SOFTWARE
ENGINEERING
FOR SCIENCE

This chapter distributed electronically in accordance with Author Addendum to Publication
Agreement

SPARC Author Addendum 3.0. www.arl.org/sparc/

Cite as:

Idaszak, R., D. G. Tarboton, H. Yi, L. Christopherson, M. J. Stealey, B. Miles, P. Dash, A.
Couch, C. Spealman, D. P. Ames and J. S. Horsburgh, (2017), "HydroShare - A case study
of the application of modern software engineering to a large distributed federally-funded
scientific software development project,” Chapter 10 in Software Engineering for Science,
Edited by J. Carver, N. P. C. Hong and G. K. Thiruvathukal, Taylor&Francis CRC Press,
p.217-233.

http://www.arl.org/sparc/

Chapman & Hall/CRC

Computational Science Series

SERIES EDITOR

Horst Simon
Deputy Director
Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

PUBLISHED TITLES

COMBINATORIAL SCIENTIFIC COMPUTING
Edited by Uwe Naumann and Olaf Schenk

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE
Edited by Jeffrey S. Vetter

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE, VOLUME TWO
Edited by Jeffrey S. Vetter

DATA-INTENSIVE SCIENCE
Edited by Terence Critchlow and Kerstin Kleese van Dam

THE END OF ERROR: UNUM COMPUTING
John L. Gustafson

FROM ACTION SYSTEMS TO DISTRIBUTED SYSTEMS: THE REFINEMENT APPROACH
Edited by Luigia Petre and Emil Sekerinski

FUNDAMENTALS OF MULTICORE SOFTWARE DEVELOPMENT
Edited by Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter Tichy

FUNDAMENTALS OF PARALLEL MULTICORE ARCHITECTURE
Yan Solihin

THE GREEN COMPUTING BOOK: TACKLING ENERGY EFFICIENCY AT LARGE SCALE
Edited by Wu-chun Feng

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

HIGH PERFORMANCE COMPUTING: PROGRAMMING AND APPLICATIONS
John Levesque with Gene Wagenbreth

HIGH PERFORMANCE PARALLEL 1/O
Prabhat and Quincey Koziol

PUBLISHED TITLES CONTINUED

HIGH PERFORMANCE VISUALIZATION:
ENABLING EXTREME-SCALE SCIENTIFIC INSIGHT
Edited by E. Wes Bethel, Hank Childs, and Charles Hansen

INDUSTRIAL APPLICATIONS OF HIGH-PERFORMANCE COMPUTING:
BEST GLOBAL PRACTICES
Edited by Anwar Osseyran and Merle Giles

INTRODUCTION TO COMPUTATIONAL MODELING USING C AND
OPEN-SOURCE TOOLS
José M Garrido

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTRODUCTION TO ELEMENTARY COMPUTATIONAL MODELING: ESSENTIAL
CONCEPTS, PRINCIPLES, AND PROBLEM SOLVING
José M. Garrido

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS
Georg Hager and Gerhard Wellein

INTRODUCTION TO REVERSIBLE COMPUTING
Kalyan S. Perumalla

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®
Michael A. Gray

PEER-TO-PEER COMPUTING: APPLICATIONS, ARCHITECTURE, PROTOCOLS,
AND CHALLENGES
Yu-Kwong Ricky Kwok

PERFORMANCE TUNING OF SCIENTIFIC APPLICATIONS
Edited by David Bailey, Robert Lucas, and Samuel Williams

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

SOFTWARE ENGINEERING FOR SCIENCE
Edited by Jeffrey C. Carver, Neil P. Chue Hong, and George K. Thiruvathukal

SOFTWARE
ENGINEERING
FOR SCIENCE

Edited by
Jeffrey C. Carver

University of Alabama, USA

Neil P. Chue Hong
University of Edinburgh, UK

George K. Thiruvathukal

Loyola University Chicago, Chicago, lllinois

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

MATLAB?® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160817

International Standard Book Number-13: 978-1-4987-4385-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Carver, Jeffrey, editor. | Hong, Neil P. Chue, editor. |
Thiruvathukal, George K. (George Kuriakose), editor.

Title: Software engineering for science / edited by Jeffrey Carver, Neil P.
Chue Hong, and George K. Thiruvathukal.

Description: Boca Raton : Taylor & Francis, CRC Press, 2017. | Series:
Computational science series ; 30 | Includes bibliographical references
and index.

Identifiers: LCCN 2016022277 | ISBN 9781498743853 (alk. paper)
Subjects: LCSH: Science--Data processing. | Software engineering.
Classification: LCC Q183.9.574 2017 | DDC 005.1--dc23

LC record available at https://lccn.loc.gov/2016022277

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Chapter 10

HydroShare — A Case Study of the
Application of Modern Software
Engineering to a Large Distributed

Federally-Funded Scientific Software

Development Project

Ray Idaszak, David G. Tarboton (Principal Investigator), Hong

Yi, Laura Christopherson, Michael J. Stealey, Brian Miles, Pabitra

Dash, Alva Couch, Calvin Spealman, Jeffery S. Horsburgh, and

Daniel P. Ames

10.1 Introduction to HydroShare,
10.2 Informing the Need for Software Engineering Best Practices for
SCIBIICE ittt e
10.3 Challenges Faced and Lessons Learned
10.3.1 Cultural and Technical Challenges
10.3.2 Waiting Too Long between Code Merges
10.3.3 Establishing a Development Environment
10.4 Adopted Approach to Software Development Based on the
Lessons Learnedo
10.4.1 Adopting Best Practices in Modern Software
Engineering ...
10.4.2 Tterative Software Development
10.4.3 Virtual Machines i
10.4.4 Code Versioningc.c.oeuviiiiiiniinniniannen..
10.4.5 Code ReVIeWS ...ttt
10.4.6 Testing and Test-Driven Development
10.4.7 Team Communicationcccoveiiiiiiennon..
10.4.8 DevODPS vt
10.5 Making Software Engineering More Feasible and Easier to
Integrate into One’s Research Activities
10.6 Conclusionc.veiunii e
Acknowledgmentso

217

218 Software Engineering for Science

Abstract

HydroShare is an online collaborative system under development
to support the open sharing of hydrologic data, analytical tools,
and computer models. With HydroShare, scientists can easily dis-
cover, access, and analyze hydrologic data and thereby enhance
the production and reproducibility of hydrologic scientific results.
HydroShare also takes advantage of emerging social media func-
tionality to enable users to enhance information about and collab-
oration around hydrologic data and models.

HydroShare is being developed by an interdisciplinary collabora-
tive team of domain scientists, university software developers, and
professional software engineers from ten institutions located across
the United States. While the combination of non—co-located, di-
verse stakeholders presents communication and management chal-
lenges, the interdisciplinary nature of the team is integral to the
project’s goal of improving scientific software development and ca-
pabilities in academia.

This chapter describes the challenges faced and lessons learned
with the development of HydroShare, as well as the approach to
software development that the HydroShare team adopted on the
basis of the lessons learned. The chapter closes with recommenda-
tions for the application of modern software engineering techniques
to large, collaborative, scientific software development projects,
similar to the National Science Foundation (NSF)-funded Hy-
droShare, in order to promote the successful application of the
approach described herein by other teams for other projects.

10.1 Introduction to HydroShare

The HydroShare software development project is funded by the National
Science Foundation (NSF) through its Software Infrastructure for Sustained
Innovation program [333,336]. Domain scientists, professionall software en-
gineers, and academic software developers from ten academic institutions lo-
cated across the United States? collaborate to develop HydroShare-an online,

1The term professional, as used here refers to an individual that has received formal
education on software development and has applied this knowledge in a commercial or
equivalent context.

2Brigham Young University, Caktus Group, Consortium of Universities for the Ad-
vancement of Hydrologic Science, Inc., Purdue University, Renaissance Computing Institute
(RENCI) at the University of North Carolina at Chapel Hill, Tufts University, Institute for
the Environment at the University of North Carolina at Chapel Hill, University of Texas at
Austin, University of Virginia, and Utah State University.

HydroShare — A Case Study of the Application 219

collaborative system that extends the data-sharing capabilities of the Hydro-
logic Information System (HIS), which was developed by the Consortium of
Universities for the Advancement of Hydrologic Sciences, Inc. (CUAHSI) [355].
HydroShare extends the data-sharing capabilities of HIS by broadening the
classes of data that are accommodated, enabling the sharing of computer
models and model components, and incorporating social media functionality
in order to enhance communication and collaboration around hydrologic data
and models 350,351, 353].

In cooperation with CUAHSI, HydroShare is being used by the National
Flood Interoperability Experiment (NFIE), which is a collaboration between
the National Weather Service, government and commercial partners, and
the academic community. NFIE is working to build a next-generation, high-
resolution, near-real-time hydrologic simulation and forecasting model for the
United States. With HydroShare, NFIE is able to better facilitate the flow
of information between the federal, state, and local entities responsible for
flood measurement, forecasting, and planning [338]. This near-real-time in-
formation also can be used by first responders during severe weather events
to navigate to people in need of assistance [339].

The HydroShare project provides an example of the application of modern
software engineering techniques to the development of scientific software. At
the project’s outset, most members of the HydroShare team did not fully
understand the difference between software development and software en-
gineering, nor were they familiar with iterative software methodology, code
refactoring, continuous integration, or test-driven development (explained in
Section 10.4.6). Much of the functionality of HydroShare-such as user inter-
face, access control, social media incorporation, metadata handling, search and
discovery, analytics, simulation, and storage capabilities—also was challenging
for the team. While many members of the team had previous experience in the
software development of hydrologic models, including models containing very
complex algorithms and data structures, none of the models that had been
developed by team members had the depth or complexity of the HydroShare
software stack, and none required distributed code development and coordi-
nation across a large team. Thus, the team quickly realized the need to apply
modern software engineering practices as part of the HydroShare experience.
At the time of this writing, four years into the project, the team is now capa-
ble of applying advanced software engineering techniques to the development
of HydroShare.

This chapter describes the approach, experience, and lessons learned when
applying modern software engineering techniques to a large scientific software
project, HydroShare. Recommendations are provided for how to integrate best
practices in modern software engineering into large, collaborative research
projects such as HydroShare. The overall intent is to support the advancement
of science and expand the use of sustainable software engineering practices in
academia. The goal is for other scientific software development teams to be
able to adopt and adapt the techniques and practices described in this chapter.

220 Software Engineering for Science

10.2 Informing the Need for Software Engineering Best
Practices for Science

Modern scientific research relies on software. Software enables scientists
to collect data, perform analyses, run numerical and statistical models, and
visualize data. With the aid of software, scientists are able to answer key
research questions and test hypotheses that can revolutionize what is known
about the world. Life-sustaining policies, products, and techniques—such as
clinical therapies, pharmaceutical compounds, and solutions to environmental
problems—derive from software-enabled scientific research.

Software such as HydroShare that supports data collection, analysis, and
modeling is often used to accomplish research goals. Hannay, MacLeod, and
Singer [349] have noted that scientists spend as much as 40% of their time using
software. Often, existing software is ill-suited to a particular research project
or, in the case of commercial software, prohibitively expensive. The result is
that scientists often develop their own software-spending as much as 30% of
their time doing so [349]-even though few incentives exist for software devel-
opment in traditional tenure and promotion decision-making processes [352].
In other words, the time that an academic scientist spends developing soft-
ware is not rewarded or recognized as a significant, independent accomplish-
ment. Tenure and promotion, for example, are based on influential research,
a successful publication record, the acquisition of grants, and teaching—not
on whether one can author good software. Additionally, many funding agen-
cies wish to see their funds going toward time spent on traditional research
activities, not writing software.

While not incentivized, academic scientists continue to develop their own
software. However, most academic scientists are not trained in software devel-
opment or software engineering [342,345,359]. Software development courses,
typically offered by computer science departments, are not required for most
non-majors. Additionally, the training that scientists do receive from computer
science departments often is perceived as overly general or abstract, and sci-
entists may not see the relevance of such training [349]. As a result of the lack
of training in software development and software engineering, the software
that is developed by academic scientists often is not built to the development
standards of the commercial sector. Software engineering best practices, such
as documentation, versioning, and testing, may not be applied during the cre-
ation of academic scientific software. Furthermore, most academic software is
developed to suit the needs of a specific research project and thus may not
be applicable to other research projects or sustainable beyond the life of the
initial project.

The lack of training in software development and software engineering can
have dire consequences [346]. For instance, software that is developed with-
out the use of proven software engineering techniques may lead to errors in

HydroShare — A Case Study of the Application 221

the code. Even minor errors influence the validity of research findings; in-
deed, in some cases, papers have been retracted from scientific journals and
careers have been ruined [357]|. Paper retractions and irreproducible results
due to poor-quality software impede the advancement of science and impart
huge financial repercussions. Under the worst case scenario, programming er-
rors can lead to the loss of lives if erroneous findings result in faulty medical
technologies or misdirected policies on disaster response, to provide examples.

The detection of errors in academic software is extremely challenging, how-
ever. While manuscripts submitted for journal publication must undergo a
peer review process, the software code that is used to generate the findings
presented in manuscripts is rarely subjected to a peer review process or other
measures of quality assurance. Yet, peer review and testing of software code
are critical for the credibility of science and require software engineering best
practices.

Of significance, the risk of introducing error into scientific research through
the use of low-quality software provides a little recognized, but highly im-
pactful, incentive for the adoption of software engineering best practices in
academic scientific software development.

The HydroShare project addresses the challenges and highlights the ben-
efits of the adoption of software engineering best practices through a collab-
orative scientific software project involving a large, geographically dispersed
team of academic scientists, academic software developers, and professional
software engineers.

