatively 
small and represents in aggregate only 0.39% of the total weight analyzed among these universities. Most 
of the differences in categorization between the script and hand-categorization are in the less emissions 
intensive categories which translates to small impacts in overall emissions calculations. 

4.2  Stanford Food Emissions Case Study: Analysis of 
results using different emissions factors 

 Three sources for consumption at Stanford were considered to analyze the difference in emissions for 
food purchased using different emissions factors: Amazon for Business, SmartMart, and the dining halls 
run by R&DE. After the validation of the categorization script was conducted, the script was used to 
categorize the data from these three data sets. The summary of the categorization outcome for these data 
sets is presented in Table 7.  

From the Amazon data set, one item was autocorrected from juce to juice and 60 lines were not 
categorized, most of which are not edible food items including hydrogen peroxide and soap, which the 
cleaning described in Chapter 3.3 Data Cleaning did not identify as non-food. Thus, allowing the 
script the flexibility of not forcing it to assign categories to all items provides a final check for removal of 
non-food items. Some of the uncategorized items are food items, but the item names do not include 
enough information to categorize them, even by hand. Additional analysis into what the item is would be 
necessary to categorize them. A good example of an item where the item name does not contain enough 
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information for categorization is the deleted line from the SmartMart data set which was assorted party 
mix. Without more information it is impossible to categorize this item correctly.  

Table 7. Summary of Stanford Food Purchasing Categorization Results.

 

Figure 10 shows the distribution of the food weight purchased through the three platforms for each 
food category based on the categorization script output. As is expected, the variety of foods purchased for 
the dining halls is much greater than the variety purchased through Amazon for Business and SmartMart 
due to the differences in purpose the food purchased through these avenues have. For the dining halls, the 
food provides full balanced meals for thousands of students on campus, but the food purchased through 
Amazon and SmartMart are for department snacks or events, which is why a majority of the foods 
purchased fall under the liquids category. A deeper analysis into the liquids purchasing through Amazon 
and SmartMart is available in Appendix V: Liquids Purchasing Analysis. For the dining halls, more than 
50% by weight of the foods purchased are Grains, Vegetables, Fruits, Potatoes, Beans and Nuts, whereas 
meats including Beef, Pork, Chicken, and Fish make up less than 20% of the weight of foods purchased.  
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Figure 10. Stanford food weight and spend purchasing distributions.  

4.2.1 Weight-Based Emissions Factors 

Once weights were assigned to the categories, different emissions factors can be applied to the data 
set to determine the overall calculated emissions with each emissions factor.  

4.2.1.1 Calculating Emissions Using the SIMAP Emissions Factors 
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First, the emissions factors used by SIMAP were used to determine the total amount of emissions 
from the three food purchasing sources. SIMAP uses emissions factors from Heller et. al 2014 4 which 
uses average emissions for items within a category.  

From Figure 11, it is clear to see that meats make up more than 50% of the emissions associated with 
the food purchases for the dining halls when using the SIMAP emissions factors, even though they make 
up a minority of the weight purchased whereas the Grains, Vegetables, Fruits, Potatoes, Beans, and Nuts 
that make up a majority of the weight purchased and represent less than 20% of the emissions. 

 

 

Figure 11. Food Emissions using SIMAP emissions factors. 

The emissions associated with the dining hall food purchasing is more than 2 orders of magnitude 
larger than the emissions associated with the Amazon food or the SmartMart food. Due to a diversified set 
of foods purchased and the larger number of items purchased, the remaining analysis in this section 
focuses on the dining hall data and emissions. 

4.2.1.2 Calculating Emissions Using Data from Heller et. al 2018  

The same author that published the emissions factors that SIMAP uses published an update in 2018 
which is further discussed in Chapter 2: Literature Review 15. This updated paper includes 13 total 
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categories of food items which are slightly different from the SIMAP food categories. See Appendix VI: 
SIMAP to Heller 2018 Emissions Factors Mapping for mapping from Heller 2018 to SIMAP categories 
for information related to how the categories from Heller 2018 were mapped to Heller 2014. This set of 
emissions factors considers cradle-to-farm gate life cycle phases. 

 

 

 

Figure 12. Dining Hall Emissions calculated up updated emissions factors from Heller 2018  15. 

Using only 13 categories instead of 18 means that there is less granularity in the emissions factors, 
however using updated data can allow advances in technology and farming methods to be accounted for. 
Using these updated emissions factors increased the total emissions calculated for the dining hall food 
purchases by 96% and attributes a smaller fraction of those emissions to Beef, but a larger fraction to 
Chicken and Milk when compared to the SIMAP emissions totals. The SIMAP emissions factors used a 
less exhaustive literature review in order to develop its emissions factors and the data used was older, thus 
likely contributing to this significant difference in emissions calculated. When comparing these values to 
the overarching conclusions of the Heller et al. 2018 paper, meats made up 57% of the average US diet 
and this data shows that meats make up 54% of the overall diet, showing remarkable alignment. In 
addition, from the Heller et al. 2018 analysis, in the lowest quintile of dietary emissions poultry was the 
largest contributor to the meats category at 55% 15, in the data from the dining halls, poultry makes up 
63% of the emissions and beef makes up only 11%.   

4.2.1.3 Calculating Emissions Using Data from Poore et al. (2018). 

Poore et al. includes 59 different categories of food, developed from 2,519 different data points and is 
further detailed in Chapter 2: Literature ReviewError! Reference source not found.. The functional 
units for the emissions factors are 1 kg except for the liquids (beer, wine, milk, and soymilk) which have a 
functional unit of 1 liter 42. These liquids were mapped to the SIMAP Liquids category, thus the total 
weight for the liquids category was converted to liters using the conversion factors available in Appendix 
III: SIMAP Unit Conversions, which are the same ones used by SIMAP. The mapping used to convert the 
Poore categories into the SIMAP ones are available in Appendix VII: SIMAP to Poore Emissions Factors 
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Mapping. The SIMAP Liquids category emissions factor is heavily influenced by fruit juices, but there is 
no category for fruit juices for Poore et al. (2018), thus it is expected that there will be a difference in the 
emissions associated with the liquids between the two methods. In addition, there is also no category for 
Spices in the Poore data set, thus the emissions factor for Vegetables was used for Spices. This is 
expected to be a under estimation for the emissions for spices because the fresh versions of spices are 
categorized as Vegetables, and in order to become a spice, a drying process is required which produces 
emissions. 

The individual data from all 2,519 data points is available through the supplementary information 
from Poore 43, thus there are several methods that can be employed to use all the data points to create 
appropriate emissions factors. In this section, categories are defined as the 18 categories for which 
SIMAP has emissions factors, whereas sub-categories are the 59 categories for which Poore defines 
emissions factors. In the equations below, 𝑥෤ refers to taking the median of the data and �̅� refers to taking 
the mean of the data. 

For each data point, the emissions associated with each of the following life cycle stages is provided: 
Land Use Change (LUC) burn, LUC stock, Feed, Farm, Processing, Trans & Str, Packaging, and Retail. 
There are many ways the data can be aggregated, particularly because Poore and SIMAP have differently 
defined categories. The total emissions for each data point can be calculated using Equation 9. A data 
point here is defined as each piece of data that is available for each food item from each paper included in 
the analysis.  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠ௗ௔௧௔ ௣௢௜௡௧

=  𝐿𝑈𝐶 𝑏𝑢𝑟𝑛 + 𝐿𝑈𝐶 𝑠𝑡𝑜𝑐𝑘 + 𝐹𝑒𝑒𝑑 + 𝐹𝑎𝑟𝑚 + 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑇𝑟𝑎𝑛𝑠 & 𝑆𝑡𝑟

+ 𝑃𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔 + 𝑅𝑒𝑡𝑎𝑖𝑙 

Equation 9. Emissions for each data point.  

Method 1 for determining the emissions associated with a category leverages Equation 10 to 
calculate the emissions for each category by determining the median of all the data points within that 
category.  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠௖௔௧௘௚௢௥௬

= 𝑥෤(𝐿𝑈𝐶 𝑏𝑢𝑟𝑛௜) +  𝑥෤(𝐿𝑈𝐶 𝑠𝑡𝑜𝑐𝑘௜) +  𝑥෤(𝐹𝑒𝑒𝑑௜) +  𝑥෤(𝐹𝑎𝑟𝑚௜) +  𝑥෤(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔௜)

+ 𝑥෤(𝑇𝑟𝑎𝑛𝑠 & 𝑆𝑡𝑟௜) + 𝑥෤(𝑃𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔௜) + 𝑥෤(𝑅𝑒𝑡𝑎𝑖𝑙௜)  

𝑓𝑜𝑟 𝑖 = 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

Equation 10. Method 1 for calculating emissions associated with food categories from Poore data set. 

The issue that arises with using Equation 10 is that the total emissions for a category will not be 
representative of any one item within the category since the median of each of the life cycle stages will 
not likely come from the same food item being analyzed.  

Method 2 for determining the emissions associated with a category first requires the calculation of the 
total life cycle emissions for each data point using Equation 9, and then the median value for the life cycle 
emissions among all the data points within a category is selected to represent the category.  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠௖௔௧௘௚௢௥௬ =  𝑥෤(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠ௗ௔௧௔ ௣௢௜௡௧௜
) 

𝑓𝑜𝑟 𝑖 = 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 
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Equation 11. Method 2 for calculating emissions associated with food categories from Poore data set. 

The issue that arises with using Equation 11 is that it assumes that there is an inherent correlation 
between the number of LCA studies conducted for a particular food item within a category and the 
frequency or proportion of that food category that that food item represents. For example, if there are 
more papers analyzing the LCA of apples than there are LCAs analyzing pears, the data from the apples 
LCAs will have a bigger influence in the emissions determination for the Fruits category than the data 
from the pears.  

Method 2 is the preferred method because it in fact is how the Poore paper developed the emissions 
factors for the sub-categories as some of the sub-categories considered in the Poore paper include several 
types of food such as the Lettuce, Chicory, Endive, and Artichoke sub-category. The median is selected as 
the most appropriate representation of the data because of the skewed nature of the data set as described 
in the Poore paper and in Chapter 2: Literature Review.  