10.3 Challenges Faced and Lessons Learned

This section describes the challenges faced and lessons learned when ap-
plying modern software engineering best practices to a software development
project in hydrology. Modern software engineering, as used here refers to “the
application of a systematic, disciplined, quantifiable approach to the devel-
opment, operation, and maintenance of software; that is, the application of
engineering to software” [330].

10.3.1 Cultural and Technical Challenges

Early on, the HydroShare team identified several overarching culture chal-
lenges. First, the team found that it is not a tradition to use modern software
engineering best practices in the development of academic software due to a
lack of incentives and a failure to recognize the benefits, as discussed above.
The perception was that good software engineering practices are not needed
to obtain scientific results and to publish scientific papers. Second, graduate
students often develop software for their faculty advisors, yet graduate stu-

222 Software Engineering for Science

dents have very short-term goals (i.e., graduate in the next couple of years),
so software sustainability is not a high priority. Third, graduate students and
their faculty advisors typically have not received formal training in software
development, let alone software engineering. Fourth and lastly, the rigorous
metadata requirements necessary for reproducible science make scientific soft-
ware systems more complex than other types of software and thus require
significant time to create unit tests. This presents a paradox, as the more
complex software is, the more benefit one gets from having comprehensive
unit tests.

The team also encountered more specific technical challenges. For example,
as implementation of our HydroShare project began, the team quickly real-
ized that most members were not familiar with Git, GitHub, or continuous
integration (i.e., a development practice that requires developers to integrate
code into a shared repository on a very frequent basis). The decision was
thus made to assign only members at the lead technical institution the task
of implementing initial beta release functionalities in order to expedite cre-
ation of the code infrastructure for subsequent collaborative development and
continuous integration by the broader team members. However, this limited
HydroShare beta release functionality to only those functionalities that could
be implemented by the lead technical institution. This approach did expedite
the initial release of the system, but the approach also precluded the ability
for other team members to contribute to the development. For HydroShare,
this trade-off was acceptable as the other team members used the additional
time to get versed on continuous integration, Git, GitHub, and other specific
technologies and approaches used in HydroShare software development.

Early on in the project, the team held several in-person meetings, as well
as weekly team teleconferences, that served to achieve the development objec-
tives, including the development of a data model (i.e., a conceptual model of
how data elements relate to each other) and access control policies (i.e., policies
to restrict access to data) and thorough consideration of how to accommodate
hydrologic models within HydroShare. As implementation progressed and soft-
ware engineering principles, such as code versioning (i.e., management of revi-
sions to source code) and continuous integration, were diffused from the pro-
fessional software engineers to the hydrologists, additional challenges emerged.
For example, the distributed development team experienced difficulty achiev-
ing short-release cycles of continuous integration of the Django-based system
using Git and GitHub. Django is a large, complex, open source, python-based
web development framework, in which its customization model and content
data are stored in databases [328]. Django proved to be difficult to manage via
version control by a team with members of various skill levels. Specifically, the
challenge was how to manage multiple, distributed development teams that
were simultaneously checking out their own branch?® of HydroShare, while

3A branch in GitHub lives separately from the production codebase, thus allowing for
experimentation without affecting the master branch (or production codebase).

HydroShare — A Case Study of the Application 223

maintaining consistency in the back-end Django database. This led to multi-
ple, complex code feature branches being checked out and worked on at the
same time—without a sufficient number of intermediate merges.

Described below are two specific challenges—waiting too long between
code merges and establishing a development environment—examined in greater
depth, including the downstream challenges and lessons learned.

10.3.2 Waiting Too Long between Code Merges

To highlight the complications that may arise from waiting too long be-
tween code merges, this section considers a release of HydroShare in which
two key items were addressed on different branches: base class refactoring and
a change in the approach to access control. This presented a non-trivial chal-
lenge because of the intertwining of these two items, along with the need to
preserve existing resources.

The HydroShare base class refactoring branch endeavored to promote the
HydroShare Generic Resource type functionality from being abstract to fully
defined. Being able to extend upon a fully defined resource opened the door for
easier searching, indexing, and database querying that wouldn’t otherwise be
possible if the team had kept extending from the previously defined abstract
model. Once this was implemented and tested for the Generic Resource type,
the team then needed to apply this to all of the other HydroShare resource
types in close coordination with the developers that had originally created
them in order to ensure against loss of context, extended metadata, or other
resource-specific attributes.

The HydroShare access control branch endeavored to implement an access
control model that the team designed to best suit the hydrology research
community [347]. However, this uniquely designed HydroShare access control
model meant that it was necessarily non-standard and non-compliant with
basic use of Django; thus, the team took extra care in how this change was
implemented. The first, albeit incomplete, implementation of the HydroShare
access control was integrated on top of Django’s permission system for the sake
of simplicity and the need to get an initial working version of HydroShare. To
implement the full HydroShare access control, the team needed to decouple
from Django’s permission system and enforce a HydroShare-specific model,
thereby adding additional system complexity.

To further complicate things, the HydroShare access control and base class
refactoring had to be implemented on top of existing HydroShare resources
in production use. The integrated rule-oriented data system (IRODS) [334] is
used as a data management back-end to HydroShare. The challenge however,
was migrating all of the existing HydroShare resources that were in use by
users when the new resource and access control schema didn’t fit the existing
iRODS storage policies. Multiple steps and operations on the resources and
database were required to properly migrate resources into the new models and
access control schema. This proved to be quite a challenging endeavor.

224 Software Engineering for Science

Each of these items on their own presented a significant task; however, the
summation of all of these branches into a single release required numerous dry-
runs and small intermediate tests based on the results of the dry-runs before
the team was confident that it was right. The team put as much time into
testing and validation as they did into coding the changes themselves. The
main lesson learned from this experience is that it is best to perform smaller,
but more frequent merges, rather than a large release with multiple complex
merges. With the former approach, the merge complexity will be reduced and
time will be saved.

10.3.3 Establishing a Development Environment

Another major challenge for the development team was setting up the in-
tegrated development environment for individual developers. This presented a
challenge mainly due to the many Docker containers [329] that the HydroShare
system uses, as well as the fact that most of the developers did not have knowl-
edge of Docker configuration, which was a relatively new technology at the
beginning of the HydroShare project. This challenge was resolved by scripting
the development environment, such that with few commands, the team could
quickly set up the HydroShare development environment—something that had
previously taken hours. As the development team was distributed, weekly
videoconferences were used to train new HydroShare developers on how to set
up the development environment.

The HydroShare software developers faced major challenges in code con-
tribution in the early stages of the HydroShare project due to the size of
the project and their inexperience, particularly when working in a distributed
team environment. In addition, the team didn’t have procedures in place for
how to effectively contribute code using GitHub (also discussed in Section
10.4.8), which was new to many team members. In order to solve these chal-
lenges, the team created very detailed documentation specific to the project
on how to push/pull to/from GitHub. In addition, hands-on training was pro-
vided to all software developers on best practices for using GitHub. In order
to improve code quality, the team adopted the GitHub pull request feature
for code review, whereby all code had to be code reviewed by an independent
team member prior to merging the pull request. We found these practices to
be extremely beneficial in providing the momentum to establish our software
development environment.

10.4 Adopted Approach to Software Development Based
on the Lessons Learned

This section conveys the approach to software development that was
adopted for HydroShare based on the lessons learned early on in the project.

HydroShare — A Case Study of the Application 225

The approach includes the adoption of an iterative approach to software de-
velopment that incorporates best practices in modern software engineering.
Highlighted are several best practices in software engineering, including the
use of virtual machines, code versioning, code reviews, and test-driven devel-
opment. This section concludes with a discussion of the role and importance
of communication and DevOps in facilitating effective multi-institutional col-
laboration.

10.4.1 Adopting Best Practices in Modern Software
Engineering

One of the goals of the HydroShare Project is to continually adopt modern
software engineering techniques to all scientific software development efforts.
Although a scientist can author high-value software code, s/he approaches
software development as a means to an end, with the end being new research
findings. A software engineer, in contrast, approaches software development
with code quality and sustainability as primary goals—not application. To a
scientist, the research process is emphasized, and the final product is a set of
scientific findings, which should be accurate, reproducible, and generalizable.
To a software engineer, the coding process is emphasized, and the software
code is the product, which should be error-free and reusable for solving other
problems. In the same way that a scientist carefully designs a study to answer
a research question or test a hypothesis, a software engineer carefully designs
the code s/he will write to create new functionality. For example, software
engineers use design patterns, or reusable and generalizable units of code that
solve common software problems. Most scientists are not familiar with the
concept of design patterns. Instead of combining reusable, tested units of code
into new software, scientists often choose to write code from scratch in order
to address a specific research need; after that need has been met, the software
code is often tossed aside. Scientists are not as concerned about ensuring that
the code is free of bugs because the code is not the object of interest, so
code testing is not common practice. Software engineers, however, are trained
to ensure that the code is free of bugs because quality code is the object of
interest, so testing the code for accuracy is common practice.

One could argue that if scientists had lavish funding, they could hire pro-
fessional software engineers to develop higher quality code over a more expe-
ditious timeline. However, while an abundance of funding is always desirable,
this would prevent the realization of certain opportunities. For HydroShare
the involvement of hydrologists, including both graduate students and their
faculty advisors, in software coding was extremely important for several rea-
sons:

e As subject matter experts, the scientists were able to illuminate salient
uses cases.

226 Software Engineering for Science

e As co-creators and owners of the software, the scientific community will
be more likely to adopt the software and shepherd it throughout its
lifetime.

e As graduate students, the incorporation of modern software engineering
practices into their training is imperative in order to better prepare the
next generation of hydrologists.

The key is that HydroShare should not be viewed simply as a software
artifact, but also as a project that captures human and scientific capital for the
advancement of transformative science through mature software engineering
methodology. This is an important point. A lot of new ideas and thought
processes have been created in the minds of the HydroShare team (i.e. human
capital) as a result of this project, and these need to be kept concomitant with
the software. Modern software engineering, in part, helps us achieve this.

10.4.2 Iterative Software Development

The Waterfall approach to software development emphasizes a discrete
planning phase that includes gathering all possible requirements before the
coding phase commences [340]. After a Waterfall phase is concluded, the rule-
of-thumb is that that phase should not be revisited. This type of approach
does not recognize or make allowances for the unknown and unpredictable.
In other words, the Waterfall approach does not provide flexibility regarding
changes in requirements, new needs or system uses, or changes in project focus.

Brooks [343] claims that software engineers should be open and ready to
throw out unworkable ideas. “The only question is whether to plan in ad-
vance to build a throwaway, or to promise to deliver the throwaway to cus-
tomers” [344]. When a distributed software development team endeavors to
integrate several new and existing software systems at the onset of a project,
complications can arise that preclude the ability of the team to efficiently
and/or practically overcome those challenges. This is especially true in aca-
demic software development projects that have limited time and funding and
include team members with varying levels of skill. With HydroShare, the team
was not exempt from the “throwaway principle” and indeed had to completely
discard a well-developed early version of the software due to unforeseen com-
plications with the integration of disparate software systems. This was the
result of several factors:

1. The decision to go with a seemingly appropriate technology, with much
community adoption in other circles, was flawed at the beginning and
made by a subset of the team without full consideration by the broader
team. A more inclusive decision process would have led to better artic-
ulation regarding the platform requirements and a better outcome.

2. The system that was chosen, while having widespread community adop-
tion in other circles, was one in which the team had no expertise. The

HydroShare — A Case Study of the Application 227

learning curve proved to be too high for them, at least on a practical
level and given the time constraints.

3. The team’s lack of expertise was magnified when the team members that
made the decision to adopt the system left the project and a new lead
development team came onboard without any prior knowledge of the
selected technology or understanding of the previous team’s activities;
this challenge was exacerbated by lack of transition documentation to
guide the new team.

The team has since adopted a more flexible iterative approach with Hy-
droShare, one that embraces change. The conclusion is that one should expect
to throw out an early version of a software product and learn from the expe-
rience. Also, one should realize that it is so much more efficient (and easier to
accept) if this is part of the team’s plan from the start, for when planning to
throw out an early version of developed software, a team can view the experi-
ence as an exceptional opportunity to learn what works and what doesn’t from
the perspectives of software and technology integration, team communication,
meeting productivity, and process efficiency. The HydroShare team also found
it beneficial to encapsulate functionality in small, loosely coupled systems. For
example, the distributed data management system used by HydroShare can
work separately from the content management system, which can work sepa-
rately from the web applications system, and so forth. In the first iteration,
the team found that the integration of systems too tightly presents limita-
tions. Unforeseen challenges arise in every software development project; the
key is to plan for this early on and in every facet of the project—and expect
to throw away at least one early product.

10.4.3 Virtual Machines

The HydroShare team uses virtual machines (VM) in testing and produc-
tion in order to facilitate the distributed team’s concurrent prototyping and
development of the many diverse features of HydroShare. VMs can be created
and spun-up very quickly, with configurable memory, processor, disk storage,
and operating system to meet the diverse and evolving project and feature
requirements. For features that are complex and highly susceptible to error,
the HydroShare team creates a VM to test the feature. The team also creates
feature-testing VMs for contextually-related features. For example, the group
working on the search and filtering functionality has their own VM; the fed-
erated identity management group has its own VM; the user interface group
has their own VM, and so on. Git (i.e., a revision control system) and GitHub
(i.e., a hosting service for Git repositories) are used to manage and eventually
merge the work on these VMs into a production release. Generally, a given
branch of code that requires testing and feedback from the team is given its
own VM. The exception is that some Git branches—especially those for gen-
eral fixes—don’t require deployment to a VM since they don’t intertwine with

228 Software Engineering for Science

other parts of the system and can be tested locally. Production VMs share an
allocation of fifty terabytes of project disk space and another fifty terabytes of
replicated disk space located four miles away in order to ensure fault tolerance
and disaster recovery.

10.4.4 Code Versioning

Code versioning is a must for any modern software development project,
academic or otherwise. There are several popular code versioning systems. The
HydroShare team chose Git due to its ability to support distributed develop-
ment workflows. Unlike other version control systems, Git allows developers to
clone the main code repository on their local machines and develop and exper-
iment with new code safely, in an independent environment completely sepa-
rated from the main codebase. New code can then be submitted for inclusion
into the main codebase after being reviewed and tested by other members of
the team. This enforces code review, allows for experimentation within a safety
net, and enables concurrent streams of development for a speedier process.

10.4.5 Code Reviews

With HydroShare, code reviews have opened up the reading of code and
stimulated discussion around the structure of the code—something that was not
happening before the team implemented the code review process. However,
the team took a while to acclimate to the code review process, whereby the
person who reviews the code is always different from the person who authors
the code. For HydroShare, a code review includes an evaluation of:

e How well the new units of code address the associated use case;

e Code quality, in terms of clarity, concision, lack of redundancy, and
thorough inline documentation;

e How easy the code’s functionality is to use; and

e How the code fared in unit testing (i.e., tests of individual modules
written for a particular function that together comprise a larger set of
code).

The HydroShare team has found code reviews to be beneficial for encourag-
ing discussion between scientists and software engineers around the structure
of the code. These discussions have served as a vehicle for teaching software
engineering best practices to the scientists involved in the project, particularly
graduate students who are not required to take programming classes as part
of their graduate work. In addition to these benefits, estimates suggest that
rigorous code review can remove up to 90% of errors from a software product
before any code testing is initiated [348] (code testing is discussed in next
section).

The key point is that while it is necessary to establish regular code reviews
early on, a period of acclimation should be expected.

HydroShare — A Case Study of the Application 229

10.4.6 Testing and Test-Driven Development

The testing of all code prior to release is extremely important for writing
sustainable code — code that lasts over time because it has been tested for
defects and performs consistently through new releases. There are a variety of
tests that may be conducted during development, for example, unit testing,
feature testing, regression testing, etc.

Unit testing is used to verify that the code does what it is expected to do
without error. Ideally, using the software engineering concept of Test-Driven
Development (TDD) [337], the test is written before the code is written. This
forces the developer to think more carefully about the structure of the code,
consider the best ways to satisfy the expectations of the unit of code, and plan
for any error conditions before the code is written.

The HydroShare team has tied unit testing to Jenkins, which is an open
source, continuous integration tool [335]. Jenkins is used to implement con-
tinuous integration by automating runs of unit tests for both new code sub-
missions and nightly builds of the main codebase. Unit testing is beneficial
because it allows developers to test new features within the context of the
existing code prior to inclusion in the main codebase. This is done to verify
that a new feature will not cause existing tests to fail after it is integrated into
the main codebase. When many features are merged, they are tested together
in order to ensure that their interactions do not cause failures. Roughly every
two to three weeks, the development branch is merged into the production
codebase (or master branch), which is the code that runs on the publicly vis-
ible HydroShare production site [332]. In this way, new functionality is both
adequately reviewed and tested, as well as rapidly released.

While TDD provides an important model for software development, the
HydroShare team implemented a hybrid approach by authoring some unit
tests after functional HydroShare code was written. This approach was
prompted by time constraints and the fact that TDD has a steep learning
curve that may cause an initial decrease in developer productivity [356]. In-
deed, even at this writing, the HydroShare team is still acclimating to the
TDD process. Moreover, the HydroShare team does not yet use TDD for
development of user interfaces, as the integration of emulated user interface
actions, combined with all relevant user traversals of the HydroShare web
page environment, is currently a prohibitively complex development endeavor
for a project of the scale and complexity of HydroShare. Testing, combined
with thorough initial design, has been shown to result in approximately 40%
fewer defects compared to code developed with more ad-hoc testing [358]. The
HydroShare team continues to strive toward more comprehensive use of TDD.

10.4.7 Team Communication

Invariably, a new project will commence with a series of meetings. Among
the topics of those meetings should be the plan for both team communication

230 Software Engineering for Science

and the software development infrastructure (i.e., the software and hardware
used for development). With HydroShare, the establishment of communication
protocols and development infrastructure early on in the project supported
collaboration and productivity and likely will continue to serve the team well
throughout the lifetime of the project.

For example, for weekly meetings of distributed team members, the team
employs videoconferencing software with screen sharing capability. For com-
munication outside of meetings, a team email list is used. HipChat [331], a
synchronous chat tool, was adopted as a place solely for development-centric
discussion, so as to avoid overloading subject matter experts (i.e., domain sci-
entists who do not participate in development) with extraneous information
or noise that only serves to distract from the research process. Furthermore,
the team adopted a content management system to host all documents for
the project, including meeting notes, presentations, use cases, architectural
diagrams, API documentation, policies, etc. The team also uses email lists to
disseminate community announcements (e.g., announce@hydroshare.org, sup-
port@hydroshare.org) and to allow people to obtain support for HydroShare.
To describe the project to interested parties, the team has created public-
facing web pages. Each of these activities has proven important to the success
of HydroShare.

10.4.8 DevOps

In addition to effective communication among team members, close collab-
oration is essential. Development Operations or DevOps is an industry concept
that can be defined as an approach to software development that emphasizes
the importance of collaboration between all stakeholders [327]. DevOps recog-
nizes that stakeholders (e.g., programmers, scientists) do not work in isolation.
This principle was adopted for HydroShare; software developers and domain
scientists work together, closely and continuously, in the development of the
HydroShare code. For HydroShare, a software engineer was selected to fill the
DevOps lead role because s/he must be a maestro of Git, GitHub, and coding,
and few team scientist-developers were skilled with modern software engineer-
ing techniques at the start of the project. The appointment of an experienced
software engineer as the DevOps lead allows the scientist-developers to learn
tools such as Git as they develop and contribute code. The DevOps lead fa-
cilitates this learning process by writing task automation scripts in order to
simplify and optimize code contributions in Git. With HydroShare, GitHub is
used for issue tracking in order to drive new development or track defects (i.e.
bugs). GitHub issues are also used to track the progress of code reviews, with
developers giving a simple “+1” to indicate that the code has been reviewed
and that the DevOps lead may proceed with a code merge. Task automa-
tion scripts help the DevOps lead groom the code repository and make Git’s
branching and merging processes more transparent. Together, these activities
contribute to the DevOps lead’s ability to successfully ensure continuous in-

HydroShare — A Case Study of the Application 231

tegration with automated testing. DevOps thus foster team collaboration on
many levels over the course of a software development process.

10.5 Making Software Engineering More Feasible and
Easier to Integrate into One’s Research Activities

Many research projects do not have sufficient funding to support training
in software development and the fundamentals of good software engineering
[345]. Moreover, rigid or process-heavy software development approaches have
been shown to be unappealing to scientists [345]. Thus, accepted software
engineering approaches to the design, development, documentation, testing,
and review of code, for example, may not be employed by scientists. The result
is software that is not sustainable or usable by others.

In order to infuse the scientific community with good software engineering
practices, it is important to make software engineering practices more appeal-
ing to scientists. One approach to encourage the adoption of modern software
engineering practices is to emphasize the end result: software that is useful,
high quality, and sustainable [341].

Through the HydroShare project, an approach has been identified to in-
tegrate software engineering best practices into a large, distributed scientific
software development project in a manner that is feasible for scientists. Pro-
vided below are several specific recommendations for integrating software en-
gineering practices into one’s research activities.

First, an initial design specification should be completed at the very be-
ginning of a project, followed by an iterative design review for continuous re-
finement throughout the project development cycle. This software engineering
practice increases both software quality and productivity. The initial design
should be just enough to get project development going. The design should
be reviewed iteratively for continuous refinement as project development ad-
vances. The initial minimal set of specifications provides sufficient constraint
and guidance for the first iteration of software development in order to ensure
that no time is wasted in the present producing a specification that would
be changed or abandoned later (especially if one plans to “throw one away”
as covered in Section 10.4.2 herein). The design specification then evolves in
conjunction with software development to best serve its purpose of guiding
and planning software development in a most productive way. In practice, the
project team needs to ensure that team members who are contributing to the
system design communicate well with team members who are contributing to
the system development throughout the project development cycle. This is
in order to streamline the process in such a way as to produce an evolving

232 Software Engineering for Science

design specification that is just enough to guide development of high-quality
software.

Second, iterative software releases and the release of a prototype early
in the development iteration are recommended in order to solicit feedback
from end users. The software engineering practice of iterative software re-
leases brings end users into the loop in such a way that their feedback can
be integrated into the iterative software design and development process as
early as possible, thereby ensuring the delivery of a software product with
a large user base. It would be regrettable for any software project, especially
large-scale, complex scientific projects that require several years of team devel-
opment effort, to yield an end product with very few end users. The integration
of end user feedback throughout the software development cycle via iterative
software releases can prevent such a regrettable scenario from happening by
addressing end user concerns in a timely manner. Early in the development
process, the focus should be on simple designs that best fit the daily workflow
of end users in order to ensure efficient delivery of an easy-to-use, high-quality
end product.

Last, the adoption of software engineering practices is crucial to ensure
software quality and sustainability, but these practices should be applied se-
lectively to individual projects, so as not to hinder research productivity.
Through the HydroShare experience three software engineering practices have
been identified that warrant particular consideration for making software en-
gineering more feasible and easier to integrate into one’s research activities;
namely, code refactoring, code review, and software testing. Code refactor-
ing is needed on occasion in order to make changes to the underlying data
structures and frameworks so that subsequent software development will be
based on a better foundation, thereby resulting in improvements in software
quality and development productivity. Because code refactoring can be very
disruptive and may require a great deal of effort, careful consideration must
be paid to the costs-benefits before adopting code refactoring. In certain cir-
cumstances, proof-of-concept prototyping will be needed in advance of any
decision to adopt code refactoring in order to prove that the benefits outweigh
the costs. While scientists often assume that output errors are the result of
faulty theory rather than faulty software [354], the adoption of code review
and software testing as precepts of sound software engineering in large-scale,
scientific software development projects will help to minimize output errors
and ensure that the final software product is high quality and sustainable.

10.6 Conclusion

The HydroShare project is a work in progress, and exploration, refinement,
and implementation of the topics herein are by no means finished. Rather, the

HydroShare — A Case Study of the Application 233

goal is to provide readers with insight into the HydroShare experience and
lessons learned in order to minimize the learning curve and accelerate the
development progress for other teams. The goal of this chapter is to provide
readers with a basic understanding of why good software engineering for sci-
ence is tantamount to the success and sustainability of a scientific research
project and why poor software engineering will detract from research time,
with more time spent managing poorly written code than actually conducting
research. In the long run, good software engineering will foster research and
one’s research career by ensuring the validity of research findings, reducing
the amount of time needed to maintain and extend code, and improving the
ease at which new features can be adopted, thus supporting software reuse
and sustainability.

Acknowledgments

Technical editorial and writing support was provided by Karamarie Fe-
cho, Ph.D. This material is based upon work supported by the NSF under
awards 1148453 and 1148090; any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. The authors wish to thank many
who have contributed to the HydroShare project, including but not limited to:
Jennifer Arrigo, Larry Band, Christina Bandaragoda, Alex Bedig, Brian Blan-
ton, Jeff Bradberry, Chris Calloway, Claris Castillo, Tony Castronova, Mike
Conway, Jason Coposky, Shawn Crawley, Antoine deTorcey, Tian Gan, Jon
Goodall, Tlan Gray, Jeff Heard, Rick Hooper, Harry Johnson, Drew (Zhiyu) Li,
Rob Lineberger, Yan Liu, Shaun Livingston, David Maidment, Phyllis Mbewe,
Venkatesh Merwade, Setphanie Mills, Mohamed Morsy, Jon Pollak, Mauriel
Ramirez, Terrell Russell, Jeff Sadler, Martin Seul, Kevin Smith, Carol Song,
Lisa Stillwell, Nathan Swain, Sid Thakur, David Valentine, Tim Whiteaker,
Zhaokun Xue, Lan Zhao, and Shandian Zhe.

The authors wish to especially thank Stan Ahalt, Director of RENCI,
and Ashok Krishnamurthy, Deputy Director of RENCI for their continued
organizational and supplemental financial support of this project.

References

[1] J. C. Carver. First International Workshop on Software Engineering for
Computational Science and Engineering. Computing in Science Engi-
neering, 11(2):7-11, March 2009.

[2] J. C. Carver. Report: The Second International Workshop on Software
Engineering for CSE. Computing in Science Engineering, 11(6):14-19,
Nov 2009.

[3] Jeffrey C. Carver. Software engineering for computational science and
engineering. Computing in Science Engineering, 14(2):8-11, March
2012.

[4] Jeffrey C. Carver, Neil Chue Hong, and Selim Ciraci. Software engineer-
ing for CSE. Scientific Programming, (591562):2, 2015.

[5] Jeffrey C. Carver and Tom Epperly. Software engineering for computa-
tional science and engineering [guest editors’ introduction]. Computing
in Science Engineering, 16(3):6-9, May 2014.

[6] S. H. D. Haddock and C. W. Dunn. Practical Computing for Biologists.
Sinauer Associates, 2011.