Method 3 for determining emissions associated with a category involves many steps. First, the 
median for each life cycle step is determined for each of the sub-categories defined by Poore as illustrated 
in Equation 12. Then, the average of the subcategories is determined and set as the emissions factor for 
that category as defined by Equation 13.  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠௦௨௕ି௖௔௧௘௚௢௥

= 𝑥෤(𝐿𝑈𝐶 𝑏𝑢𝑟𝑛௜) +  𝑥෤(𝐿𝑈𝐶 𝑠𝑡𝑜𝑐𝑘௜) +  𝑥෤(𝐹𝑒𝑒𝑑௜) +  𝑥෤(𝐹𝑎𝑟𝑚௜) +  𝑥෤(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔௜)

+ 𝑥෤(𝑇𝑟𝑎𝑛𝑠 & 𝑆𝑡𝑟௜) + 𝑥෤(𝑃𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔௜) + 𝑥෤(𝑅𝑒𝑡𝑎𝑖𝑙௜)  

𝑓𝑜𝑟 𝑖 = 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑠𝑢𝑏 − 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

Equation 12. Calculation of emissions per sub-category based on emissions for each data point. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠஼௔௧௘௚௢௥௬ =  �̅�(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠௦௨௕ି௖௔௧௘௚௢௥௬௝
) 

𝑓𝑜𝑟 𝑗 = 𝑎𝑙𝑙 𝑠𝑢𝑏 − 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

Equation 13. Calculation of emissions per category based on emissions for each sub-category. 

The issues with Method 3 are similar to the issues with Method 1 which arise because the median of 
each of the life cycle stages is determined, thus the final emissions factor does not necessarily represent a 
real data point or possibility. In addition, because the average among the sub-categories is being used, it is 
being assumed that all the sub-categories equally contribute to the category, which may not be the case. 
For example, for the Beef category, Bovine meat from beef herd, Bovine meat from a dairy herd, and 
Mutton & goat meat, are all contributing equally to the beef emissions factor, although practically, 
Mutton & goat meat is purchased less often than bovine meat of either type.   

Method 4 for determining the emissions associated with a category first requires the determination of 
the median value for the total life cycle emissions for each sub-category as defined in  Equation 14. Then, 
the average value among the sub-categories is calculated and assigned as the emissions factor for that 
category as defined in Equation 15.  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠௦௨௕ି ௖௔௧௘௚௢௥௬ =  𝑥෤(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠ௗ௔௧௔ ௣௢௜௡௧௜
) 

𝑓𝑜𝑟 𝑖 = 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑠𝑢𝑏 − 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

Equation 14. Method 4 for calculating emissions. First must calculate the relevant values for the sub-categories. 
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𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠஼௔௧௘௚௢௥௬ =  �̅�(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠௦௨௕ି௖௔௧௘௚௢௥௬௝
) 

𝑓𝑜𝑟 𝑗 = 𝑎𝑙𝑙 𝑠𝑢𝑏 − 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

Equation 15. Calculation of emissions per category based on emissions for each sub-category. 

The issue arises with Method 4 is similar to one of the issues with Method 3 in that it assumes that all 
the sub-categories are equally representative of the category.  

It is also possible to conduct an analysis of emissions for each category and sub-category using the 
same equations but replacing the median determination with a calculation of the average. It is known that 
the data available within this analysis is heavily skewed 5, thus the median was determined to be the best 
representation of the emissions factors for the food categories. However, a discussion of the impacts of 
using the average emission factors instead of the median emissions factors is available in Section 4.3 
 Quantifying Uncertainty.  

The baseline method to compare the Poore emissions factors was selected as Method 2 which 
considers all the individual data points collected from all the papers analyzed and uses the median values. 
The emissions results using Method 2 are presented in Figure 13.  

 

 

Figure 13. Poore Method 2 Emissions Breakdown. 

The emissions calculated using Method 2 are larger than the emissions calculated using the SIMAP 
emissions factors, but slightly less than the Heller 2018 emissions. However, the percentage of emissions 
attributed to each category is much more similar in the case of SIMAP and Poore than between Heller 
2018 and Poore. In addition, Poore et al. considers cradle-to-grave life cycle phases, so it is important to 
highlight that if an entity is processing the food on site (i.e. cooking food) and is reporting the emissions 
associated with processing the food through another avenue, such as the natural gas or electricity and the 
associated emissions within the kitchens, they must be careful to not double count these emissions.  

4.2.1.4 Poore et. al without Land Use Change (LUC) Emissions  
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As discussed in Section 2.2.4 Land Use Change Emissions, there is still much uncertainty with 
regards to how to accurately account for LUC emissions as there are many complicated interactions and 
systems which influence LUC emissions. Thus, to determine the impact of not considering LUC 
emissions, Method 2 as described in the previous section was used with a slight modification. This 
modification affects Equation 9 which defines the Emissions for each data point, as was modified as 
detailed by Equation 16 to exclude all types of LUC Emissions.  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠ௗ௔௧௔ ௣௢௜௡௧ ௡௢ ௅௎஼ =  𝐹𝑒𝑒𝑑 + 𝐹𝑎𝑟𝑚 + 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑇𝑟𝑎𝑛𝑠 & 𝑆𝑡𝑟 + 𝑃𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔 + 𝑅𝑒𝑡𝑎𝑖𝑙 

Equation 16. No Land Use Change Emissions for each data point. 

 

 

Figure 14. Dining Hall Emissions Calculation using Poore Median Method 2 Emissions without including LUC. 

Removing the LUC emissions reduced the total calculated emissions by 10.9% as compared to the 
calculation including LUC emissions. It most greatly affected the breakdown of emissions associated with 
the Beef and Chicken categories, but overall, most of the categories remained at the same percentage 
breakdown as when the LUC emissions are considered. Thus, considering LUC emissions affects the 
magnitude, but does not necessarily affect the prioritization order for most impactful categories, and 
mostly affects all the food categories equivalently.  

4.2.1.5 Department for Environment, Food, and Rural Affairs (DEFRA) Emissions 
Factors 

The United Kingdom (UK) Department for Environment, Food, and Rural Affairs (DEFRA) released 
emissions factors for 2019 on 07/31/2020 for the 2019 calendar year. These emissions factors are released 
such that companies can report their emissions to the government. This source uses the IPCC Fourth 
Assessment Report over a 100-year period for its emissions factors. These emissions factors are 
developed specifically for use by UK companies for business conducted within the UK. Thus, it is 
expected that there will be an inherent difference in the magnitude of emissions as compared to the 
emissions factors developed specifically for the US and for more global estimates.   
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DEFRA is a little different from other emissions factors discussed in this research because it defines a 
single emissions factor for all food and drink. The 2019 emissions factor for food and drink is 4,060 kg 
CO2eq per metric ton of food and drink purchased 44. The emissions factors cover extraction, primary 
processing, manufacturing and transportation to the point of sale, thus it is considered to include cradle-
to-gate emissions. 

Multiplying the emissions factor by the total amount of weight purchased by the dining halls lead to 
11,377 metric tons of CO2eq. This represents an 79.2% increase in estimated emissions as compared to the 
SIMAP emissions estimate, but is similar to the estimate using Heller 2018 15 (6.89% decrease) and 
Median Method 2 Poore 5 (2.15% increase).  It is interesting to note that this singular emissions factor is 
still very much within the range of the emissions estimates of several other weight-based emissions 
factors which have much more categories. However, this is likely due to the fact that this one emissions 
factor for all food and drink incorporates an assumed distribution of the types of foods purchased. Thus, it 
is likely that there would be a much larger difference in total emissions calculated if a less distributed data 
set was used, such as the Amazon for Business or SmartMart food purchasing data sets.   

4.2.3 Using Various Spend-Based Emission Factors  

Not all entities keep track of weights of foods purchased, thus it is often useful or necessary to 
calculate emissions using spend-based emissions factors. Using the tools developed in this work, there are 
two different ways that the spend based emissions factors can be used for the data sets for the food 
purchased. First, the categorization script including the keywords and edge cases can be adapted to 
categorize into the 37 food categories which exist for the US EPA EEIO spend based emissions factors, 
which are also the categories that exist for the other spend-based emissions factors. The other option is to 
do a mapping which takes each US EPA EEIO category and maps them to the most appropriate SIMAP 
category.  

Each of these methods has its pros and cons. By adapting the script, one is able to use the more 
detailed categories which are not available through the 18 SIMAP categories, for example, the US EPA 
EEIO includes a category for frozen foods which SIMAP does not. However, because no previously 
categorized data sets for the US EPA EEIO categories were able to be obtained, it was not possible to do 
an extensive validation of the US EPA EEIO categorization script in the same manner that was conducted 
for the SIMAP categories. By mapping the categories from SIMAP to US EPA EEIO, one loses 
granularity, but can be sure of the original SIMAP category assignment with relatively high certainty. The 
results using these two methods are detailed in the following sections.  

One major difference with the spend-based emissions factors as compared to the weight-based 
emissions factors is that each item is only attributed to one category. In addition, it is important to 
highlight that there are many prices at which an item can be purchased, and it is important to keep track of 
if the emissions factors are based on producer price or consumer price and which of these is most 
appropriate for the current application.      

4.2.3.1 Adjustments to Categorization Script 

For the spend-based emissions factors, only one category was assigned per item. Thus, there were no 
edge cases that are included in this categorization. Instead, the order through which the script considers 
the categories was determined such that the more important or relevant categories were assigned first. For 
example, the script first searches for keywords associated with the frozen category because they trump 
other categories, and spices are last, which is only considered for items which were not categorized to any 
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of the other categories. The order of keyword search is available in Appendix VIII: Order of EEIO 
Categorization.    

4.2.3.2 US Environmental Protection Agency (EPA) Environmentally-Extended Input-
Output (EEIO) v1.1 

In this section, the results discussed are the ones that were obtained using the US EPA EEIO adjusted 
keywords and edge cases for the categorization script. The results using the mapped categories, both 
adjusted and not adjusted are discussed in 4.3  Quantifying Uncertainty. The US EPA EEIO is US 
specific thus introduces an additional difference when comparing this method to the weight-based 
emissions factors which are more global in their development of emissions factors.   

The U matrix described in Section 2.3.2 from the US EPA EEIO v1.1 tables were used as the 
emissions factor, which are the life cycle impact assessment results and include both the direct and 
indirect environmental impacts for producing one dollar’s worth of a commodity in 2013 dollars. The 
emissions factors were converted to 2019 dollars accounting for inflation by using an online inflation 
calculator which considers economy wide adjustments 45. Then it is multiplied by the total spend per 
category to determine the total emissions. These prices are representative of producer price, thus they are 
the prices for producing items in each of these categories. The US EPA EEIO v1.1 factors use 2007 detail 
Input Output data and the 2013 greenhouse gas emissions for the US. The US EPA EEIO v1.1 tables are 
widely used and recognized thus provide a good comparison metric across the board.  
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Figure 15. US EPA EEIO Dining Hall Emissions. 

The colors for each category were kept as similar as possible to the weight-based emissions graphs, 
but because of additional categories, more shades were required within some categories, and new 
categories which did not exist in the previous analysis were added, mainly the yellow categories. These 
emissions calculations are very similar in magnitude to the emissions calculated with weight-based 
emissions factors except for the SIMAP emissions factors. In fact, they are only 1.9% less in emissions 
estimate than Median Method 2 from Poore et al. However, the breakdown of emissions attributed to each 
category has changed quite significantly depending on the category. For example, Chicken in the SIMAP 
analysis makes up 22% of the emissions whereas in the US EPA EEIO analysis it makes up only 10%. 
This is in large part due to the fact that there is a significant amount of emissions that are attributed to the 
frozen food manufacturing category, which in turn affects the breakdown for all the categories.   

Another additional difference inherent in these emissions factors when compared to the weight-based 
emissions factors includes its consideration of land use change emissions. For example, the US EPA 
EEIO v1.1 model includes the emissions associated with land use, land use change, and forestry, but 
considers them as biogenic sequestration using the United Nations Framework Convention on Climate 
Change (UNFCCC) national GHG inventory conventions 46, 47. Thus, their impacts to the net carbon 
emissions calculation are to decrease the total value reported. Finally, these methods do not include use-
phase or end-of-life emissions, unlike some of the weight-based factors.  

4.2.3.3 Supply Chain Emissions Factors (SEF) 
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For this analysis, the US EPA EEIO adjusted keywords and edge cases categorization script was also 
used, as the categories are the same for both sets of emissions factors. The EPA has also more recently 
published work with supply chain emissions factors 48. These were also developed using USEEIO models, 
and thus are US specific. It includes both direct and indirect GHG emissions associated with cradle-to- 
point of sale in 2018 dollars. These prices are representative of purchaser price, thus is expected to 
represent the food data sets more appropriately since the universities are purchasing the food to prepare, 
not producing the food itself. The emissions factors are in kg CO2eq and the conversions to CO2eq are 
based on the IPCC AR4 global warming potentials for methane and nitrous oxide which are listed in 
Appendix IX: Carbon Equivalence Conversions. The factors were developed using 2012 Input output data 
and 2016 greenhouse gas emissions for the US.  

 

 

Figure 16. Dining Hall Emissions using Supply Chain Emissions Factors. 

The total magnitude emissions calculated are 61.7% higher as compared to the SIMAP weight-based 
emissions calculation, 17.5% lower than the Heller 2018 emissions calculations, and 9.5% lower than the 
Median Method 2 Poore calculation. In addition, they are 10.2% lower than the US EPA EEIO v1.1 total 
emissions calculated. Again, the magnitude of the total emissions has changed as well as per category, but 
the prioritization, or largest contributing emissions categories, have largely remained the same between 
the US EPA EEIO v1.1 and the SEF emissions factors. However, because the SEF are much more recent, 
they are not as widely used nor as robustly checked as the US EPA EEIO v1.1 simply due to the fact that 
they are newer. 
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A major difference between the SEF emissions factors and the US EPA EEIO v1.1 model is how they 
handle biogenic sequestration. In the US EPA EEIO v1.1 model, forest sequestration was assigned to the 
forestry sector, however the locations in which the sequestration is occurring in the US are not actively 
harvested and used within the forestry sector 46. Thus, in the SEF emissions factors biogenic sequestration 
was removed to avoid a misbalance of carbon accounting 46. However, this should not impact the food 
emissions factors significantly as the largest portion of this change directly affected the forestry sector. 

4.2.3.4 VitalMetrics 

VitalMetrics is the first of the private tools to be discussed in this analysis. By this, it is meant that the 
tool is a black box where the emissions factors are not directly available. Instead, the categorized data was 
provided to VitalMetrics, and a summary report was made available which detailed the total emissions 
calculated for the entire provided data set along with the percentage of emissions for the top 9 categories.  

For analysis of emissions using the VitalMetrics tool, the US EPA EEIO adjusted keywords and edge 
cases categorization script was also used because it uses the same categories which VitalMetrics uses. The 
category names have slight differences, but they represent the same categories. For this analysis, the 
country was set to the US. For this analysis, VitalMetrics used CEDA 5 as their emissions factors source.  

 

Figure 17. Total Stanford Emissions Breakdown from VitalMetrics Analysis. Includes Foods purchased through dining halls, 
Amazon for business and SmartMart. 

The emissions above include the aggregate emissions from the dining halls, Amazon for Business and 
SmartMart, however, it was detailed that 98% of the total emissions came from the dining hall data. Thus, 
the estimate total emissions for the dining hall using VitalMetrics is 13,004 metric tons of CO2eq. This is a 
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77% increase in emissions when compared to the total emissions calculated using SIMAP emissions 
factors, a 6.4% increase as compared to Heller 2018, and a 17% increase as compared to Median Method 
2 Poore. The percentage of emissions attributed to each category remains mostly the same across the 
board, with an increase in magnitude of emissions. The VitalMetrics emissions were calculated using the 
GHG Protocol: Corporate Value Chain (Scope 3) Accounting and Reporting Standard. The emissions do 
not include biogenic CO2 emissions nor trades. The CEDA database was modified in order to represent 
conditions present in 2019 to harmonize with the data year.  

4.3  Quantifying Uncertainty 
As can be noted from the section above the total estimated magnitude of emissions can have a 

variance of up to 2x depending on source and method. Although the range can be considered relatively 
large, both the minimum and maximum estimated emissions are the same order of magnitude which is 
encouraging. In addition, it is interesting to note that both the highest and lowest estimate are achieved 
using weight-based emissions factors. Among the spend-based emissions factors, the estimated total 
emissions range from 10,083 to 13,004 metric tons of CO2eq, a much more narrow range which shows 
relatively good agreement between the different spend-based emissions factors. The average total 
estimated magnitude of the spend-based emissions factors is 11,440 metric tons of CO2eq, whereas the 
same average for the weight-based emissions factors is 10,216 metric tons of CO2eq, again showing 
remarkable agreement between the methodologies. However, there is still some uncertainty as to what the 
true magnitude of emissions is and what the uncertainty is with regards to these values which will be 
further discussed in this section. The estimates for the total emissions are so close, but it is important to 
remember that these sources consider different life cycle stages in their calculations, different geographies 
and different data vintages.  

4.3.1 Calculation of Emissions per Dollar per Food Category  
One way to quantify some uncertainty with regards to using spend-based and weight-based emissions 

is to back-calculate one using the emissions from the other. Several of the data sets provided from the 
partner universities through the SIMAP NWG included both weight and spend data, with the relevant year 
for the data set presented in Table 8. All the spend data was converted to 2019 dollars by adjusting for 
inflation using an online inflation calculator 45. 

Table 8. Data set years for various provided data sets. 

 

By using the SIMAP emissions values and determining the total emissions per category for each of 
these data sets, and then dividing these total emissions by the total amount of weight of food purchased in 
that category for each university, a back-calculated spend-based emissions factor could be determined for 
each food category for each university. These results are shown in green Figure 18. The blue squares in 
the same figure represent the different spend-based emissions factors found in literature. Some of the food 
categories have a very small spread between all the back-calculated and spend-based emissions factors, 
such as nuts, liquids, and sugars. However, other food categories have a wide spread in emissions such as 
beef, cheese, and eggs. This can be due in part to the differences in qualities of the foods purchased, 
which affect the price per kilogram of the food purchased. For example, the lowest back-calculated 
emissions per dollar spent for beef is associated with the beef purchased from Amazon for Business and 
was made up of jerkies (beef jerky, turkey jerky, and bacon jerky). These beef products are lower quality 
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and thus are cheaper than regular beef, and the difference in weight is not so significant, thus the 
emissions per kilogram are much lower for these purchases of beef as compared to regular beef 
purchases. This illustrates that the more diversified a food data set that is being analyzed, the less likely it 
is to encounter large differences in emissions using weight- vs spend-based emissions factors. This is 
further corroborated by a deeper analysis of the Amazon for Business food purchases.  

 

Figure 18. Back-calculated kg of CO2 per 2019 dollar spent using data from various universities for which spend data was 
available. Blue squares represent spend-based emissions factors found in literature whereas the green points represent the 
back-calculated spend-based emissions factors for the university data sets where both spend and weight data were available. 

4.3.2 Analysis of Impacts of Grouping Poore Categories into SIMAP 
Categories 

As discussed in depth in Chapter 4.2.1.3, there are many ways to aggregate the more numerous Poore 
categories into the SIMAP categories because the detailed information is available for every data point 
gathered for the analysis. Previous results using the Poore et al. emissions factors used the median method 
2 methodology. Using both the median values and the average values and Equation 9 through Equation 
15, a total of eight methods can be developed to use the emissions factors. The impacts of using these 
methods are detailed in Figure 19 and Figure 20.  
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Figure 19. Comparison of Emissions calculations from Poore et al. values. 

Due to the skewed nature of the emissions factors, the average emissions factors are much higher for 
each food category when compared to the median values as shown by Figure 19. This causes the 
minimum emissions calculated to go from 9,943 metric tons of CO2eq using Method 1 for median values 
to 15,104 metric tons of CO2eq using Method 3 and 4 with the average values. This represents a 51.9% 
increase in the calculated emissions. Among the Median Methods, there is some spread, but the highest 
estimate represents an increase of 18.5% in emissions as compared to the lowest estimate. Among the 
Average Methods, the highest estimate of emissions is only 3.2% higher than the lowest. Many of the 
other weight-based emissions factors use the average of the LCA emissions for the items in each 
category, which according to this analysis can estimate the emissions at a higher level than when 
compared to when the Median values are used.  

The percentage breakdown for each method as illustrated in Figure 20, shows some difference 
between the percentage of responsibility attributable to each food category between the methods, but not 
as large a difference as the magnitude of emissions. This indicates that if the purpose of examining 
emissions is to determine the largest contributors to emissions or the ranking of contributors, any of these 
methods for developing emissions factor should be able to generally accurately provide a response. 
However, if the question being asked is what the magnitude of emissions is, then the emissions factor 
used can make a large difference.     
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Figure 20. Emissions Breakdown with various methods using Poore et al. data. 

4.3.3 Analysis of Impacts of Adjusting Heller 2018 Emissions Factors 

For the Heller 2018 emissions factors, each data point used to determine the emissions for each of the 
categories considered was also available, much like in the Poore data set. However, the total number of 
items contributing to each category was much smaller in the Heller 2018 data set, thus each individual 
point has a larger impact on the emissions for that category. Of particular significance is the Other food 
category, which includes data from 23 different data points. For the previous analysis discussed in this 
work, the emissions for the dining halls were calculated using the average of all 23 data points for the 
Other category. However, three points within this category have a significantly higher emissions factor 
associated with them, and likely do not make up such a significant portion of the items purchased in the 
Other category. Thus, Cocoa, powder; essential oil, lemon; and essential oil, orange were removed in 
order to conduct a secondary analysis using the Heller 2018 emissions factors because including these 
three data points in the average increases the average for the Other category by 6.5 times. The Heller et al. 
2018 categories are less granular than any of the other emissions factors sets that were considered for this 
analysis, thus there are many more occasions of one emissions factor from Heller et al. 2018 being 
assigned to multiple SIMAP categories, including the Other category. Thus, as seen in Figure 21, 
excluding the three data points that significantly increase the emissions associated with the Other category 
has an impact on the total emissions calculated and reduced the total magnitude of emissions by 3.7% as 
compared to using the average of all the points for all the categories.  
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Figure 21. Heller 2018 Dining Hall Emissions with Adjusted Other Category. 