[7] Sushil K. Prasad, Anshul Gupta, Arnold L. Rosenberg, Alan Sussman,
and Charles C. Weems. Topics in Parallel and Distributed Computing:
Introducing Concurrency in Undergraduate Courses. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2015.

[8] A. Scopatz and K. D. Huff. Effective Computation in Physics. O’Reilly
Media, 2015.

[9] Agile methodology. http://agilemethodology.org/.

[10] IDEAS productivity: “How To” documents. https://ideas-
productivity.org/resources/howtos/.

[11] Waterfall model. https://www.techopedia.com/definition,/14025/waterfall-
model.

[12] In L. I. Sedov, editor, Similarity and Dimensional Methods in Mechan-
ics, pages 24-96. Academic Press, 1959.

235

236
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

References

The FLASH code. http://flash.uchicago.edu/flashcode, 2000.

A. Dubey, K. Weide, D. Lee, J. Bachan, C. Daley, S. Olofin, N. Tay-
lor, P.M. Rich, and L.B. Reid. Ongoing verification of a multiphysics
community code: FLASH. Software: Practice and Experience, 45(2),
2015.

A. L. Atchley, S. L. Painter, D. R. Harp, E. T. Coon, C. J. Wilson, A. K.
Liljedahl, and V. E. Romanovsky. Using field observations to inform
thermal hydrology models of permafrost dynamics with ATS (v0.83).
Geosci. Model Dev. Discuss., 8:3235—-3292, 2015.

V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K.
Hollingsworth, F. Shull, and M. V. Zelkowitz. Understanding the high-
performance-computing community: A software engineer’s perspective.
IEEE Software, 25(4):29, 2008.

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing
locality and independence with logical regions. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, page 66. IEEE Computer Society Press, 2012.

M. Berzins, J. Luitjens, Q. Meng, T. Harman, C. A. Wight, and J. R.
Peterson. Uintah - a scalable framework for hazard analysis. In TG ’10:
Proc. of 2010 TeraGrid Conference, New York, NY, USA, 2010. ACM.

M. Blazewicz, I. Hinder, D. M. Koppelman, S. R. Brandt, M. Ciznicki,
M. Kierzynka, F. Lofller, E. Schnetter, and J. Tao. From physics model
to results: An optimizing framework for cross-architecture code genera-
tion. Scientific Programming.

A. C. Calder. Laboratory astrophysics experiments for simulation code
validation: A case study. Astrophysics and Space Science, 298:25-32,
July 2005.

J. C. Carver. Software engineering for computational science and engi-
neering. Computing in Science & Engineering, 14(2):8-11, 2012.

J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post. Software
development environments for scientific and engineering software: A se-
ries of case studies. In Software Engineering, 2007. ICSE 2007, pages
550-559. IEEE, 2007.

D. A. Case, V. Babin, J. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti,
T. E. Cheatham Iii, T. A. Darden, R. E. Duke, H. Gohlke, et al. Amber
2015. http://ambermd.org/, 2015.

E. T. Coon, J. D. Moulton, and S. L. Painter. Managing complexity in
simulations of land surface and near-surface processes. Environmental
Modelling & Software, 78:134-49, 2016.

[25]

[26]

[27]

28]

[29]

[30]

31]

[32]

[33]

[34]

References 237

G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch,
C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder,
B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Ros-
ner, F. Timmes, H. Tufo, Y.-N. Young, and M. Zingale. A comparative
study of the turbulent Rayleigh—Taylor instability using high-resolution
three-dimensional numerical simulations: The Alpha-Group collabora-
tion. Physics of Fluids, 16:1668-1693, May 2004.

A. Dubey, K. Antypas, M. K. Ganapathy, L. B. Reid, K. Riley,
D. Sheeler, A. Siegel, and K. Weide. Extensible component-based archi-
tecture for FLASH, a massively parallel, multiphysics simulation code.
Parallel Computing, 35(10-11):512-522, 2009.

A. Dubey, A. C. Calder, C. Daley, R. T. Fisher, C. Graziani, G. C.
Jordan, D. Q. Lamb, L. B. Reid, D. M. Townsley, and K. Weide. Prag-
matic optimizations for better scientific utilization of large supercom-

puters. International Journal of High Performance Computing Applica-
tions, 27(3):360-373, 2013.

A. Dubey and T. Clune. Optimization techniques for pseudospectral
codes on MPPs. In Proceedings of Frontiers 99, 1999.

A. Dubey, C. Daley, J. ZuHone, P. M. Ricker, K. Weide, and C. Graziani.
Imposing a Lagrangian particle framework on an Eulerian hydrodynam-
ics infrastructure in FLASH. ApJ Supplement, 201:27, Aug 2012.

A. Dubey, D. Q. Lamb, and E. Balaras. Building commu-
nity codes for effective scientific research on HPC platforms.
http://flash.uchicago.edu/cc2012, 2012.

A. Dubey, L. B. Reid, and R. Fisher. Introduction to FLASH 3.0, with
application to supersonic turbulence. Physica Scripta, T132, 2008. Top-
ical Issue on Turbulent Mixing and Beyond, results of a conference at
ICTP, Trieste, Italy, August 2008.

A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P.
Colella, D. Graves, M. Lijewski, F. Lofller, B. O’Shea, E. Schnetter,
B. Van Straalen, and K. Weide. A survey of high level frameworks in
block-structured adaptive mesh refinement packages. Journal of Parallel
and Distributed Computing, 74(12):3217-3227, 2014.

B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb,
P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo. Flash: An adap-
tive mesh hydrodynamics code for modeling astrophysical thermonuclear
flashes. Astrophysical Journal, Supplement, 131:273-334, 2000.

J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and
G. Wilson. How do scientists develop and use scientific software? In

238

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

References

Proceedings of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, pages 1-8. IEEE Computer
Society, 2009.

M. A. Heroux and J. M. Willenbring. Barely sufficient software engi-
neering: 10 practices to improve your cse software. In Proceedings of the
2009 ICSE Workshop on Software Engineering for Computational Sci-
ence and Engineering, SECSE 09, pages 15-21, Washington, DC, USA,
2009. IEEE Computer Society.

L. Hochstein and V. R. Basili. The ASC-alliance projects: A case study
of large-scale parallel scientific code development. Computer, (3):50-58,
2008.

L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and G. Zheng. Pro-
gramming petascale applications with Charm+-+ and AMPI. Petascale
Computing: Algorithms and Applications, 1:421-441, 2007.

J. O. Kane, H. F. Robey, B. A. Remington, R. P. Drake, J. Knauer,
D. D. Ryutov, H. Louis, R. Teyssier, O. Hurricane, D. Arnett, et al.
Interface imprinting by a rippled shock using an intense laser. Physi-
cal Review E, Statistical, Nonlinear, and Soft Matter Physics, 63(5 Pt
2):055401, 2001.

Q. Meng, J. Luitjens, and M. Berzins. Dynamic task scheduling for the
uintah framework. In Proceedings of the 3rd IEEE Workshop on Many-
Task Computing on Grids and Supercomputers (MTAGS10), 2010.

D. Monniaux. The pitfalls of verifying floating-point computa-
tions. ACM Transactions on Programming Languages and Systems

(TOPLAS), 30(3):12, 2008.

D. Moulton, M. Berndt, M. Buskas, R. Garimella, L. Prichett-Sheats,
G. Hammond, M. Day, and J. Meza. High-level design of Amanzi, the
multi-process high performance computing simulator. Technical report,
ASCEM-HPC-2011-03-1, US Department of Energy, Washington, DC,
2011.

J. D. Moulton, J. C. Meza, and M. Day et al. High-level design of
Amanzi, the multi-process high performance computing simulator. Tech-
nical report, DOE-EM, Washington, DC, 2012.

L. Nguyen—Hoan, S. Flint, and R. Sankaranarayana. A survey of sci-
entific software development. In Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 10, pages 12:1-12:10, New York, NY, 2010. ACM.

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

References 239

P. K. Notz, R. P. Pawlowski, and J. C. Sutherland. Graph-based soft-
ware design for managing complexity and enabling concurrency in mul-
tiphysics PDE software. ACM Trans. Math. Softw., 39(1):1:1-1:21,
November 2012.

W. L. Oberkampf and C. J. Roy. Verification and Validation in Scientific
Computing. Cambridge University Press, 2010.

W. L. Oberkampf and T. G. Trucano. Verification and validation in com-
putational fluid dynamics. Progress in Aerospace Sciences, 38(3):209—
272, 2002.

S. L. Painter, J. D. Moulton, and C. J. Wilson. Modeling challenges for
predicting hydrologic response to degrading permafrost. Hydrogeol. J.,
pages 1-4, 2013.

S. G. Parker. A component-based architecture for parallel multi-physics
PDE simulation. Future Generation Comput. Sys., 22:204-216, 2006.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. Scalable molecular dy-
namics with namd. Journal of Computational Chemistry, 26(16):1781—
1802, 2005.

R. G. Sargent. Verification and validation of simulation models. In
Proceedings of the 30th Conference on Winter Simulation, pages 121—
130. IEEE Computer Society Press, 1998.

J. Segal. When software engineers met research scientists: a case study.
Empirical Software Engineering, 10(4):517-536, 2005.

J. Segal and C. Morris. Developing scientific software. Software, IEEFE,
25(4):18-20, 2008.

The Enzo Collaboration, G. L. Bryan, M. L. Norman, B. W. O’Shea,
T. Abel, J. H. Wise, M. J. Turk, D. R. Reynolds, D. C. Collins, P. Wang,
S. W. Skillman, B. Smith, R. P. Harkness, J. Bordner, J.-H. Kim,
M. Kuhlen, H. Xu, N. Goldbaum, C. Hummels, A. G. Kritsuk, E. Tasker,
S. Skory, C. M. Simpson, O. Hahn, J. S. Oishi, G. C. So, F. Zhao, R. Cen,
and Y. Li. Enzo: An Adaptive Mesh Refinement Code for Astrophysics.
ArXiv e-prints, July 2013.

D. Unat, J. Shalf, T. Hoefler, T. Schulthess, A. Dubey, et al. Pro-
gramming abstractions for data locality. In Workshop on Programming
Abstractions for Data Locality (PADAL’14), 2014.

Karen S. Ackroyd, Steve H. Kinder, Geoff R. Mant, Mike C. Miller,
Christine A. Ramsdale, and Paul C. Stephenson. Scientific software de-
velopment at a research facility. IEEE Software, 25(4):44-51, July/Au-
gust 2008.

240

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

References

Arne Beckhause, Dirk Neumann, and Lars Karg. The impact of com-
muncation structure on issue tracking efficiency at a large business soft-
ware vendor. Issues in Information Systems, X(2):316-323, 2009.

Jacques Carette. Gaussian elimination: A case study in efficient gener-
icity with MetaOCaml. Science of Computer Programming, 62(1):3-24,
2006.

Jacques Carette, Mustafa ElSheikh, and W. Spencer Smith. A gener-
ative geometric kernel. In ACM SIGPLAN 2011 Workshop on Partial
Evaluation and Program Manipulation (PEPM’11), pages 53-62, Jan-
uary 2011.

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E.
Post. Software development environments for scientific and engineer-
ing software: A series of case studies. In ICSE ’07: Proceedings of the
29th International Conference on Software Engineering, pages 550-559,
Washington, DC, USA, 2007. IEEE Computer Society.

CIG. Mineos. http://geodynamics.org/cig/software/mineos/,
March 2015.

CRAN. The comprehensive R archive network. https://cran.
r-project.org/, 2014.

CSA. Quality assurance of analytical, scientific, and design computer
programs for nuclear power plants. Technical Report N286.7-99, Cana-
dian Standards Association, 178 Rexdale Blvd. Etobicoke, Ontario,
Canada M9W 1R3, 1999.

Andrew P. Davison. Automated capture of experiment context for eas-
ier reproducibility in computational research. Computing in Science &
Engineering, 14(4):48-56, July-Aug 2012.

Andrew P. Davison, M. Mattioni, D. Samarkanov, and B. Teleficzuk.
Sumatra: A toolkit for reproducible research. In V. Stodden, F. Leisch,
and R.D. Peng, editors, Implementing Reproducible Research, pages 57—
79. Chapman & Hall/CRC, Boca Raton, FL, March 2014.

Paul F. Dubois. Designing scientific components. Computing in Science
and Engineering, 4(5):84-90, September 2002.

Paul F. Dubois. Maintaining correctness in scientific programs. Com-
puting in Science & Engineering, 7(3):80-85, May-June 2005.

Steve M. Easterbrook and Timothy C. Johns. Engineering the software
for understanding climate change. IEEE Des. Test, 11(6):65-74, 2009.

References 241

[68] Ahmed H. ElSheikh, W. Spencer Smith, and Samir E. Chidiac. Semi-
formal design of reliable mesh generation systems. Advances in Engi-
neering Software, 35(12):827-841, 2004.

[69] ESA. ESA software engineering standards, PSS-05-0 issue 2. Technical
report, European Space Agency, February 1991.

[70] Sergey Fomel. Madagascar Project Main Page. http://www.ahay.org/
wiki/Main_Page, 2014.

[71] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA,
2nd edition, 2003.

[72] GRASS Development Team. GRASS GIS bringing advanced geospatial
technologies to the world. http://grass.osgeo.org/, 2014.

[73] Michael Heath. Scientific Computing: An Introductory Survey. McGraw-
Hill Publishing Company, New York, NY, 2nd edition, 2002.

[74] Timothy Hickey, Qun Ju, and Maarten H. Van Emden. Interval arith-
metic: From principles to implementation. J. ACM, 48(5):1038-1068,
September 2001.

[75] Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated
Testing, and Maintenance: A Practical Approach. International Thom-
son Computer Press, New York, NY, 1995.

[76] IEEE. Recommended Practice for Software Requirements Specifications,
IEEE Std. 830. IEEE, 1998.

[77] ISTI. Earthworm software standards. http://www.earthwormcentral.
org/documentation2/PROGRAMMER/SoftwareStandards.html,
September 2013.

[78] Jeffrey N Johnson and Paul F Dubois. Issue tracking. Computing in
Science € Engineering, 5(6):71-77, 2003.

[79] Diane Kelly. Industrial scientific software: A set of interviews on software
development. In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’13, pages 299—
310, Riverton, NJ, USA, 2013. IBM Corp.

[80] Diane Kelly. Scientific software development viewed as knowledge acqui-
sition: Towards understanding the development of risk-averse scientific
software. Journal of Systems and Software, 109:50-61, 2015.

[81] Diane F. Kelly, W. Spencer Smith, and Nicholas Meng. Software engi-
neering for scientists. Computing in Science €& Engineering, 13(5):7-11,
October 2011.

242

[82]

[83]

[84]

[85]

[36]

[87]

[38]

[89]

[90]

[91]

92]

193]

[94]

References

Brian W. Kernighan and Rob Pike. The Practice of Programming.
Addison-Wesley Professional, Reading, MA, 1999.

Oleg Kiselyov, Kedar N. Swadi, and Walid Taha. A methodology for
generating verified combinatorial circuits. In Proceedings of the 4th ACM
International Conference on Embedded Software, EMSOFT ’04, pages
249-258, New York, NY, USA, 2004. ACM.

Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number
27. Center for the Study of Language and Information, 1992.

Adam Lazzarato, Spencer Smith, and Jacques Carette. State of the
practice for remote sensing software. Technical Report CAS-15-03-SS,
McMaster University, January 2015. 47 pp.

Friedrich Leisch. Sweave: Dynamic generation of statistical reports using
literate data analysis. In Wolfgang Hérdle and Bernd Ronz, editors,
Compstat 2002 — Proceedings in Computational Statistics, pages 575—
580. Physica Verlag, Heidelberg, 2002. ISBN 3-7908-1517-9.

Jon Loeliger and Matthew McCullough. Version Control with Git:
Powerful Tools and Techniques for Collaborative Software Development.
O’Reilly Media, Inc., 2012.

Thomas Maibaum and Alan Wassyng. A product-focused approach to
software certification. IEEE Computer, 41(2):91-93, 2008.

NASA. Software requirements DID, SMAP-DID-P200-SW, release 4.3.
Technical report, National Aeronautics and Space Agency, 1989.

Nedialko S. Nedialkov. Implementing a Rigorous ODE Solver through
Literate Programming. Technical Report CAS-10-02-NN, Department
of Computing and Software, McMaster University, 2010.

Suely Oliveira and David E. Stewart. Writing Scientific Software: A
Guide to Good Style. Cambridge University Press, New York, NY, USA,
2006.

Linda Parker Gates. Strategic planning with critical success factors and
future scenarios: An integrated strategic planning framework. Tech-
nical Report CMU /SEI-2010-TR-037, Software Engineering Institute,
Carnegie-Mellon University, November 2010.

David L. Parnas. On the criteria to be used in decomposing systems
into modules. Comm. ACM, 15(2):1053-1058, December 1972.

David L. Parnas, P. C. Clement, and D. M. Weiss. The modular struc-
ture of complex systems. In International Conference on Software En-
gineering, pages 408-419, 1984.

[95]

196]

197]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

References 243

David L. Parnas and P.C. Clements. A rational design process: How and
why to fake it. IEEE Transactions on Software Engineering, 12(2):251—
257, February 1986.

David Lorge Parnas. Precise documentation: The key to better software.
In The Future of Software Engineering, pages 125-148, 2010.

Matt Pharr and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2004.

Michael Pilato. Version Control With Subversion. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, 2004.

Patrick J. Roache. Verification and Validation in Computational Science
and Engineering. Hermosa Publishers, Albuquerque, NM, 1998.

Padideh Sarafraz. Thermal optimization of flat plate PCM cap-
sules in natural convection solar water heating systems. Mas-
ter’s thesis, McMaster University, Hamilton, ON, Canada, 2014.
http://hdl.handle.net,/11375,/14128.

Judith Segal. When software engineers met research scientists: A case
study. Empirical Software Engineering, 10(4):517-536, October 2005.

Judith Segal and Chris Morris. Developing scientific software. IEEE
Software, 25(4):18-20, July/August 2008.

W. Spencer Smith and Nirmitha Koothoor. A document driven method
for certifying scientific computing software used in nuclear safety anal-
ysis. Nuclear Engineering and Technology, Accepted, October 2015. 42

pp.

W. Spencer Smith, Yue Sun, and Jacques Carette. Comparing psycho-
metrics software development between CRAN and other communities.
Technical Report CAS-15-01-SS, McMaster University, January 2015.

43 pp.

W. Spencer Smith, Yue Sun, and Jacques Carette. Statistical soft-
ware for psychology: Comparing development practices between CRAN
and other communities. Software Quality Journal, Submitted December
2015. 33 pp.

W. Spencer Smith. Systematic development of requirements documen-
tation for general purpose scientific computing software. In Proceedings
of the 14th IEEE International Requirements Engineering Conference,
RE 2006, pages 209-218, Minneapolis / St. Paul, MN, 2006.

244

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

References

W. Spencer Smith, Nirmitha Koothoor, and Nedialko Nedialkov. Docu-
ment driven certification of computational science and engineering soft-
ware. In Proceedings of the First International Workshop on Software

Engineering for High Performance Computing in Computational Science
and Engineering (SE-HPCCE), November 2013. 8 pp.

W. Spencer Smith and Lei Lai. A new requirements template for sci-
entific computing. In J. Ralyté, P. Agerfalk, and N. Kraiem, editors,
Proceedings of the First International Workshop on Situational Require-
ments Engineering Processes — Methods, Techniques and Tools to Sup-
port Situation-Specific Requirements Engineering Processes, SREP’05,
pages 107-121, Paris, France, 2005. In conjunction with 13th IEEE In-
ternational Requirements Engineering Conference.

W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for
engineering computation: A systematic approach for improving software
reliability. Reliable Computing, Special Issue on Reliable Engineering
Computation, 13(1):83-107, February 2007.

W. Spencer Smith, John McCutchan, and Fang Cao. Program families
in scientific computing. In Jonathan Sprinkle, Jeff Gray, Matti Rossi,
and Juha-Pekka Tolvanen, editors, 7#* OOPSLA Workshop on Domain
Specific Modelling (DSM’07), pages 39-47, Montréal, Québec, October
2007.

W. Spencer Smith and Wen Yu. A document driven methodology for
improving the quality of a parallel mesh generation toolbox. Advances
in Engineering Software, 40(11):1155-1167, November 2009.

Daniel Szymczak, W. Spencer Smith, and Jacques Carette. Position
paper: A knowledge-based approach to scientific software development.
In Proceedings of SE4Science’16, United States, May 16 2016. In con-
junction with ICSE 2016. 4 pp.

L. Andries van der Ark. mokken: Mokken Scale Analysis in R, 2013.
R package version 2.7.5.

Hans van Vliet. Software Engineering (2nd ed.): Principles and Practice.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

Judith S. VanAlstyne. Professional and Technical Writing Strategies.
Pearson Prentice Hall, Upper Saddle River, NJ, sixth edition, 2005.

Gregory V. Wilson. Where’s the real bottleneck in scientific computing?
Scientists would do well to pick some tools widely used in the software
industry. American Scientist, 94(1), 2006.

Gregory V. Wilson, D.A. Aruliah, C. Titus Brown, Neil P. Chue Hong,
Matt Davis, Richard T. Guy, Steven H. D. Haddock, Kathryn D. Huff,

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

References 245

Tan M. Mitchell, Mark D. Plumblet, Ben Waugh, Ethan P. White,
and Paul Wilson. Best practices for scientific computing. CoRR,
abs/1210.0530, 2013.

A. Arcuri, M. Z. Igbal, and L. Briand. Random Testing: Theoretical
Results and Practical Implications. IEEE Trans. Software Engineering,
38(2):258-277, 2012.

J. M. Bové. Huanglongbing: A Destructive, Newly-Emerging, Century-
Old Disease of Citrus. Journal of Plant Pathology, 88:7-37, 2006.

F. Brayton, A. Levin, R. Tryon, and J. C. Williams. The Evolution
of Macro Models at the Federal Reserve Board. In Carnegie Rochester
Conference Series on Public Policy, pages 43-81, 1997.

I. Burnstein. Practical Software Testing: A Process-Oriented Approach.
Springer, New York, NY, 2003.

F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, and S. M. Yiu.
Application of metamorphic testing in numerical analysis. In JASTED
International Conference on Software Engineering, pages 191-197, 1998.

N. J. Cunniffe, R. O. J. H. Stutt, R. E. DeSimone, T. R. Gottwald, and
C. A. Gilligan. Optimizing and Communicating Options for the Control
of Invasive Plant Disease When There Is Epidemiological Uncertainty.
PLOS Computational Biology, 2015.

O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz. The Oracle
Problem in Software Testing: A Survey. Journal of Mathematical Biol-
ogy, 28(4):365-382, 1990.

J. W. Duran. An Evaluation of Random Testing. IFEFE Trans. Software
Engineering, 10(4):438-444, 1984.

A. Geller and S. J. Alam. A Socio-Political and -Cultural Model of the
War in Afghanistan. International Studies Review, 12(1):8-30.

M. F. C. Gomes, A. Pastore y Piontti, L. Rossi, D Chao, I. Longini, M. E.
Halloran, and A. Vespignani. Assessing the International Spreading Risk
Associated with the 2014 West African Ebola Outbreak. PLoS Curr,
2014.

T. R. Gottwald. Current Epidemiological Understanding of Citrus
Huanglongbing. Annual Review of Phytopathology, 48:119-139, 2010.

J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and
G. Wilson. How Do Scientists Develop and Use Scientific Software? In
Soft. Eng. for Computational Science and Eng., ICSE, 2009.

246

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

References

N. Hansen. The CMA Evolution Strategy: A Comparing Review. In
J. A. Lozano, P. Larranaga, 1. Inza, and E. Bengoetxea, editors, To-
wards a New Evolutionary Computation (Studies in Fuzziness and Soft
Computing), pages 75-102. Berlin, Germany: Springer, 2006.

N. Hansen. CMA-ES Source Code. https://www.lri.fr/“hansen/
cmaes_inmatlab.html, 2011. [Online]. Accessed 24 March 2016.

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posik. Comparing Re-
sults of 31 Algorithms from the Black-Box Optimization Benchmarking
BBOB-2009. In Proc. 12th Genetic Evolutionary Computation Conf.,
pages 1689-1696, 2010.

P. R. Harper and A.K. Shahani. Modelling for the Planning and Man-
agement of Bed Capacities in Hospitals. Journal of the Operational
Research Society, 53(1):11-18, 2006.

L. Hatton and A. Roberts. How Accurate is Scientific Software? IEEE
Trans. Software Engineering, 20(10):785-797, 1994.

S. Hettrick, M. Antonioletti, L. Carr, N. Chue Hong, S. Crouch, D. De
Roure, I. Emsley, C. Goble, A. Hay, D. Inupakutika, M. Jackson, A. Ne-
nadic, T. Parkinson, M. I. Parsons, A. Pawlik, G. Peru, A. Proeme,
J. Robinson, and S. Sufi. UK Research Software Survey 2014. https:
//zenodo.org/record/14809, note = "[Online|. Accessed 24 March
2016".

P.C. Jorgensen. Software Testing: A Craftsman’s Approach. CRC Press,
Boca Raton, FL, 4th edition, 2013.

M. J. Keeling, M. E. J. Woolhouse, R. M. May, G. Davies, and B. T.
Grenfell. Modelling Vaccination Strategies against Foot-and-Mouth Dis-
ease. Nature, 421:136-142, 2003.

D. F. Kelly. A Software Chasm: Software Engineering and Scientific
Computing. IEEE Software, 24(6):118-120, 2007.

R. C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, Upper Saddle River, NJ, 2008.

F. Massey. The Kolmogorov—Smirnov Test for Goodness of Fit. Journal
of the American Statistical Association, 46(253):68-78, 1951.

R. K. Meentemeyer, N. J. Cunniffe, A. R. Cook, J. A. N. Filipe, R. D.
Hunter, D. M. Rizzo, and C. A. Gilligan. Epidemiological Modeling of
Invasion in Heterogeneous Landscapes: Spread of Sudden Oak Death in
California (1990-2030). Ecosphere, 2(2), 2011.

Z. Merali. Computational science: Error, why scientific programming
does not compute. Nature, 467(7317), 2010.

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

References 247

H. Motulsky. Comparing Dose-Response or Kinetic Curves with Graph-
Pad Prism. HMS Beagle: The BioMedNet Magazine, 34, 1998.

D. Orchard and A. Rice. A Computational Science Agenda for Pro-
gramming Language Research. In Proc. International Conference on
Computational Science, pages 713-727, 2014.

D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12):1053-1058, 1972.

M. Parry, G. J. Gibson, S. Parnell, T. R. Gottwald, M. S. Irey, T. C.
Gast, and C. A. Gilligan. Bayesian Inference for an Emerging Arbo-
real Epidemic in the Presence of Control. Proc. National Academy of
Sciences, 111(17):6258-6262, 2014.