4.3.4 Analysis of Using EPA EEIO Categorization Script versus Mapping 
EPA EEIO categories to SIMAP categories 

As discussed at the beginning of Section 4.2.3, the categorization for the spend-based emissions 
factors can be done in two ways. The categorization script can be adapted to categorize food purchases 
into the 37 food categories which exist for the US EPA EEIO spend based emissions factors, which is 
what was used for the analyses up to this point. The other option is to do a mapping which takes each US 
EPA EEIO category and maps them to the most appropriate SIMAP category. Because no previously 
categorized data sets for the US EPA EEIO categories were able to be obtained, it was not possible to do 
an extensive validation of the US EPA EEIO categorization script in the same manner that was conducted 
for the SIMAP categories. By mapping the categories from SIMAP to US EPA EEIO, one loses 
granularity, but can be sure of the original SIMAP category assignment with relatively high certainty. The 
results from mapping the categories is presented in Figure 22. 
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Figure 22. Spend-based emissions factor using mapping from EPA EEIO Categories to SIMAP Categories. 

Using the mapped categorization to of EEIO emissions factors to the SIMAP categories reduced the 
total emissions estimate for the data set to 11,813 kg CO2-eq or a 5.2% increase from using the EEIO 
emissions factors and categories directly. Most categories have stayed relatively similar, but Pork has a 
larger proportion of emissions when compared to weight-based emissions while Chicken has a smaller 
contribution to the overall emissions. Pork is likely larger because the category for emissions in EEIO is 
for animal (except poultry) slaughtering, rendering, and processing, which is much more general than a 
Pork specific emissions factor available through other sources. Milk has grown from 5% in the EEIO 
categorization to 9% in this mapping, likely due to the fact that ice cream and butter are two separate 
categories in the EEIO categorization. 

4.3.5 Analyzing Amazon for Business Food Emissions in More Depth 

As mentioned previously, the types of food purchased through the Amazon for Business are not as 
varied as what is purchased for the dining halls because it mostly represents purchases done for snacks for 
meeting and events. Thus, any assumptions made on general food purchasing for these emissions factors 
are less appropriate for any kind of skewed food purchasing such as the Amazon for Business data set. 
Table 9 shows the emissions calculated for the Amazon for Business data set using three weight-based 
emissions factors (SIMAP, Heller 2018, and DEFRA) as well as three spend-based emissions factors 
(EPA EEIO 1, EPA EEIO 2, and VitalMetrics).  
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Table 9. Amazon for Business Emissions Calculation Using Various Emissions Factors. 

 
Differences between these methods for this data set are an order of magnitude different, thus the 

impact of using different emissions factors in this case is much more significant than the previous 
differences noted in the dining hall data set. This indicates that the larger the data set and the more varied 
the types of food purchased the less the method or emissions factor matters if determining the order of 
magnitude of emissions is the goal. Once one attempts to analyze smaller or less varied data sets, the 
differences become more apparent. The Heller 2018 emissions factor used is the average of all the items 
in each category. The EPA EEIO 1 emissions leverage the mapping of the EPA EEIO categories to 
SIMAP categories whereas the EPA EEIO 2 emissions use the less validated categorization directly into 
the spend categories for the EPA EEIO.  

4.4  Outlier Analysis 
An outlier analysis was conducted to attempt to quantify the possible errors present with regards to 

the weight assignment for the different items purchased. Three scenarios were considered for options of 
what to do for the line items deemed to be an outlier for each food category. 

Scenario 1 is the base case where all the weights and spend data are considered to be accurate. Up to 
this point in this work, this is the scenario that was utilized. Scenario 2 is where, through the use of the 
determination of outliers as explained in Section 3.9 Determining Outliers, any item that is 
considered an outlier is removed from the data set. Scenario 3 is where all the items that were considered 
outliers are allocated a new weight according to Equation 6 and the line items with the new weight are 
included in the data set. Scenario 3 assumes that the spend for these line items are correct and that the 
issue is the weight assignment. Although it is possible the spend is incorrect, this is less likely than the 
weight being incorrect due to the prevalence of keeping track of spending for budgetary reasons.  

Because it is hard to analyze outliers for multi-ingredient items, only single ingredient items were 
considered for this analysis. The total spend on one ingredient items was $8,802,915 out of a total spend 
of $10,364,968. Therefore, the percent of spend on one ingredient items is 85%. Thus, there is still the 
possibility of incorrect weights assigned to multi-ingredient items and still uncertainty associated with the 
range of emissions calculated with the outlier analysis. 
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Table 10. Summary statistics for each food category in R&DE Dining Hall data set. 

 

A high standard deviation value indicates that there is a lot of variability in the prices per kilogram of 
the items in that category. In some cases, this is in part due to a variety of items which are in the category, 
such as coffee and tea also includes chocolate, but in other cases this is likely due to items where the 
weights were not accurately considered. For example, the five highest standard deviations are for the 
categories: Spices, Pork, Beans, Grains, and Coffee and tea. In the case of Pork, there is a single line 
which has a dollars per kilogram of $837/kg of pork purchased, whereas all the other outliers are below 
$90/kg and most are below $50/kg. More information on the lines that were deemed to be outliers is 
available in Appendix X: Items Determined to be Outliers from R&DE Data Set. A statistical summary of 
the items considered to be outliers is available in Table 11.  

By using the standard deviation and the first and third quartile designations for each food category, 
outliers were determined using Equation 4 and Equation 5. There were no outliers found that were too 
small in terms of spend per kilogram. Table 11 shows the number of outliers for each category as well as 
the percentage of the spend that is attributable to the items deemed to be outliers (only for single 
ingredient items).  
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Table 11. Summary of Outlier information per food category. 

 

Scenario 2 reduced the total emissions for the food purchased through R&DE from 6,348 metric tons 
of CO2eq using the SIMAP emissions factors to 6,337 metric tons of CO2eq. This represents a -0.17% 
reduction in the estimated emissions. This is in part a small value because there were no outliers where 
the $/kg were found to be too small, thus all the outliers were cases where a proportionally small amount 
of weight was attributed to a large amount of spend. This means that the emissions associated with these 
outliers were being underestimated, and by simply removing these line items the reduction in emissions is 
small because the emissions were being estimated using a weight-based emissions factor and the weights 
were small.  

In Scenario 3, the emissions determined were larger than for either of the other two scenarios at 6,371 
metric tons of CO2eq, or a 0.37% increase in emissions. Although this value was a small percent of the 
total emissions, as can be seen in Table 11, there were almost 8 tons of food purchased that were 
considered outliers, and when adjusted, this weight became almost 20 tons of food. This analysis could 
lead to a larger impact if the errors in weight were concentrated in the food categories with higher 
emissions. Thus, it is still important to determine the outliers to ensure that the data set does not have 
many outliers in these more impactful categories. 

Chapter 5: Conclusions and Future Work 

5.1  Conclusions 
Overall, the differences between the total emissions calculated using emissions factors for large data 

sets was much smaller than expected as illustrated in Table 12 and Figure 23. However, it was realized 
that the distribution of the types of food items purchased will affect the magnitude of difference that will 
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be present between weight- and spend-based emissions calculations. The more varied the types of foods 
purchased, the smaller the difference will be between the methods as is discussed in Section 4.3.2.  

Table 12. Dining Hall Emissions Summary. 

  

   

 

Figure 23. Comparison of all emissions estimation methods. The DEFRA Emissions methodology does not allow a breakdown per 
food category type which is why it is a single bar that represents the total emissions. 
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There is also generally not a large difference between the methods for the order of categories with the 
largest contributions except for the Heller 2018 methods which both estimate a larger portion of 
emissions associated with Chicken and Milk and less for Beef as can be seen in Figure 24.  

  

 

Figure 24. Percentage breakdown for all emissions estimation methods. The DEFRA Emissions methodology does not allow a 
breakdown per food category type which is why it is a single bar that represents the total emissions. 

Although the differences in magnitude between the methods are not so large, there are differences in 
the LCA assumptions that are being made between these methods, such as how to deal with land use 
change emissions if they are being dealt with at all, how detailed or not the categories for emissions 
factors are, geographic applicability, number of ingredients considered, among other factors. Thus, it is 
very interesting that it seems that these differences in assumptions between emissions factors seem to 
mostly cancel out.  
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Most importantly, the goal of quantifying the emissions from food purchases is to determine best 
courses of action to reduce the emissions from the category of purchases. The breakdown of which food 
categories contribute the most to the total emissions does not change significantly between the different 
methodologies and emissions factors. Thus, determining the categories that contribute the most is 
relatively easy, and is usually animal based foods. This is not surprising but highlights the exciting 
opportunity for emissions reductions from replacing traditional animal-based products with new foods 
such as plant-based meat substitutes and generally reducing the overall animal-based consumption across 
the board.  

This work also highlights the importance of creating a standardized labeling system where emissions 
from each portion of the supply chain are easily kept track of and passed directly from each phase of the 
life cycle. Developing this system would ease the calculation of Scope 3 emissions and allow users to 
utilize their purchasing power to force companies and products to make more environmentally friendly 
decisions in terms of procurement and materials. In the meantime, it is also important to standardize the 
use of UNSPSC codes and require a detailed UNSPSC code down to the commodity level in order to help 
with categorizations for the rest of purchased goods. The categorization step is one of the main barriers 
for entities to begin to quantify their Scope 3 emissions from food purchases and will likely be the main 
barrier for quantifying Scope 3 emissions from other purchased goods categories as well. By obtaining 
specific information from the UNSPSC codes, the mapping of UNSPSC codes to EEIO categories can be 
made much more easily and generally for use by many in a standardized way.  

5.2  Limitations of Study  
There are many limitations of the study, some of which are inherent to the available data sets and 

others which arise from the methodologies employed. The data sets analyzed in this work are all in 
English and are from universities located in the United States (US) and Canada, which possibly restrict 
the confidence in results to applications of the tools and methodologies to entities in the US and Canada. 
In addition, some of the emissions factors data sets are US-specific, while others have varying levels of 
details for the entire world, thus limiting the applicability of these results of uncertainty and variance on 
emissions bounds to US data sets. 