A. Piccolboni. Quickcheck. https://github.com/Revolution
Analytics/quickcheck, 2015. [Online|. Accessed 24 March 2016.

K. Salari and P. Knupp. Code Verification by the Method of Manu-
factured Solutions. Technical Report SAND2000-1444, Sandia National
Laboratories, June 2000.

S. Shamshiri, J. M. Rojas, G. Fraser, and P. McMinn. Random or
Genetic Algorithm Search for Object-Oriented Test Suite Generation?
In Proc. GECCO, pages 1367-1374, 2015.

J. A. Sokolowski and C. M. Banks. Modeling and Simulation Fundamen-
tals: Theoretical Underpinnings and Practical Domains. Wiley, Hobo-
ken, NJ, 4 edition, 2010.

F. W. Thackeray and J. E. Findling. Fvents That Formed the Modern
World. ABC CLIO, Santa Barbara, CA, 2012.

J. Utts and R. Heckard. Statistical Ideas and Methods. Thomson, Bel-
mont, CA, 2005.

T. Weise. Global Optimization Algorithms - Theory and Applica-
tion. http://www.itweise.de/projects/book.pdf, 2009. [Online].
Accessed 24 March 2016.

E. J. Weyuker. On Testing Non-Testable Programs. The Computer
Journal, 25(4):465-470, 1982.

A. Dubey, K. Weide, D. Lee, J. Bachan, C. Daley, S. Olofin, N. Tay-
lor, P.M. Rich, and L.B. Reid. Ongoing verification of a multiphysics
community code: FLASH. Software: Practice and Experience, 45(2),
2015.

Bamboo. https://www.atlassian.com /software/bamboo/.

248

[157]

[158]
[159]

[160]

[161]

[162]
[163]

[164]
[165]

[166]

[167]

[168]

[169]

[170]

[171]
[172]

References

K. J. Bathe, editor. Computational Fluid and Solid Mechanics. Elsevier,
2001.

K. Beck. Test Driven Development. Addison-Wesley, Boston, MA, 2003.

K. Beck. FEztreme Programming (Second Edition). Addison-Wesley,
2005.

Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the efficacy
of test-driven development: Industrial case studies. In Proceedings of
the 2006 ACM/IEEE International Symposium on Empirical Software
Engineering, ISESE ’06, pages 356-363, New York, NY, USA, 2006.
ACM.

F. Brooks. The Mythical Man-Month (second edition). Addison-Wesley,
Boston, MA, 1995.

CDash. www.cdash.org.

E. Coon, J. D. Moulton, and S. Painter. Managing complexity in sim-
ulations of land surface and near-surface processes. Technical Report
LA-UR 14-25386, Applied Mathematics and Plasma Physics Group, Los
Alamos National Laboratory, 2014. To appear in Environmental Mod-
elling € Software.

CTest. https://cmake.org/Wiki/CMake/Testing With CTest.

S. M. Easterbrook and T. C. Johns. Engineering the software for under-
standing climate change. Computing in Science Engineering, 11(6):65—
74, Nov.-Dec. 2009.

H. Erdogmus, M. Morisio, and M. Torchiano. On the effectiveness of
the test-first approach to programming. IEEE Transactions on Software
Engineering, 31(3):226-237, 2005.

M. Feathers. Working Effectively with Legacy Code. Prentice-Hall, Up-
per Saddle River, NJ, 2004.

M. Fowler. Refactoring (Improving the Design of Existing Code). Addi-
son Wesley, 1999.

M. Gartner. ATDD by Example: A Practical Guide to Acceptance Test-
Driven Development. Addison-Wesley, 2012.

D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, March 1991.

gtest. http://wiki.ros.org/gtest.

hypre: High Performance Preconditioners.
http://www.llnl.gov/CASC/hypre/.

[173]
[174]
[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185)]

[186]
[187]

188

References 249

Parasoft Insure++-. https://www.parasoft.com/product/insure/.
Jenkins. https://jenkins-ci.org/.

B. Koteska and A. Mishev. Scientific software testing: A practical ex-
ample. In Z. Budimar and M. Hericko, editors, Proceedings of the 4th
Workshop of Software Quality, Analysis, Monitoring, Improvement, and
Applications (SQAMIA 2015), Maribor, Slovenia, 8.-10.6.2015.

X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, P. Sao, M. Shao, and
I. Yamazaki. SuperLU Users’ Guide. Technical Report LBNL-44289,
Lawrence Berkeley National Laboratory, October 2014.

S. McConnell. Code Complete: Second Edition. Microsoft Press, 2004.

G. Miller. A scientist’s nightmare: Software problem leads to five re-
tractions. Science, 314(5807):1856-1857, 2006.

J. Nocedal and S. Wright. Numerical Optimization. Springer, 1999.

P. K. Notz, R. P. Pawlowski, and J. C. Sutherland. Graph-based soft-
ware design for managing complexity and enabling concurrency in mul-
tiphysics PDE software. Acm. T. Math. Software, 39(1):1, 2012.

M. Poppendieck and T. Poppendieck. Implementing Lean Software De-
velopment. Addison-Wesley, 2007.

D. Post and L. Votta. Computational science demands and new
paradigm. Physics Today, 58(1):35-41, 2005.

J. Seward and N. Nethercote. Using valgrind to detect undefined value
errors with bit-precision. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’05, pages 2-2, Berkeley,
CA, USA, 2005. USENIX Association.

A. K. Shuja and J. Krebs. IBM Rational Unified Process Reference and
Certification Guide: Solution Designer. IBM Press, 2007.

S. R. Slattery, P. P. H. Wilson, and R. P. Pawlowski. The Data Transfer
Kit: A geometric rendezvous-based tool for multiphysics data transfer.
In International Conference on Mathematics € Computational Methods
Applied to Nuclear Science & Engineering, pages 5-9, 2013.

SuperLU. http://crd-legacy.lbl.gov/~ xiaoye/SuperLU/.

D. Talby, A. Keren, O. Hazzan, and Y. Dubinsky. Agile software testing
in a large-scale project. Software, IEEE, 23(4):30-37, 2006.

The Trilinos Project. https://trilinos.org.

250

[189)]

[190]

[191]
[192]
[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

References

H. Troger and A. Steindl. Nonlinear stability and bifurcation theory: An
introduction for engineers and applied scientists. Springer, 1991.

B. Turhan, L. Layman, M. Diep, H. Erdogmus, and F. Shull. How
effective is test-driven development? In Making Software: What Really
Works and Why We Believe It, pages 207-217. O’Reilly, 2010.

xUnit. http://xunit.github.io/.
Boris Beizer. Software Testing Techniques. Dreamtech Press, 2003.

David L. Donoho, Arian Maleki, Inam Ur Rahman, Morteza Shahram,
and Victoria Stodden. Reproducible research in computational harmonic
analysis. Computing in Science and Engineering, 11(1):8-18, 2009.

Steve M. Easterbrook and Timothy C. Johns. Engineering the software
for understanding climate change. Computing in Science and Engineer-

ing, 11(6):64-74, 2009.

Rob Gray and Diane Kelly. Investigating test selection techniques for
scientific software using Hook’s mutation sensitivity testing. Procedia
Computer Science, 1(1):1487-1494, 2010.

Daniel Hook. Using Code Mutation to Study Code Faults in Scientific
Software. Master’s thesis, Queen’s University, Kingston, ON, Canada,
April 2009. Available at http://hdl.handle.net/1974/1765.

Daniel Hook and Diane Kelly. Mutation sensitivity testing. Computing
in Science and Engineering, 11(6):40-47, 2009.

Upulee Kanewala and James M. Bieman. Testing scientific software:
A systematic literature review. Information and Software Technology,
56(10):1219-1232, 2014.

Nicholas Jie Meng. A Model for Run-time Measurement of
Input and Round-off Error. Master’s thesis, Queen’s Univer-
sity, Kingston, ON, Canada, September 2012. Available at
http://hdl.handle.net/1974/7508.

Glenford J Myers, Corey Sandler, and Tom Badgett. The Art of Software
Testing. John Wiley & Sons, 2011.

William L. Oberkampf, Timothy G. Trucano, and Charles Hirsch. Ver-
ification, validation, and predictive capability in computational engi-
neering and physics. In Proceedings of Foundations ’02, a Workshop
on Modeling and Simulation Verification and Validation for the 21st
Century, Laurel, MD, USA, October 2002. Johns Hopkins University.

References 251

[202] Rebecca Sanders and Diane Kelly. The challenge of testing scientific
software. In CAST ’08: Proceedings of the 3rd Annual Conference of the
Association for Software Testing, pages 30-36, Toronto, ON, Canada,
2008. Association for Software Testing.

[203] Rebecca Sanders and Diane Kelly. Dealing with risk in scientific software
development. IEEE Software, 25(4):21-28, 2008.

[204] A framework to write repeatable Java tests. available at
http://junit.org, Accessed: 12-20-2015.

[205] A Unit Testing Framework for C. available at http://cunit. source-
forge.net, Accessed: 12-10-2015.

[206] A Unit Testing Framework for FORTRAN. available at https://
rubygems.org/gems/funit /versions/0.11.1, Accessed: 20-12-2015.

[207] Cube 4.x series, 2015. Version 4.3.2, available at http://www.scalasca.
org/software/cube-4.x/download.html, Accessed: 06-10-2015.

[208] D. Babic, L. Martignoni, S. McCamant, and D. Song. Statically-directed
dynamic automated test generation. pages 12-22, 2011.

[209] G. B. Bonan. The land surface climatology of the NCAR land surface
model coupled to the NCAR community. Climate Model. J. Climate,
11:1307-1326.

[210] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. pages
209-224, 2008.

[211] D. Wang, W. Wu, T. Janjusic, Y. Xu, C. Iversen, P. Thornton, and
M. Krassovisk. Scientific functional testing platform for environmen-
tal models: An application to community land model. International
Workshop on Software Engineering for High Performance Computing
in Science, 2015.

[212] R. E. Dickinson, K. W. Oleson, G. Bonan, F. Hoffman, P. Thornton,
M. Vertenstein, Z. Yang, and X. Zeng. The community land model and
its climate statistics as a component of the community climate system
model. J. Clim., 19:2302-2324, 2006.

[213] M. Feathers. Working Effectively with Legacy Code. Prentice-Hall, 2004.

[214] A. Kniipfer, C. Rissel, D. Mey, S. Biersdorf, K. Diethelm, D. Eschweiler,
M. Gerndt, D. Lorenz, A. D. Malony, W. E. Nagel, Y. Oleynik, P. Sa-
viankou, D. Schmidl, S. Shende, R. Tschiiter, M. Wagner, B. Wesarg,
and F. Wolf. Score-P - A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir. 5th Parallel
Tools Workshop, 2011.

252

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

References

A. Kniipfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Miiller, and W. E. Nagel. The Vampir Performance Analysis Tool-
Set. In M. Resch, R. Keller, V. Himmler, B. Kramer, and A. Schulz,
editors, “Tools for High Performance Computing”, Proceedings of the
2nd International Workshop on Parallel Tools for High Performance
Computing, Stuttgart, Germany, July 2008. Springer-Verlag.

A. Kolawa and D. Huizinga. Automated Defect Prevention: Best Prac-
tices in Software Management. Wiley-IEEE Computer Society Press,
2007.

K. Oleson, D. Lawrence, B. Gordon, M. Flanner, E. Kluzek, J. Peter,
S. Levis, S. Swenson, P. Thornton, and J. Feddema. Technical descrip-
tion of version 4.0 of the community land model (clm). 2010.

M. Pezze and M. Young. Software Testing and Analysis: Process, Prin-
ciples and Techniques. Wiley, 2007.

D. Wang, Y. Xu, P. Thornton, A. King, C. Steed, L. Gu, and J.
Schuchart. A functional test platform for the community land model.
Environ. Model. Softw., 55(C):25-31, May 2014.

Z. Yao, Y. Jia, D. Wang, C. Steed, and S. Atchley. In situ data in-
frastructure for scientific unit testing platform. Proceeding Computer
Science, 80:587-598, Dec. 31, 2016.

U. Kanewala and J. M. Bieman, “Testing scientific software: A
systematic literature review,” Information and Software Technology,
vol. 56, no. 10, pp. 1219-1232, 2014. [Online|. Available: http://wuw.
sciencedirect.com/science/article/pii/S0950584914001232

T. Clune and R. Rood, “Software testing and verification in climate
model development,” Software, IEEFE, vol. 28, no. 6, pp. 49-55, Nov.—
Dec. 2011.

P. Dubois, “Testing scientific programs,” Computing in Science Engi-
neering, vol. 14, no. 4, pp. 69-73, Jul.—Aug. 2012.

W. Wood and W. Kleb, “Exploring XP for scientific research,” Software,
IEFEE, vol. 20, no. 3, pp. 30-36, May—June.

G. Miller, “A scientist’s nightmare: Software problem leads to five retrac-
tions,” Science, vol. 314, no. 5807, pp. 1856-1857, 2006. [Online|. Avail-
able: http://www.sciencemag.org/content/314/5807/1856.short

E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465-470, 1982. [Online|. Available: http:
//comjnl.oxfordjournals.org/content/25/4/465.abstract

[227]

[228]

[229]

[230]

[231]

[232]

233

[234]

[235]

References 253

U. Kanewala and J. Bieman, “Using machine learning techniques to de-
tect metamorphic relations for programs without test oracles,” in Proc.
24th IEEE International Symposium on Software Reliability Engineering
(ISSRE), Pasadena, California, USA, Nov. 2013, pp. 1-10.

A. Bertolino, “Software testing research and practice,” in Abstract State
Machines 2003, ser. Lecture Notes in Computer Science, E. Borger,
A. Gargantini, and E. Riccobene, Eds. Springer Berlin Heidelberg,
2003, vol. 2589, pp. 1-21. [Online|. Available: http://dx.doi.org/10.
1007/3-540-36498-6_1

S. M. Easterbrook, “Climate change: a grand software challenge,” in Pro-
ceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, ser. FOSER ’10. New York, NY, USA: ACM, 2010, pp. 99-104.
[Online]. Available: http://doi.acm.org/10.1145/1882362.1882383

C. Murphy, M. S. Raunak, A. King, S. Chen, C. Imbriano, G. Kaiser,
I. Lee, O. Sokolsky, L. Clarke, and L. Osterweil, “On effective testing
of health care simulation software,” in Proc. 3rd Workshop on Software
Engineering in Health Care, ser. SEHC ’11. New York, NY, USA: ACM,
2011, pp. 40-47.

J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post, “Software
development environments for scientific and engineering software: A
series of case studies,” in Proceedings of the 29th International Con-
ference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 550-559. [Online|. Available:
http://dx.doi.org/10.1109/ICSE.2007.77

D. Kelly, S. Smith, and N. Meng, “Software engineering for scientists,”
Computing in Science Engineering, vol. 13, no. 5, pp. 7-11, Sep.—Oct.
2011.

M. T. Sletholt, J. Hannay, D. Pfahl, H. C. Benestad, and H. P. Langtan-
gen, “A literature review of agile practices and their effects in scientific
software development,” in Proceedings of the 4th International Workshop
on Software Engineering for Computational Science and Engineering,
ser. SECSE ’11. New York, NY, USA: ACM, 2011, pp. 1-9. [Online].
Available: http://doi.acm.org/10.1145/1985782.1985784

R. Sanders and D. Kelly, “The challenge of testing scientific software,”
in Proc. of the Conference for the Association for Software Testing
(CAST), Toronto, July 2008, pp. 30-36.

C. Murphy, G. Kaiser, and M. Arias, “An approach to software testing of
machine learning applications,” in Proc of the 19th International Con-
ference on Software Engineering and Knowledge Engineering (SEKE),
Boston, MA, USA, Jul. 2007, pp. 167-172.

254

[236]

[237]

238

[239]

[240]

[241]

[242]

[243]

References

T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie, “An innovative approach
for testing bioinformatics programs using metamorphic testing.” BMC
Bioinformatics, vol. 10, pp. 24-36, 2009.

D. Kelly and R. Sanders, “Assessing the quality of scientific software,” in
Proc of the First International Workshop on Software Engineering for
Computational Science and Engineering, 2008.

J. Pitt—Francis, M. O. Bernabeu, J. Cooper, A. Garny, L. Momta-
han, J. Osborne, P. Pathmanathan, B. Rodriguez, J. P. Whiteley, and
D. J. Gavaghan, “Chaste: Using agile programming techniques to de-
velop computational biology software,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol.
366, no. 1878, pp. 3111-3136, 2008. [Online]. Available: http://rsta.
royalsocietypublishing.org/content/366/1878/3111.abstract

J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and
G. Wilson, “How do scientists develop and use scientific software?” in
Proceedings of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, ser. SECSE ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 1-8. [Ounline]. Available:
http://dx.doi.org/10.1109/SECSE. 2009.5069155

J. Segal, “Scientists and software engineers: A tale of two cultures,” in
PPIG 2008: Proceedings of the 20th Annual Meeting of the Pschology
of Programming Interest Group, J. Buckley, J. Rooksby, and R. Bed-
narik, Eds. Lancaster, UK: Lancaster University, 2008, proceedings:
20th annual meeting of the Psychology of Programming Interest Group;
Lancaster, United Kingdom; September 10-12 2008. [Online|. Available:
http://oro.open.ac.uk/17671/

A. J. Abackerli, P. H. Pereira, and N. Calonego Jr., “A case study on
testing CMM uncertainty simulation software (VCMM),” Journal of the
Brazilian Society of Mechanical Sciences and Engineering, vol. 32, pp.
8-14, Mar. 2010.

L. Nguyen—Hoan, S. Flint, and R. Sankaranarayana, “A survey of
scientific software development,” in Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’10. New York, NY, USA: ACM,
2010, pp. 12:1-12:10. [Online]. Available: http://doi.acm.org/10.
1145/1852786.1852802

M. A. Heroux, J. M. Willenbring, and M. N. Phenow, “Improving the
development process for CSE software,” in Parallel, Distributed and
Network-Based Processing, 2007. PDP °07. 15th EUROMICRO Inter-
national Conference on, Feb. 2007, pp. 11-17.

[244]

[245]

[246]

[247]

[248]

249

[250]

[251]

[252]

[253]

References 255

D. Kelly, R. Gray, and Y. Shao, “Examining random and designed tests
to detect code mistakes in scientific software,” Journal of Computational
Science, vol. 2, no. 1, pp. 47-56, 2011. [Online|. Available: http://www.
sciencedirect.com/science/article/pii/S187775031000075X

D. Kelly, S. Thorsteinson, and D. Hook, “Scientific software testing:
Analysis with four dimensions,” Software, IEEFE, vol. 28, no. 3, pp. 84—
90, May—Jun. 2011.

P. E. Farrell, M. D. Piggott, G. J. Gorman, D. A. Ham, C. R. Wilson,
and T. M. Bond, “Automated continuous verification for numerical sim-
ulation,” Geoscientific Model Development, vol. 4, no. 2, pp. 435-449,
2011. [Online|. Available: http://www.geosci-model-dev.net/4/435/
2011/

S. M. Easterbrook and T. C. Johns, “Engineering the software for un-
derstanding climate change,” Computing in Science Engineering, vol. 11,
no. 6, pp. 65-74, Nov.—Dec. 2009.

D. E. Post and R. P. Kendall, “Software project management and
quality engineering practices for complex, coupled multiphysics, mas-
sively parallel computational simulations: Lessons learned from ASCI,”
vol. 18, no. 4, pp. 399-416, Winter 2004. [Online|. Available: http:
//hpc.sagepub.com/content/18/4/399.full.pdf+html

M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-testable pro-
grams,” in Proceedings of the ACM ’81 Conference, ser. ACM ’81.
New York, NY, USA: ACM, 1981, pp. 254-257. [Online]. Available:
http://doi.acm.org/10.1145/800175.809889

L. Hatton, “The T experiments: Errors in scientific software,” IEEE
Computational Science Engineering, vol. 4, no. 2, pp. 27-38, Apr.— Jun.
1997.

T. Chen, J. Feng, and T. H. Tse, “Metamorphic testing of programs
on partial differential equations: A case study,” in Computer Software
and Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th
Annual International, pp. 327-333.

S. Brilliant, J. Knight, and N. Leveson, “Analysis of faults in an n-
version software experiment,” Software Engineering, IEEE Transactions
on, vol. 16, no. 2, pp. 238-247, 1990.

P. C. Lane and F. Gobet, “A theory-driven testing methodology
for developing scientific software,” Journal of Experimental € The-
oretical Artificial Intelligence, vol. 24, no. 4, pp. 421-456, 2012.
[Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
0952813X.2012.695443

256

[254]

[255]

[256]

[257]

258

[259]

[260]

[261]

[262]

263

[264]

References

R. Sanders and D. Kelly, “Dealing with risk in scientific software devel-
opment,” IEEE Software, vol. 25, no. 4, pp. 21-28, Jul.—Aug. 2008.

D. Hook and D. Kelly, “Testing for trustworthiness in scientific software,”
in Software Engineering for Computational Science and Engineering,
2009. SECSE ’09. ICSE Workshop on, May 2009, pp. 59-64.

L. Hochstein and V. Basili, “The ASC-Alliance projects: A case study
of large-scale parallel scientific code development,” Computer, vol. 41,
no. 3, pp. 50-58, March.

J. Mayer, A. A. Informationsverarbeitung, and U. Ulm, “On testing im-
age processing applications with statistical methods,” in Software Engi-
neering (SE 2005), Lecture Notes in Informatics, 2005, pp. 69-78.

M. Cox and P. Harris, “Design and use of reference data sets for test-
ing scientific software,” Analytica Chimica Acta, vol. 380, no. 2-3, pp.
339-351, 1999. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0003267098004814

7. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang, and T. Y. Chen,
“Metamorphic testing and its applications,” in Proc. 8th International
Symposium on Future Software Technology (ISFST 2004). Xian, China:
Software Engineers Association, 2004, pp. 346-351.

X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Test-
ing and validating machine learning classifiers by metamorphic testing,”
Journal of Systems and Software, vol. 84, no. 4, pp. 544-558, 2011.

S. Yoo, “Metamorphic testing of stochastic optimisation,” in Proc. Third
International Conference on Software Testing, Verification, and Valida-
tion Workshops (ICSTW), Apr. 2010, pp. 192-201.

T. Chen, J. Feng, and T. Tse, “Metamorphic testing of programs on
partial differential equations: A case study,” in Proc. 26th International
Computer Software and Applications Conference on Prolonging Software
Life: Development and Redevelopment, ser. COMPSAC ’02. Washing-
ton, DC, USA: IEEE Computer Society, 2002, pp. 327-333.

T.Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing without the
need of oracles,” Information and Software Technology, vol. 45, no. 1,
pp- 1-9, 2003.

T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Department of Computer
Science, Hong Kong University of Science and Technology, Hong Kong,
Tech. Rep. HKUST-CS98-01, 1998.

265

266

267]

268

[269]

[270]

[271]

272

[273]

[274]

[275]

References 257

C. Murphy, G. Kaiser, L. Hu, and L. Wu, “Properties of machine learn-
ing applications for use in metamorphic testing,” in Proc of the 20th
International Conference on Software Engineering and Knowledge En-
gineering (SEKE), Redwood City, CA, USA, Jul. 2008, pp. 867-872.

J. Mayer and R. Guderlei, “On random testing of image processing ap-
plications,” in Quality Software, 2006. QSIC 2006. Sizth International
Conference on, Oct. 2006, pp. 85-92.

C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime assertion
checking to automate metamorphic testing in applications without test
oracles,” in Proc. 2009 International Conference on Software Testing
Verification and Validation, ser. ICST ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 436-445.

R. Guderlei and J. Mayer, “Statistical metamorphic testing — testing pro-
grams with random output by means of statistical hypothesis tests and
metamorphic testing,” in Proc. 7th International Conference on Quality
Software (QSIC), Portland, Oregon, USA, Oct. 2007, pp. 404-409.

U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting metamorphic
relations for testing scientific software: A machine learning approach us-
ing graph kernels,” Software Testing, Verification and Reliability, 2015,
in press.

F. E. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5, no. 7,
pp. 1-19, Jul. 1970. [Online]. Available: http://doi.acm.org/10.1145/
390013.808479

R. Vallee—Rai and L. J. Hendren, “Jimple: Simplifying Java bytecode for
analyses and transformations,” 1998.

R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other dis-
crete structures,” in Proc. 19th International Conf. on Machine Learn-

ing, 2002, pp. 315-322.

T. Gértner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives,” in Learning Theory and Kernel Machines, ser.
Lecture Notes in Computer Science, B. Schélkopf and M. Warmuth, Eds.
Springer Berlin Heidelberg, 2003, vol. 2777, pp. 129-143.

J. Huang and C. Ling, “Using AUC and accuracy in evaluating learning
algorithms,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 3, pp. 299-310, Mar. 2005.

J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appro-
priate tool for testing experiments?” in Proceedings of the 27th Interna-
tional Conference on Software Engineering, ser. ICSE ’05. New York,
NY, USA: ACM, 2005, pp. 402—411.

258

[276]

[277]

[278]

[279]

[280]

[281]

[282]

[283)]

[284]

[285]

[286]

[287]

References

Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
pp- 649-678, 2011.

Y.-S. Ma and J. Offutt, “Description of method-level mutation opera-
tors for java,” November 2005. [Online|. Available: http://cs.gmu.edu/
“offutt/mujava/mutopsMethod.pdf

David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogram-
miang: Concepts, Tools, and Techniques from Boost and Beyond. Addison
Wesley, 2004.

Kaitlin Alexander and Stephen M. Easterbrook. The software ar-
chitecture of climate models: A graphical comparison of CMIP5 and
EMICARS configurations. Geoscientific Model Development Discus-
sions, 8(1):351-379, 2015.

Ansible Incorporated. Ansible documentation. http://docs.ansible.
com, 2015.

Apple Incorporated. The Swift programming language — lan-
guage reference. https://developer.apple.com/library/ios/
documentation/Swift/Conceptual/Swift_Programming_ Language/
AboutTheLanguageReference.html, 2015.

Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta
Simeoni. Model-based performance prediction in software development:
A survey. Software Engineering, 30(5):295-310, 2004.

Victor R. Basili, Daniela Cruzes, Jeffrey C. Carver, Lorin M. Hochstein,
Jeffrey K. Hollingsworth, Marvin V. Zelkowitz, and Forrest Shull. Un-
derstanding the high-performance-computing community: A software
engineer’s perspective. IEEE Software, 25(4):29-36, 2008.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven soft-
ware engineering in practice. Number 1 in Synthesis Lectures on Soft-
ware Engineering. Morgan & Claypool, 2012.

Susanne Brenner and L. Ridgway Scott. The Mathematical Theory of
Finite Element Methods. Springer, 3 edition, 2008.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Peter Sommerlad, and Michael Stal. Pattern-oriented soft-
ware architecture, volume 1: A system of patterns, 1996.

Fabien Campagne. The MPS Language Workbench: Volume I. Fabien
Campagne, 2014.