The food data sets that were included in the Stanford case study were not comprehensive of all food 
purchased on campus and only included the line items for which both weight and spend data could be 
determined. This introduces to possible limitations. First, because some campus food purchases were not 
considered including food purchased by on campus housing where students prepare their own food, food 
purchased for resale at on-campus food trucks, on-campus food franchises, and other food vendors 
including concessions at sporting events, the distributions of food purchasing analyzed may not be 
representative of the true distribution across the whole campus, or even the distributions of other entities. 
Second, most of the food items for which both spend and weight data could not be determined were fruits 
and vegetables, which introduces a bias where a larger fraction of the true purchases for animal products 
is considered than for the fruit and vegetable products. In a related fashion, food items that the script was 
not able to categorize are omitted from the analysis, which can also introduce a bias to the results. This 
bias in the discussed cases is likely minimal because of the high ability to assign categories to the 
Stanford data sets, but this could be a problem for other university data sets if a large portion of their data 
is not able to be categorized.   

5.3  Future work  
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Many avenues exist to expand this work further, including improving the categorization script such 
that less food items are omitted due to inability to categorize, divulgation of the tool such that more 
entities begin quantifying, tracking, and mitigating Scope 3 Emissions from food purchasing, and using 
more emissions factors to better understand the uncertainty with regards to the total calculated emissions 
from purchased foods. In addition, it is important to understand how this work can inform similar work 
for other purchased goods.  

5.3.1 Categorization Script 

In order to minimize uncategorized items, after the fix_spelling function illustrated in Figure 5, an 
additional function could be added which could estimate the category based on the vendor for items that 
have not been categorized up to that point. For example, the three items with the largest weights that were 
uncategorized within the University E data set in Table 4 were from Coca Cola, thus it could be inferred 
that they were soda and should be categorized as Liquids.  

The processing time could also be reduced by changing the structure of the code such that instead of 
the key words document contains single words, it contains multi-word key words so that most of the edge 
cases where two words should be assigned a new category could be removed. This would be particularly 
impactful to the run time because the edge cases function is the portion of the code that takes the longest 
to run. The processing time could also be significantly reduced by having the script create a pivot table of 
the provided data and consolidating all items with the same name, instead of assuming the user has 
provided a data set where this step has already been performed.   

In addition, the script could be improved such that it facilitates correct interpretation of the results by 
the user. This could be achieved by, for example, including warnings of line items that might be outliers 
such that those can be excluded from the overall data set if appropriate. This would be possible by 
comparing $/kg of food in each category after categorization and comparing to the statistics from the 
metadata for all data analyzed by the script previously.   

As more universities and entities use the categorization script, it will iteratively improve as more 
keywords and edge cases are added to accommodate more data points and as mistakes are noticed by 
users. As more entities use the script there will also be the opportunity to look at trends over time of food 
purchasing breakdowns. Finally, it is important to continue to advertise the tool and incentivize more 
entities to use the tool such that it can continue to be improved. 

5.3.2 Uncertainty Quantification 

The emissions factors used in this work are from governmental agencies or published papers, but 
there is a lack of emissions factors from LCA software, thus in order to better quantify the emissions 
calculation uncertainty, it would be interesting and important to include emissions factors from software 
such as OpenLCA, SimaPro, and Thinkstep by GaBi.  

It would also be interesting to quantify the uncertainty that exists between the different ways to obtain 
a full year’s worth of food purchasing at different entities. Some are only able to obtain data for one- or 
two-months’ worth of purchasing and then scale this information up to a whole year, while other entities 
are able to obtain all the food purchases for the whole year directly. Because there is less diversity of 
purchasing that occurs in a month than in a whole year, it is likely that there would be a greater difference 
in emissions in this case for weight- versus spend- based emissions calculations than in the case where the 
whole years data is used.  
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In addition, a simplification was used for this analysis where the information of whether the food was 
organic or local was not taken into consideration when calculating the total data set emissions. 
Incorporating these data into an analysis may show a larger difference between spend- and weight- based 
emissions calculations because organic foods are usually more expensive, while local foods might be less 
expensive. It would also be interesting to consider other environmental impact factors and how these are 
affected by the use of these multiple emissions factor sources. 

There is also an opportunity to include an integration with the US EPA Food Commodities Intake 
Database which has standardized recipes for foods in agricultural commodity form. It would be 
interesting to analyze what the impacts of true ingredient analysis of multi-ingredient items would have 
instead of the simplified maximum of three ingredient process that is being used in this work. In addition, 
instead of using inflation factors for the entire economy to harmonize cost data, the statistical abstract of 
the US provides historical price indexes for major commodity groups including food. This has the 
potential to influence the spend-based emissions factors if the cost of food grew significantly faster or 
slower in a particular year than the overall US economy. 

Finally, as data collection continues from large institutions as they continue to use the tool, there will 
be exciting new opportunities for insights to be gained from the meta data, which could lead to a better 
understanding of the uncertainty within these calculated emissions.  

5.3.3 Applying Learnings to Other Purchased Good Categories 

Food is only one of many different categories of purchased goods, and it is important to understand 
how these learnings can be translated to other categories as well as what similar analyses can be 
conducted for other categories to determine the importance and uncertainty related to different 
methodologies and estimation methods.  

For example, a very similar analysis can be conducted for laptops, computers, and some electronics 
like printers because the exact quantities of these items purchased is known as well as the spend on these 
items. Many computer companies have done more specific LCAs for individual laptops, computers, and 
some other electronics which take into consideration specific configurations. Thus, it is possible to 
determine the difference in total emissions estimated with these two methods to determine the uncertainty 
for this category. Much of this work has been done thus far in collaboration with the Material Science 
Laboratory at MIT using the Product Attribute to Impact Algorithm (PAIA) Research Approach 49.    

It is also possible to do a similar analysis with chemicals because they are often purchased in very 
specific quantities which are kept track of and the spend on these chemicals is also known. Both chemical 
and the subset of electronics discussed here are thought to make up a large portion of a research 
university’s emissions from Purchased Goods, in fact, at Stanford in 2019 according to data sourced from 
the Procurement Department, Laboratory Material Supplies is the largest category of spend for purchased 
goods and computers and computing devices is the 6th largest spend category. 

General takeaways from this work which are applicable to other purchased goods categories include 
the learning that it would be helpful for entities to keep track of weights of other items purchased in order 
for comparisons to be made with the different methodologies. Today, it is possible to obtain weight data 
of purchased items through shipping information. It would also be beneficial to demand more accurate 
and specific UNSPSC codes for purchased goods, and for there to be centralized ways to pull purchasing 
information across an entity.   
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Supplementary Information 

Appendix I: Poore emissions breakdown 50 

 

Figure 25. Breakdown of emissions per life cycle phase for Poore et al. food categories. 

Appendix II: Dining Hall Weight Assignments  
Table 13. Dining Hall Data Column Headers. 

 

  
𝑁𝑒𝑤 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 𝑞𝑡𝑦 ∗ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 
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For this analysis, a new quantity value had already been calculated and the conversion had been set to 
1 and the quantity in the provided spreadsheet was set to the new quantity. This affected approximately 
10% of the meat purchases and thus, in the cases where the conversion was set to 1, the new quantity was 
set to the quantity and the unit was set to the purchase unit. For the rest of the data the following steps 
were conducted.  

Any item name that included the following combinations of letters were analyzed: GL, KG, LB, and 
OZ. These key words were selected because they are indicative of a volume or weight associated with the 
item purchased. Within the item name, these key words could appear in two formats which are illustrated 
in Figure 26: a value and a unit as seen in the first line, or a number of packages purchased with a specific 
value and unit, as seen in the second line.  

 

Figure 26. Example of LB found in item names.  

The appropriate value was determined for each line that included each of the four key words listed 
above and put in the conversion column. After this step, all remaining lines for which the original 
purchase unit was GL, KG, LB, or OZ were considered to be accurate. Next, the remarks included with 
each of the lines not yet assigned a weight were analyzed to determine if they included weight 
information. If they did, the appropriate value was added to the conversion column, and the correct unit 
attributed to that line. Finally, for any remaining uncategorized lines, the item names were analyzed to 
determine if the exact same name from the same vendor had been attributed a weight or volume through 
any of the previously mentioned steps, and if so, that weight or volume was assigned. After each line item 
had a weight or volume associated with it, line items with the same item name, purchasing unit, and 
vendor were consolidated. 

In some occasions items with the same name had different Purchasing units, and this was assumed to 
be attributable to human error when inputting the data at the food’s arrival. In these cases, the most 
appropriate purchasing unit from the ones present as occurrences for one item name was determined by 
considering the number of items purchased that was attributed to each purchasing unit. Took original 
data, did a pivot table to determine which items had the same name but different purchasing units. Not 
converted are the lines that did not have a new quantity after the analysis done with oz, lt, gl, and lb in 
name. The provided data set had different purchase order, if the purchase order was not gl, kg, lb, or oz, 
then there was no way to determine what the purchasing quantity was.  

Appendix III: SIMAP Unit Conversions 
 Kilogram 
1 US Gallon 3.8 
1 Liter 1.0038536 
1 Pound 0.453592 

Appendix IV: Script and Hand Categorization Differences 
University A: 188 Example of a mistaken categorization: chicken sub breast meatless 3.8 oz vegan in 

hand categorization went to Chicken and in script categorization went to beans. Grape tomatoes went to 
Fruits in hand categorization and vegetables in script categorization. Generally, not many patterns of 
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differences other than the script assigns more categories to things than the hand categorization did, like 
enchilada for hand categorization was Cheese but for script categorization was cheese and grains.  

University B: has 162 items which are categorized differently. Biggest differences come from things 
like cookie dough, cake, and brownies are being categorized as both grains and sugars in script whereas in 
hand categorization they were just grains. Same thing with creamer, where script categorizes it as milk, 
oils, and sugars but hand is only as milk  

University D: 657 items which are categorized differently. Chex mix got hand categorized to 
vegetables and grains when for script it was categorized as grains and cheese when there was a key word 
for cheese. Clif bars were not categorized as Grains in the script but were in the hand categorization. 
Cookie dough was categorized as Grains for hand categorization and Grains + sugars for script 
categorization. Hi chew got categorized as Sugars for hand categorization and Fruits and Sugars for script 
categorization.  

University E: 317 items which are categorized differently. Several items that have keywords which 
indicate one thing, but outside knowledge may indicate it is something else. Like things that say 2.5 
gallon 1-ls fruit veg which the hand categorization says is liquids and fruits, but the script categorization 
assigns it to Fruits and Vegetables since there is no explicit indication that this is a juice which would 
cause it to be assigned to Liquids. In addition, most brownies, cakes, and cookies in the hand 
categorization are just being assigned to grains but for the script categorization are assigned to Grains and 
Sugars. Peas are labeled as vegetables in the hand categorization and beans in the script categorization. 
Many sauces in hand categorization are labeled as both vegetables and oils but in script are just oils.  