288

[289)]

[290]

[291]

[292]

[203]

[204]
[295]

[296]

[297]

298]

References 259

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E.
Post. Software development environments for scientific and engineering
software: A series of case studies. In Proceedings of the 29th International
Conference on Software Engineering (ICSE 2007), pages 550-559. IEEE,
2007.

Leonardo Dagum and Ramesh Menon. OpenMP: An industry stan-
dard API for shared-memory programming. Computational Science &
Engineering, 5(1):46-55, 1998.

Stephen M. Easterbrook and Timothy C. Johns. Engineering the soft-
ware for understanding climate change. Computing in Science € Engi-
neering, 11(6):65-74, 20009.

Sven Efftinge, Moritz Eysholdt, Jan Kohnlein, Sebastian Zarnekow,
Robert von Massow, Wilhelm Hasselbring, and Michael Hanus. Xbase:
Implementing domain-specific languages for Java. In Proceedings of the
11th International Conference on Generative Programming and Compo-
nent Engineering, pages 112-121. ACM, 2012.

Moritz Eysholdt and Heiko Behrens. Xtext: Implement your language
faster than the quick and dirty way. In Proceedings of the ACM Interna-
tional Conference Companion on Object-Oriented Programming Systems
Languages and Applications Companion, pages 307-309. ACM, 2010.

Stuart Faulk, Fugene Loh, Michael L. Van De Vanter, Susan Squires, and
Lawrence G. Votta. Scientific computing’s productivity gridlock: How
software engineering can help. Computing in Science & Engineering,
11:30-39, 2009.

Martin Fowler. Domain-Specific Languages. Addison-Wesley, 2010.

Volker Grimm and Steven F. Railsback. Individual-based Modeling and
Ecology. Princeton University Press, 2005.

Jo ErsKine Hannay, Hans Petter Langtangen, Carolyn MacLeod, Diet-
mar Pfahl, Janice Singer, and Greg Wilson. How do scientists develop
and use scientific software? In Software Engineering for Computational
Science and Engineering, 2009. SECSE’09. ICSE Workshop on, pages
1-8. IEEE, 2009.

Dustin Heaton and Jeffrey C. Carver. Claims about the use of soft-
ware engineering practices in science: A systematic literature review.
Information and Software Technology, 67:207-219, 2015.

Siw Elisabeth Hove and Bente Anda. Experiences from conducting
semi-structured interviews in empirical software engineering research.
In 11th IEEE International Software Metrics Symposium (METRICS
2005), pages 1-10. IEEE, 2005.

260

[299]

[300]

[301]

302]

303

304]

[305]

306]

307]

308

[309]

[310]

[311]

References

Arne N. Johanson and Wilhelm Hasselbring. Hierarchical combination
of internal and external domain-specific languages for scientific com-
puting. In Proceedings of the 2014 European Conference on Software
Architecture Workshops, ECSAW’14, pages 17:1-17:8. ACM, 2014.

Arne N. Johanson and Wilhelm Hasselbring. Sprat: Hierarchies of do-
main-specific languages for marine ecosystem simulation engineering. In
Proceedings TMS SpringSim’14, pages 187-192. SCS, 2014.

Diane Kelly. A software chasm: Software engineering and scientific com-
puting. IEEE Software, 24(6):118-120, 2007.

Sarah Killcoyne and John Boyle. Managing chaos: Lessons learned devel-
oping software in the life sciences. Computing in Science & Engineering,
11(6):20-29, 20009.

Anneke Kleppe. Software Language Engineering: Creating Domain-Spe-
cific Languages Using Metamodels. Addison-Wesley, 2008.

Philipp Mayring. Qualitative Inhaltsanalyse: Grundlagen und Tech-
niken. Beltz, 12 edition, 2015.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Computing Surveys (CSUR),
37(4):316-344, 2005.

Paul Messina. Gaining the broad expertise needed for high-end com-
putational science and engineering research. Computing in Science &
Engineering, 17(2):89-90, 2015.

Christian Motika, Steven Smyth, and Reinhard von Hanxleden. Compil-
ing SCCharts — a case-study on interactive model-based compilation. In
Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change, pages 461-480. Springer, 2014.

Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu
Huang, Hanjun Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh,
Stephen Beard, Taewook Oh, Matthew Zoufaly, David Walker, and
David I. August. A survey of the practice of computational science.
In State of the Practice Reports, SC’11, pages 19:1-19:12. ACM, 2011.

Doraiswami Ramkrishna. Population Balances: Theory and Applications
to Particulate Systems in Engineering. Academic Press, 2000.

Rebecca Sanders and Diane F. Kelly. Dealing with risk in scientific
software development. Software, IEEFE, 25(4):21-28, 2008.

Ina Schieferdecker. Model-based testing. IEEE Software, 29(1):14-18,
2012.

[312]

[313]

[314]

[315]

[316]

317]

318

[319]

320]

[321]

322

323

References 261

Erik Schnetter, Marek Blazewicz, Steven R. Brandt, David M. Koppel-
man, and Frank Loffler. Chemora: A PDE-solving framework for mod-
ern high-performance computing architectures. Computing in Science
& Engineering, 17(2):53-64, 2015.

Judith Segal. Models of scientific software development. In Proceed-
ings of the First International Workshop on Software Engineering for
Computational Science and Engineering, SECSE’08, pages 1-7, 2008.

Judith Segal and Chris Morris. Developing scientific software. Software,
IEEE, 25(4):18-20, 2008.

Thomas Stahl and Markus Volter. Model-Driven Software Development:
Technology, Engineering, Management. Wiley, 2006.

Mark Strembeck and Uwe Zdun. An approach for the systematic devel-
opment of domain-specific languages. Software: Practice and Ezxperience,
39(15):1253-1292, 2009.

Gregory V. Wilson. Where’s the real bottleneck in scientific computing?
American Scientist, 94(1):5-6, 2006.

Gregory V. Wilson. Software carpentry: Lessons learned.
F1000Research, 3:1-11, 2014.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,
Karl Rupp, Barry F. Smith, Stefano Zampini, and Hong Zhang. PETSc
Users Manual. Technical Report ANL-95/11 - Revision 3.6, Argonne
National Laboratory, 2015.

David M. Beazley. SWIG: An easy to use tool for integrating scripting
languages with C and C++. In Proceedings of the 4th USENIX Tcl/Tk
Workshop, pages 129-139, 1996.

Thomas G. W. Epperly, Gary Kumfert, Tamara Dahlgren, Dietmar
Ebner, Jim Leek, Adrian Prantl, and Scott Kohn. High-performance
language interoperability for scientific computing through Babel. In-
ternational Journal of High Performance Computing Applications, page
1094342011414036, 2011.

William D. Gropp. Users manual for bfort: Producing Fortran inter-
faces to C source code. Technical Report ANL/MCS-TM-208, Argonne
National Laboratory, IL (United States), 1995.

William D. Gropp and Barry F. Smith. Simplified linear equation
solvers users manual. Technical Report ANL-93/8, Argonne National
Laboratory, IL (United States), 1993.

262

[324]

[325]

[326]

327]
328
329
[330]

[331]
332]
[333]

334]
(335
(336

337]

338

339

[340]

References

William D. Gropp and Barry F. Smith. Scalable, extensible, and
portable numerical libraries. In Proceedings of the Scalable Parallel
Libraries Conference, pages 87-93, Mississippi State University, 1994.
IEEE.

Michael Metcalf. The seven ages of fortran. Journal of Computer Science
& Technology, 11, 2011.

Object Management Group. Common Object Request Broker Architec-
ture (CORBA). http://www.corba.org, 2007.

DevOps. https://en.wikipedia.org/wiki/DevOps.
Django. https://www.djangoproject.com/.
Docker. https://www.docker.com/.

Guide to the Software Engineering Body of Knowledge (SWEBOK), V3.
http://www.computer.org/web/swebok/v3-guide/.

HipChat. https://www.hipchat.com/.
HydroShare. http://www.hydroshare.org/.

Implementation of NSF CIF21 Software Vision (SW-Vision). http:
//www.nsf.gov/si2/.

iRODS. http://irods.org/.
Jenkins. https://jenkins.io/.

NSF collaborative HydroShare award numbers 1148453 and 1148090.
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1148453 and
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1148090.

Test-Driven Development (TDD). https://www.agilealliance.org/
glossary/tdd.

National Flood Interoperability Experiment. http://www.
caee.utexas.edu/prof/maidment/giswr2014/Synopsis/
GISWRSynopsis12.pdf, 2014.

Graduate students take part in National Flood Interoper-
ability Experiment Summer Institute to develop new tools.
http://www.tuscaloosanews.com/article/20150607/NEWS/
1506097767p=2&tc=pg/, 2015.

S. Ahalt, L. Band, L. Christopherson, R. Idaszak, C. Lenhardt,
B. Minsker, M. Palmer, M. Shelley, M. Tiemann, and A. Zimmer-
man. Water Science Software Institute: Agile and open source scientific

software development. IEEE Computing in Science and Engineering
(CiSE), 6(3):18-26, 2014.

[341]

342

343

[344]
[345]

[346]

[347]

348

349

[350]

References 263

R. Bartlett, M. Heroux, and W. Willenbring. Overview of the TriBITS
Lifecycle Model : A Lean/Agile Software Lifecycle Model for Research-
based Computational Science and Engineering Software. In Proceedings
of the First Workshop on Maintainable Software Practices in e-Science.
Part of the IEEE International Conference on eScience, 2012.

V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K.
Hollingsworth, F. Shull, and M. V. Zelkowitz. Understanding the high-
performance computing community: A software engineer’s perspective.

In Software, pages 29-36. IEEE, 2008.

F. P. Brooks. The Mythical Man-Month: Essays on Software Engineer-
ing, Anniversary Edition (2nd Edition). Addison-Wesley Professional,
1995.

Ibid Brooks. p. 116.

J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post. Software de-
velopment environments for scientific and engineering software: A series
of case studies. In 29th International Conference on Software Engineer-
ing (ICSE), pages 550-559. Minneapolis, MN: IEEE, 2007.

Engineering Committee on Science, National Academy of Engineering
Public Policy, National Academy of Science, and Institute of Medicine
of the National Academies. On Being a Scientist: A Guide to Responsible
Conduct in Research. Washington, DC: National Academies Press, 2009.

A. Couch, D. G. Tarboton, R. Idaszak, J. S. Horsburgh, H. Yi, and M.
J. Stealey. A Flexible File Sharing Mechanism for iRODS. In iRODS
User Group Meeting 2015 Proceedings, pages 61-68, 2015.

R. L. Glass. Frequently Forgotten Fundamental Facts about Software
Engineering. IEEE Software, page 110, 2001.

J. E. Hannay, C. MacLeod, and J. Singer. How do scientists develop and
use scientific software? In ICSE Workshop on Software Engineering for
Computational Science and Engineering, pages 1-8. Vancouver, Canada:
IEEE, 2009.

J. Heard, D. G. Tarboton, R. Idaszak, J.S. Horsburgh, D. Ames, A. Be-
dig, A. M. Castronova, A. Couch, P. Dash, C. Frisby, T. Gan, J. Goodall,
S. Jackson, S. Livingston, D. Maidment, N. Martin, B. Miles, S. Mills,
J. Sadler, D. Valentine, and L. Zhao. An Architectural Overview of Hy-
droshare, A Next-Generation Hydrologic Information System. In 11th
International Conference on Hydroinformatics, HIC' 2014. CUNY Aca-
demic Works, 2014.

264

351

352

353

[354]

[355]

[356]

357]

[358]

359]

References

J. S. Horsburgh, M. M. Morsy, A. M. Castronova, J. L. Goodall, T. Gan,
H. Yi, M. J. Stealey, and D. G. Tarboton. Hydroshare: Sharing Di-
verse Environmental Data Types and Models as Social Objects with
Application to the Hydrology Domain. Journal of the American Water
Resources Association (JAWRA), pages 1-17, 2015.

J. Howison and J. D. Herbsleb. Scientific software production: Incen-
tives and collaboration. In Proceedings of the ACM 2011 Conference
on Computer Supported Cooperative Work, pages 513-522. Hangzhou,
China: ACM, 2011.

J. M. Sadler, D. P. Ames, and S. J. Livingston. Extending HydroShare
to enable hydrologic time series data as social media. Journal of Hy-
droinformatics, 18(2):198-209, 2015.

R. Sanders and D. Kelly. Dealing with risk in scientific software devel-
opment. In Software, pages 21-28. IEEE, 2008.

D. G. Tarboton, J. S. Horsburgh, D. Maidment, T. Whiteaker, 1. Za-
slavsky, M. Piasecki, J. L. Goodall, D. Valentine, and T. Whitenack. De-
velopment of a community hydrologic information system. In 18th World
IMACS Congress and MODSIMO09 International Congress on Modelling
and Simulation, pages 988-994. R. S. Anderssen, R. D. Braddock, and
L. T. Newham (Ed.), 18th Modelling and Simulation Society of Aus-
tralia and New Zealand and International Association for Mathematics
and Computers in Simulation, 2009.

B. Turhan, L. Layman, M. Diep, H. Erdogmus, and F. Shull. How
Effective Is Test-Driven Development? In Making Software: What Really
Works and Why We Believe It, pages 207-217. O’Reilly, 2010.

R. Van Noorden. Science publishing: The trouble with retractions. Na-
ture, 478:26-28, 2011.

L. Williams, M. Maximilien, and M. Vouk. Test-Driven Development as
a Defect-Reduction Practice. In Proceedings of the 14th International
Symposium on Software Reliability Engineering, page 34, 2003.

G. V. Wilson. Where’s the real bottleneck in scientific computing?
American Scientist, 94(1):5-6, 2006.

	Chapter 10
	References