University G: 506 items which are categorized differently. Largest differences come from all juices 
and vinegars being categorized as Fruits in hand categorization but liquids in the script categorization. 
Sauces being categorized as vegetables or beans instead of oils.  

University H: doesn’t have digitalized food purchasing information, so must take data from printed 
out sheets and manually enter them into a computer which leads to a large number of misspellings which 
the autocorrect function cannot always handle. 371 items which are categorized differently. Many 
hamburger related items that the hand categorization says is Grains but the script says Beef because the 
item names are things like: bbb 4 pl hamburger 3 or 4” wheat hamburger dozen. Indicates that the person 
categorizing by hand either had knowledge which is not present in the item name or that these were 
incorrect categorizations. Also has many items like Italian parsley bag which are hand categorized as 
spices but if they are fresh should be considered vegetables. Sauce mnara is supposed to be marinara 
sauce but is misspelled in such a way that the autocorrect doesn’t pick it up so it gets script categorized as 
oils because of sauce but the hand categorization says vegetables.  

Importance of getting as detailed names as possible. Maybe with University H they eased up a little 
on the item names since they were doing it by hand, but if going to use the script important to include as 
much information as possible. 

Appendix V: Liquids Purchasing Analysis 
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A total of 598 items purchased through Amazon for Business had at least one of the categorizations as 
liquid.  

 

Appendix VI: SIMAP to Heller 2018 Emissions Factors 
Mapping 
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Table 14. SIMAP to Heller 2018 Emissions Factors Mapping 

 

Appendix VII: SIMAP to Poore Emissions Factors Mapping 
Table 15. SIMAP to Poore Emissions Category Mapping 

 

Appendix VIII: Order of EEIO Categorization 
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Table 16. Order of categorization for EEIO single ingredient analysis. 

 

Appendix IX: Carbon Equivalence Conversions 
Gas CO2eq – IPCC AR4 

Methane 25 
Nitrous Oxide 298 

Appendix X: Items Determined to be Outliers from R&DE 
Data Set 

 

Pork:  
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Chicken:  

 

Fish:  

 

Milk:  

 

Cheese:  

 

Eggs:  

 

Grains:  
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Vegetables:  
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Fruits:  

 

Potatoes:  
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Beans:  

 

Nuts:  

 

Liquids:  

 

Coffee and tea:  

 

Oils:  

 

Sugars:  

 

Spices:  
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Appendix XI: Reframing food purchasing and emissions 

 

Figure 27. Thinking about food purchasing in quadrants. 

Reframing of the way to think about the relationship between the food categories and their emissions. 
Want to move from the red colored quadrants to the green colored quadrants. This can be a good visual 
way to coordinate with food purchasing personnel to help them understand the impacts the food 
purchasing decisions they make have. The quadrants will self-adjust as the purchasing decisions change 
because the quadrants split the space for which there is data into four sections, instead of splitting a 
defined range into four sections.  

Appendix XII: SIMAP to US EPA EEIO Category Mapping 
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Table 17. SIMAP to US EPA EEIO Category Mapping. 

 

Appendix XIII: OBI to US EPA EEIO Category Mapping 
Table 18. Mapping of OBI Categories to US EPA EEIO Categories for preliminary determination of emissions form the top 
purchases in the OBI data set 

Appendix XIV: R&DE Purchasing Histograms  
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Appendix XV: SIMAP Details 

SIMAP Food 
Categories 

Foods in Category 

Beef 
Beef Steak Hamburger Meatball Lasagna Goat Sheep Ruminant Jerky 

Lamb Deer Veal Pastrami All-beef Stk Burger Cheeseburger Rabbit 

Pork 
Sausage Bologna Bacon Pepperoni Pork Ham Salami CornDog Pig 

Dumpling Prosciutto Mortadella Capicola Bratwurst HotDog Porkloin 
Chicken Chicken Turkey Poultry Duck Gravy Chkn Duckling 

Cheese 

Cheddar Parmesan Cheese Feta Gouda Alfredo Pizza Lasagna Queso 
Mozzarella MacCheese Chss Brie Ricotta Ravioli Asiago Spanakopita 
Muenster Caprese 

Eggs Egg Eggnog Omelette Mousse Quiche 

Milk 

Milk Yogurt Cream Butter Condensed Pudding Dairy Shake Eggnog 
WhipLight Ranch Éclair Icecream Whipped IceCreamBar Éclair 
CremeBrulee Cannoli Cheesecake Crm Lactaid Buttermilk Tzatziki Mousse 
Crema Buttercream Chowder Creamer Yog Yoghurt Crème Creme 
Milkshake Parfait 

Fish 

Fish Lobster Shrimp Cod Anchovy Salmon Tuna Seafood Clam Mussel 
Oyster Catfish Crabmeat Crab Scallop Squid Tilapia Halibut Pollock Petrale 
Swai Seaweed Bonito Swordfish Haddock Littleneck Schrod Anchovies 
Trout Bluefish Pangasius Perch Crawfish Monkfish Chowder Rockfish Mahi 
Bass Seabass Redfish 
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Liquids 

Juice Soda Broth Beverage Drink Soup Vinegar Wine Kombucha Water 
Cola Coca-Cola Dasani Coke Pepsi Gatorade Sprite Ale Dew Lemonade 
Smartwater Beer Vitaminwater Liquid MilkSub Monster RedBull 
MilkSubstitute SoupMix Sorbet JuiceBase Nondairy Sparkling SoyMilk 
Coke-Zero Izze Gravy Giardiniera Cider Bev Powerade Dip Gelatin Non-
dairy OJ Drk Smoothie Stew Liq Puree Sobe 

Grains 

Wheat Bagel Bread Rice Biscuit Cereal Pita Cake Cracker Crepe Cookie 
Muffin Pastries Pancake Noodle Pasta Pizza Tortilla Chip Barley Rye Oats 
Millet Sorghum Grain Cornmeal Pie Chex Biscotti Pretzel Ramen Granola 
Oatmeal Kind Dough Oreo Waffle Churro Brioche Hoagie Croissant 
CornBread Loaf WholeWheat Scone Danish Bun Naan Roll Focaccia 
Couscous Pancake Flour BreadCrumb Crouton SandwichThin Tart Cupcake 
Baguette Lavash Taco CinnamonTwist ConeIceCream Baguette Brownie 
Cheesecake SourDough PizzaCrust Cobbler CornDog Baklava BreadFlat 
Phyllo Eclair Macaron Tostada Mochi RiceCracker Muffulletta BreadBowl 
BreadStick Flan CupCake MiniPannaCotta PannaCotta IceCreamBar Wonton 
PetitFour Granola Cheez-It Madeleines Alfajore Cheeto Matzo Breaded 
Samosa Batter Potsticker SpringRoll Donut Bakery Matzoball Tapioca 
SnackBar Pocky RiceKrispies Cannoli Dolma MacCheese Stuffing Toast 
ChexMix Pastry Yeast SnackMix Strudal Stirfry Cutlet Eggroll Empanada 
Blint Quinoa Ravioli Mac Turnover Ziti Spanakopita Quiche Rugelach Farro 
Blintz Strudel Flatbread Cannoli Macaroni Penne Pierogi Sandwich Breading 
Oat Wafer Polenta Ritz Nodl Hostess Spaghetti Cheerios Shell Belvita Nacho 
Tortellini Fettucini Graham Burrito Enchilada Chia Keebler Rice-a-roni 
Panko Dumpling Florentine Ciabatta Honeywheat Btrd Wrap Panini 
Multigrain Orzo Popcorn 

Fruits 

Apple Orange Lemon Grapefruit Citrus Banana Blueberries Strawberries 
Plantain Pineapple Date Grape Avocadoes Melon Fruit Preserve Lime 
Blueberry Cantaloupe Raspberry Apricot Strawberry Blackberries 
Watermelon Peach Kiwi Nectarine Pomegranate Cranberry Cranberries 
Mandarin Pluot Plum Persimmon Pluott Produce  Mango Honeydew Pear 
Aprium Cherries Raisin Applesauce Coconut Fig Mangoes Cobbler Cherry 
Acai Prune Berry Fig Cranberries Guava Avocado Papaya Grape Guacamole 
Crnbry Cran Clementines Raspberries Olive Jackfruit Blackberry Starfruit 
Lychee Kumquat Peache Tangerine 

Nuts 

Cashew Almond Walnut Pistachio Peanut Tahini Nut Hazelnut Nutella 
Seed Torrone Pecan Baklava Chestnut  Reese's Planters Pnut Peant 
Sunflower Pbj Reese Pb 

Oils 

Oil Canola Soybean Mayonnaise Margarine Lard HoneyMustard Ranch 
Balsamic Dressing Mayo Coffee-mate Creamer Mustard Sriracha Hollandaise 
Sauce Shortening Pesto Nutella 

Beans 

Soybean Tofu Bean Kidney Cannelli Pinto Chickpea Lentil Hummus 
Fava Pulse Tempeh Gardein Meatless SoyMilk Daiya Papad Falafel Miso 
Chili Pea Edamame Humus Soy Garbanzo 

Potatoes 
Potatoes Potato Fries Hash Yam Cassava Root Rutabaga Sunchoke 

Disiree Frito-Lay Pringles Frito Samosa Jicama Hashbrown Popchips Yucca 
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Coffee and tea 

Coffee Tea Chocolate Chocolove Honest Matcha Chai Ferrero 
Ghirardelli Fudge Hershey Hershey's K-Cup Teabag Cocoa Truffle K-Cup 
Lavazza Nespresso Nescafe Ande's Andes Decaf Duplo Torrone Maxwell 
Café Starbucks Cafe Capsule Coffeemate IcedTea CoffeeBean 
ChocolateChip ChocChocChip Cacao Reese's Choc Tiramisu Rugelach 
Cappuccino Reese Chc M&M 

Sugars 

Sugar Sweetener Honey Candy Glaze Sprinkle Marshmallow Syrup 
Candies Gum Skittles Butterfinger Smarties Haribo Fudge Twix Snickers 
LifeSaver Licorice Tootsie  Gummi Pop Ande's Andes Peppermint Cadbury 
Babies Mazapan Gummy Ike Wint-o-Green Sweet'n Lollipop Splenda 
SweetN Equal Stevia M&M Kat Starburst Werther's Caramel Oreo Cupcake 
Baklava Sorbet Flan CupCake SweetNLow Creamer Molasses Alfajore 
Airhead RiceKrispies Jelly Jam Strudal Cake Choc Sweetened Icing Custard 
Preserve Pudding Brownie Mousse Cheesecake Cookie Wrigley Whoppers 
Twizzlers Trolli Trident Sweetarts Reeses Orbit Lifesaver Hostess Altoids 
Airhead Chc Chocolate Halls Dentyne Nutella Ricola Hershey Mentos Cakes 

Vegetables 

Tomatoes Lettuce Cauliflower Carrot Corn Vegetable Beet Broccoli 
Chard Kale Leek Cabage Cabbage Fennel Kalette Arugula Sprout Mushroom 
Brussel Spinach Asparagus Bellpepper Eggplant Mushroom Cucumber 
Celery Bok Choy Pumpkin Romaine Ketchup Parsnip Kohlrabi Shallot 
Daikon Zucchini Romain Endive Kolhrabi Stinging Nettle Romanesco Frisee 
Tatsoi Frissee Radicchio Mizuna Broccolini Coleslaw Flower Produce Salad 
Cucumber Tomato Pepper Collard Rapini Eggplant Escarole Veggie 
Popcorners Seaweed Caper Ketchup Lasagna Salsa Snapea Dumpling 
Artichoke Pickle Horseradish Beet Daiya Pepperoncini Dolma Giardiniera 
Chili Kimchi Harissa Veg Stirfry Guacamole Taboule Gourd Lotus 
Sauerkraut Butternut Tomatillo Relish Radish Radishes Turnip Jalapeno 
Spanakopita Squash Marinara Watercress Okra Shiso Leaves Achiote Orchid 
Uplandcress Calendula Borage Dandelion Upland Cress Lemongrass 
Rhubarb Hominy Pesto Caprese 

Vegetables 

Basil Chive Sesame Garlic Ginger Scallion Cilantro Dill Parsely 
Rosemary Sage Parsley Marjoram Oregano Thyme Herb Mint Onion 
Tarragon Coriander 

Spices 

Pepper Pimento Clove Mustard Spice Seasoning Salt Cinnamon Curry 
Nutmeg Extract Tumeric Vanilla Sesame Garlic Flower Shiso Leaves Achiote 
Orchid Scallion Basil Cilantro Dill Parsely Rosemary Sage Parsley Chives 
Marjoram Oregano Thyme Herb Uplandcress Calendula Borage Dandelion 
Upland Cress Onion Tarragon Cumin Coriander Anise Paprika 

 

Appendix XVI: VitalMetrics Details 

Vital Metrics Food 
Categories 

Description of Category 
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Frozen food 
manufacturing 

manufacturing frozen fruits; frozen vegetables; and frozen fruit juices, ades, 
drinks, cocktail mixes and concentrates; manufacturing frozen specialty foods 
(except seafood), such as frozen dinners, entrees, and side dishes; frozen pizza; 
frozen whipped topping; and frozen waffles, pancakes, and french toast. 

Breakfast cereal 
manufacturing manufacturing breakfast cereal foods. 

Coffee and tea 
manufacturing 

(1) roasting coffee; (2) manufacturing coffee and tea concentrates (including 
instant and freeze-dried); (3) blending tea; (4) manufacturing herbal tea; and (5) 
manufacturing coffee extracts, flavorings, and syrups. 

Cookie, cracker, pasta, 
and tortilla manufacturing 

manufacturing cookies, crackers, and other products, such as ice cream 
cones; (1) manufacturing dry pasta and/or (2) manufacturing prepared flour 
mixes or dough from flour ground elsewhere.  

All other food 
manufacturing 

manufacturing perishable prepared foods, such as salads, sandwiches, 
prepared meals, fresh pizza, fresh pasta, and peeled or cut vegetables; 
manufacturing food (except animal food; grain and oilseed milling; sugar and 
confectionery products; preserved fruits, vegetables, and specialties; dairy 
products; meat products; seafood products; bakeries and tortillas; snack foods; 
coffee and tea; flavoring syrups and concentrates; seasonings and dressings; and 
perishable prepared food).  Included in this industry are establishments primarily 
engaged in mixing purchased dried and/or dehydrated ingredients including 
those mixing purchased dried and/or dehydrated ingredients for soup mixes and 
bouillon. Illustrative Examples: Baking powder manufacturing 

Cake frosting, prepared, manufacturing, Dessert puddings manufacturing, 
Sweetening syrups (except pure maple) manufacturing, Egg substitutes 
manufacturing, Gelatin dessert preparations manufacturing, Honey processing, 
Powdered drink mixes (except chocolate, coffee, tea, or milk based) 
manufacturing, Popcorn (except popped) manufacturing, Yeast manufacturing 

Soft drink and ice 
manufacturing 

manufacturing soft drinks and artificially carbonated waters; purifying and 
bottling water (including naturally carbonated); manufacturing ice. 

Snack food 
manufacturing 

(1) salting, roasting, drying, cooking, or canning nuts; (2) processing grains 
or seeds into snacks; and (3) manufacturing peanut butter; manufacturing snack 
foods (except roasted nuts and peanut butter). Illustrative Examples: Corn chips 
and related corn snacks manufacturing, Popped popcorn (except candy-covered) 
manufacturing, Pork rinds manufacturing, Potato chips manufacturing, Pretzels 
(except soft) manufacturing, Tortilla chips manufacturing. 

Bread and bakery 
product manufacturing 

retailing bread and other bakery products not for immediate consumption 
made on the premises from flour, not from prepared dough; manufacturing fresh 
and frozen bread and bread-type rolls and other fresh bakery (except cookies and 
crackers) products; manufacturing frozen bakery products (except bread), such 
as cakes, pies, and doughnuts. 
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Sugar and confectionery 
product manufacturing 

manufacturing refined beet sugar from sugar beets; (1) processing sugarcane 
and/or (2) refining cane sugar from raw cane sugar; (1) processing sugarcane 
and/or (2) refining cane sugar from raw cane sugar; manufacturing nonchocolate 
confectioneries. retailing nonchocolate confectionery products not for immediate 
consumption made on the premises; shelling, roasting, and grinding cacao beans 
and making chocolate cacao products and chocolate confectioneries; 
manufacturing chocolate confectioneries from chocolate produced elsewhere.  

Fruit and vegetable 
canning, pickling, and drying manufacturing canned, pickled, and brined fruits and vegetables 

Soybean and other 
oilseed processing 

crushing oilseeds and tree nuts, such as soybeans, cottonseeds, linseeds, 
peanuts, and sunflower seeds. 

Poultry and egg 
production 

raising chickens for egg production.  The eggs produced may be for use as 
table eggs or hatching eggs; raising broilers, fryers, roasters, and other meat type 
chickens; raising turkeys for meat or egg production; hatching poultry of any 
kind; raising poultry 

Cheese manufacturing 

(1) manufacturing cheese products (except cottage cheese) from raw milk 
and/or processed milk products and/or (2) manufacturing cheese substitutes from 
soybean and other nondairy substances. 

Fluid milk and butter 
manufacturing 

(1) manufacturing processed milk products, such as pasteurized milk or 
cream and sour cream and/or (2) manufacturing fluid milk dairy substitutes from 
soybeans and other nondairy substances; manufacturing creamery butter from 
milk and/or processed milk products. 

Seasoning and dressing 
manufacturing 

manufacturing mayonnaise, salad dressing, vinegar, mustard, horseradish, 
soy sauce, tarter sauce, Worcestershire sauce, and other prepared sauces (except 
tomato-based and gravy); (1) manufacturing spices, table salt, seasonings, 
flavoring extracts (except coffee and meat), and natural food colorings and/or (2) 
manufacturing dry mix food preparations, such as salad dressing mixes, gravy 
and sauce mixes, frosting mixes, and other dry mix preparations. 

Oilseed farming 

growing soybeans and/or producing soybean seeds; growing fibrous oilseed 
producing plants and/or producing oilseed seeds, such as sunflower, safflower, 
flax, rape, canola, and sesame; growing dry peas, beans, and/or lentils. 

Vegetable and melon 
farming 

growing potatoes and/or producing seed potatoes; in one or more of the 
following: (1) growing melons and/or vegetables (except potatoes; dry peas; dry 
beans; field, silage, or seed corn; and sugar beets); (2) producing vegetable 
and/or melon seeds; and (3) growing vegetable and/or melon bedding plants 

Fruit and tree nut 
farming growing apples; growing oranges; growing citrus fruits. growing tree nuts 

Other crop farming 
growing tobacco; growing cotton; growing sugarcane; growing hay, alfalfa, 

clover, and/or mixed hay; growing sugar beets;  growing peanuts 
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Beef cattle ranching and 
farming, including feedlots 
and dual-purpose ranching 
and farming 

raising cattle (including cattle for dairy herd replacements); feeding cattle for 
fattening. 

Ice cream and frozen 
dessert manufacturing 

ice cream, frozen yogurts, frozen ices, sherbets, frozen tofu, and other frozen 
desserts (except bakery products). 

Dairy cattle and milk 
production 

This industry comprises establishments primarily engaged in milking dairy 
cattle. 

Animal production, 
except cattle and poultry and 
eggs 

raising hogs and pigs.  These establishments may include farming activities, 
such as breeding, farrowing, and the raising of weanling pigs, feeder pigs, or 
market size hogs; raising sheep and lambs, or feeding lambs for fattening.  The 
sheep or lambs may be raised for sale or wool production; raising goats; (1) farm 
raising finfish (e.g., catfish, trout, goldfish, tropical fish, minnows) and/or (2) 
hatching fish of any kind; farm raising shellfish (e.g., crayfish, shrimp, oysters, 
clams, mollusks) 

Grain farming 

growing wheat and/or producing wheat seeds; growing and/or producing 
corn seeds; growing rice (except wild rice) and/or producing rice seeds; growing 
a combination of oilseed(s) and grain(s) with no one oilseed (or family of 
oilseeds) or grain (or family of grains) accounting for one-half of the 
establishment's agricultural production (value of crops for market).  These 
establishments may produce oilseed(s) and grain(s) seeds and/or grow oilseed(s) 
and grain(s); growing grains and/or producing grain(s) seeds (except wheat, 
corn, rice, and oilseed(s) and grain(s) combinations). 

Fishing, hunting and 
trapping 

the commercial catching or taking of finfish (e.g., bluefish, salmon, trout, 
tuna) from their natural habitat; the commercial catching or taking of shellfish 
(e.g., clams, crabs, lobsters, mussels, oysters, sea urchins, shrimp) from their 
natural habitat; the commercial catching or taking of marine animals  

Flour milling and malt 
manufacturing 

 (1) milling flour or meal from grains (except rice) or vegetables and/or (2) 
milling flour and preparing flour mixes or doughs.; one of the following: (1) 
milling rice; (2) cleaning and polishing rice; or (3) milling, cleaning, and 
polishing rice.  The establishments in this industry may package the rice they 
mill with other ingredients; manufacturing malt from barley, rye, or other grains. 

Wet corn milling 

wet milling corn and other vegetables (except to make ethyl alcohol).  
Examples of products made in these establishments are corn sweeteners, such as 
glucose, dextrose, and fructose; corn oil; and starches (except laundry). 

Fats and oils refining and 
blending 

(1) manufacturing shortening and margarine from purchased fats and oils; 
(2) refining and/or blending vegetable, oilseed, and tree nut oils from purchased 
oils; and (3) blending purchased animal fats with purchased vegetable fats. 

Dry, condensed, and 
evaporated dairy product 
manufacturing 

manufacturing dry, condensed, and evaporated milk and dairy substitute 
products. 
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Animal (except poultry) 
slaughtering, rendering, and 
processing 

slaughtering animals (except poultry and small game).  Establishments that 
slaughter and prepare meats are included in this industry; processing or 
preserving meat and meat byproducts (except poultry and small game) from 
purchased meats.  This industry includes establishments primarily engaged in 
assembly cutting and packing of meats (i.e., boxed meats) from purchased 
meats; rendering animal fat, bones, and meat scraps. 

Poultry processing 
(1) slaughtering poultry and small game and/or (2) preparing processed 

poultry and small game meat and meat byproducts. 

Seafood product 
preparation and packaging 

1) canning seafood (including soup); (2) smoking, salting, and drying 
seafood; (3) eviscerating fresh fish by removing heads, fins, scales, bones, and 
entrails; (4) shucking and packing fresh shellfish; (5) processing marine fats and 
oils; and (6) freezing seafood.  Establishments known as "floating factory ships" 
that are engaged in the gathering and processing of seafood into canned seafood 
products are included in this industry; one or more of the following: (1) canning 
seafood (including soup); (2) smoking, salting, and drying seafood; (3) 
eviscerating fresh fish by removing heads, fins, scales, bones, and entrails; (4) 
shucking and packing fresh shellfish; (5) processing marine fats and oils; and (6) 
freezing seafood.  

Flavoring syrup and 
concentrate manufacturing 

manufacturing flavoring syrup drink concentrates and related products for 
soda fountain use or for the manufacture of soft drinks. 

Breweries brewing beer, ale, lager, malt liquors, and nonalcoholic beer. 

Wineries 

(1) growing grapes and manufacturing wines and brandies; (2) 
manufacturing wines and brandies from grapes and other fruits grown elsewhere; 
and (3) blending wines and brandies. 

Distilleries 
(1) distilling potable liquors (except brandies); (2) distilling and blending 

liquors; and (3) blending and mixing liquors and other ingredients. 

Greenhouse, nursery, and 
floriculture production 

growing mushrooms under cover in mines underground, or in other 
controlled environments;  growing food crops (except mushrooms) under glass 
or protective cover. growing and/or producing floriculture products (e.g., cut 
flowers and roses, cut cultivated greens, potted flowering and foliage plants, and 
flower seeds) under cover and in open fields. 

 

Vital Metrics Food 
Categories 

Foods in Category 

Frozen food manufacturing frozen corndog dumplings pizza fries hash browns frz 
Breakfast cereal 

manufacturing cereal cereals  
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Coffee and tea 
manufacturing 

coffee tea teas matcha chai decaf max K-cup teabags teabag k-cups 
lavazza nespresso nescafe capsule capsules Icedtea coffeebean flavia 
starbucks 

Cookie, cracker, pasta, and 
tortilla manufacturing 

cookie cookies cracker crackers pasta tortilla pita crepe noodles tortillas 
ramen biscotti ConeIceCream oreo alfajores ricekrispies couscous noodle 
ricecracker matzo cheez-it crouton pocky 

All other food 
manufacturing 

salad sandwich frosting syrup gelatin honey popcorn lasagna eggnog 
pudding coleslaw broth soupmix samosa guacamole torrone baklava daiya 
papad gardein falafel meatless dolma popcorners syrups haribo gum syrup 
gummi gummy wonton Maccheese flan hoagie potsticker springroll yeast 
cobbler taco muffulletta minipannacotta pannacotta stuffing veggie 
vegetarian veg 

Soft drink and ice 
manufacturing 

ice water soda beverage drinks beverages sprite dew smartwater cola 
coca-cola dasani pepsi gatorade vitaminwater monster redbull Sparkling 
coke-zero izze fanta coke croix juice 

Snack food manufacturing 
chip pretzel chips pretzels Frito-Lay pringles seed seeds frito ChexMix 

Chex Granola cheetos snackbar kind snackmix bar bars snacks kar's  

Bread and bakery product 
manufacturing 

bread cake pie doughnut éclair eclair cannoli bagel biscuit   muffins 
pastries pancakes biscuits muffin naan roll bun pie baguette dough waffle 
brownie papad bakery baguette brioche croissant cornbread loaf wholewheat 
scone danish focaccia tostada sourdough pizzacrust cupcake donut cupcakes 
pastry toast pancake breadcrumb tart cupcakes madeleines macaron 
breadbowl churro breadstick brownie cinnamontwist breadflat phyllo breaded 
batter sandwichthin lavash matzoball 

Sugar and confectionery 
product manufacturing 

sugar chocolate chocolove ferrero ghirardelli fudge hershey hershey's 
cocoa truffles nutella hersheys chocolatechip chocchocchip cacao chocolates 
reese's ande's andes duplo torrone candy glaze sprinkles mints marshmallow 
candies skittles butterfinger smarties fudge twix snickers marshmallows 
lifesavers licorice tootsie tootsies pops ande's andes peppermint cadbury 
babies mazapan ike wint-o-green lollipops pop M&Ms Kat Starburst 
werther's caramel airheads candies molasses sprinkle Sweeteners Sweetener 
Sweetner Sweet'n  Splenda SweetN Equal Stevia SweetNLow petitfours 

Fruit and vegetable 
canning, pickling, and drying 

pickled canned jam jelly ketchup salsa chili soup juicebase lemonade 
preserves applesauce pickle giardiniera pickle caper marinara 

Soybean and other oilseed 
processing oil oils tempeh tofu 

Poultry and egg production egg turkey duck quail pheasant chicken poultry eggs omelette 

Cheese manufacturing 
cheese cheddar parmesan feta gouda cheeses queso mozzarella 

maccheese 
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Fluid milk and butter 
manufacturing 

cream butter yogurt half whiplight whipped milksub substitute soymilk 
nondairy creamer almondmilk oatmilk milksubstitute 

Seasoning and dressing 
manufacturing 

mayonnaise vinegar mustard horseradish tarter worcestershire salt extract 
gravy alfredo ranch sauce relish giardiniera pimento cloves mustard spices 
seasoning dressings honeymustard dressing italian mayo cilantro dill parsely 
rosemary sage parsley chives marjoram oregano thyme herbs herb 
uplandcress calendula borage dandelion upland cress salt cinnamon spice 
sesame vanilla garlic tumeric turmeric extract nutmeg ginger flower shiso 
leaves achiote curry tahini hummus miso kimchi harissa mizuna pepper heinz 
tartar 

Oilseed farming 

Soybean sunflower safflower flax canola sesame peas beans lentils lentil 
soybeans kidney cannelli pinto chickpeas fava pulses pea bean chickpea 
snapeas 

Vegetable and melon 
farming 

potato potatoes melon carrot squash tomato watermelon cantaloupe 
casaba honeydew pepper melons cantaloupes tomatoes onions lettuce carrots 
greens peas cauliflower corn vegetable beets broccoli chard kale leeks cabage 
cabbage vegetables honeydew jalapeno yams cassava radish radishes roots 
turnips rutabagas sunchokes rutabaga turnip yam jicama arugula brussel 
spinach asparagus bellpepper eggplant celery pumpkin romaine zucchini 
romain broccolini cucumber onion eggplants vegetable salads sunchokes 
salad produce peppers artichoke beet horseradish fennel kalette sprouts 
cucumbers bok choy parsnips kohlrabi shallots daikon endive kolhrabi 
stinging nettle romanesco frisee tatsoi frissee radicchio collards rapini 
escarole pepperoncini shallot parsnip 

Fruit and tree nut farming 

apple orange grapefruit lemon tangerine grape raisin strawberry berry 
cranberry blackberry currant blueberry raspberry almond pistachio 
macadamia walnut pecan apricot fig banana cherry peach pineapple date 
prune apples oranges lemons grapefruit citrus bananas blueberries 
strawberries plantains pineapples dates grapes avocadoes fruit fruits almonds 
pistachios limes apricots blackberries kiwi peaches nectarines pomegranates 
mandarins mandarin pluot plum pluots persimmons pluotts produce mango 
pears nectarine pomegranate apriums cherries raisins pineapple figs mangoes 
coconut acai prunes cranberries guava plantain avocado papaya grape 
cashews walnuts nuts almond hazelnuts nut cashew pecans chestnut chestnuts 
planters  

Other crop farming sugarcane alfalfa peanut peanuts mint 
Beef cattle ranching and 

farming, including feedlots and 
dual-purpose ranching and 
farming beef steak hamburger meatball meat ruminants 

Ice cream and frozen 
dessert manufacturing 

sherbet icecream icecreambar eclair cremebrulee shake sorbet mochi 
gelato IceCream 
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Dairy cattle and milk 
production milk dairy 

Animal production, except 
cattle and poultry and eggs 

pig lamb sheep goat catfish trout goldfish crayfish shrimp oyster clam 
mollusk algae seaweed honey deer bacon pork ham seaweed 

Grain farming wheat rice sorghum oat rye barley grains oats grain millet oatmeal tapioca 

Fishing, hunting and 
trapping 

salmon trout tuna clam crab lobster oyster shrimp fish lobsters cod 
anchovy seafood clams mussels oysters crabmeat crab scallop squid tilapia 
halibut pollock petrale swai bonito 

Flour milling and malt 
manufacturing flour malt 

Wet corn milling glucose dextrose fructose cornmeal 
Fats and oils refining and 

blending margarine vegetable oil gravy canola olive soybean lard 
Dry, condensed, and 

evaporated dairy product 
manufacturing condensed 

Animal (except poultry) 
slaughtering, rendering, and 
processing jerky sausage bologna pepperoni salami 

Poultry processing 
 

Seafood product preparation 
and packaging 

 
Flavoring syrup and 

concentrate manufacturing 
 

Breweries beer ale lager malt  
Wineries wine brandy 
Distilleries liquor kombucha 
Greenhouse, nursery, and 

floriculture production Mushroom Mushrooms Flowers flower 
 


