
i27
Ac
ad
em
y

 i27Academy ​ 9381062032

 ​

 Master Infrastructure as a Code with Terraform
 From Fundamentals to Advanced including Certification

Module 1 : Introduction to Infrastructure as Code (IaC) and Terraform
○​ Challenges with Traditional IT Infrastructure

○​ Types of IaC: Declarative vs. Imperative

○​ Why and What is Terraform?

○​ Overview of Terraform and its advantages over traditional methods

○​ Key use cases in GCP

Module 2: Getting Started with Terraform, gcloud, and IDE Setup
○​ Installing Terraform on Windows, macOS, and Linux

○​ Installing Google Cloud SDK (gcloud CLI)

○​ Authenticating gcloud to GCP:

i.​ Using Principal Account Authentication

ii.​ Using Service Account Authentication

iii.​ Application-Based Authentication

○​ Setting up IDEs for Terraform:

i.​ Visual Studio Code with Terraform plugins

ii.​ JetBrains IntelliJ with Terraform support

Module 3 : Terraform Architecture

○​ Understanding Terraform Workflow: Initialization, Planning, Applying, Destroying

○​ Terraform Core Commands: terraform init, terraform plan, terraform
apply, terraform destroy

○​ Terraform Configuration Syntax: Overview of how configurations are structured in .tf files

○​ Terraform Settings Block: Specifying provider versions, Terraform version, etc.

○​ Terraform Provider Block: Defining and configuring the Google Cloud provider

○​ Dependency Lock File: Understanding the .terraform.lock.hcl file and version locking

i27
Ac
ad
em
y

 i27Academy ​ 9381062032

○​ Terraform Resource Block: Defining resources such as GCP VM instances, networks

○​ Terraform Data Block: Using data sources to reference external resources

○​ Handling Multiple Providers: Managing and configuring multiple cloud providers in the same

Terraform configuration

○​ Terraform State File

Module 4 : Terraform Providers and the Provider Registry
○​ What are Terraform Providers?

○​ Understanding the Terraform Provider Registry: Exploring available providers for GCP and

other platforms

○​ Installing and Versioning Terraform Providers: Managing provider versions and ensuring

compatibility

○​ Explain Multi-Cloud and Provider-Agnostic Benefits: Advantages of using Terraform across

multiple cloud platforms

○​ Writing Terraform Configuration Using Multiple Providers: Examples of using multiple

providers within a single configuration

○​ Describe How Terraform Finds and Fetches Providers: How Terraform discovers and

downloads providers from the registry

Module 5 : Terraform Settings Block
○​ Defining the Terraform Settings Block: The purpose and components of the terraform block

○​ Specifying Required Terraform Version: Ensuring compatibility by specifying the minimum

required Terraform version

○​ Defining Required Providers: Specifying which providers are required for the configuration

○​ Adding Version Constraints: Setting constraints on provider versions to ensure compatibility

and avoid breaking changes

○​ Configuring Backend Settings: Setting up remote state backends such as GCS or S3

Module 6 : Terraform Resource Block​ ​ ​ ​ ​

○​ What is the Terraform Resource Block?: Understanding the structure and purpose of

resource blocks

○​ Terraform Resource Block Syntax: Proper syntax and structure for defining resources

○​ Creating Resources: How to define and create resources like VM instances, networks, and

more in GCP

○​ Understanding Resource Arguments and Attributes: Accessing and using resource arguments

(e.g., machine types) and attributes (e.g., IP addresses)

○​ Resource Behavior:

i.​ Create resources

ii.​ Destroy resources

iii.​ Update in-place resources

iv.​ Destroy and re-create resources

i27
Ac
ad
em
y

 i27Academy ​ 9381062032

Module 7 : Terraform Data Sources​

○​ What are Data Sources in Terraform?: Understanding the purpose of data sources

○​ Using Data Sources to Fetch Existing Infrastructure: Querying existing resources in GCP

○​ Data Source Syntax: Proper structure and usage of data sources in Terraform

○​ Common Data Sources in GCP: Examples like google_compute_image, google_project

○​ Combining Data Sources and Resources: Using data sources to provide input for resource

creation

Module 8: Terraform Meta Arguments

○​ What are Meta Arguments?

○​ Using count for Creating Multiple Instances: Dynamically creating multiple instances of a

resource

○​ Using for_each for Iterating Over Complex Collections: Handling multiple items with more

control over the resource creation process

○​ Using depends_on to Manage Resource Dependencies: Explicitly defining dependencies

between resources

○​ Using lifecycle to Control Resource Lifecycle: Managing creation, update, and deletion

behavior for resources

○​ Using provider to Override the Default Provider: Assigning a specific provider to a resource

block

Module 9: Terraform Input Variables

○​ Using What are Input Variables?: Understanding how to use input variables for dynamic

configuration

○​ Defining Input Variables: Syntax and structure of variable blocks

○​ Variable Types: Understanding string, number, list, map, and complex object types

○​ Providing Input Values: Multiple ways to supply values, including:

○​ Using default values

i.​ Interactive input prompts during execution

ii.​ Via CLI using -var or -var-file flags

iii.​ Environment variables using TF_VAR_name

iv.​ Using var-file for structured input

v.​ Using a terraform.tfvars file

vi.​ Auto vars in automatically loaded .auto.tfvars files

vii.​ Sensitive variables to protect confidential input

○​ Using Default Values: Setting default values for variables

○​ Validating Variables: Implementing validation rules for input variables

○​ Variable Precedence: Understanding the order of precedence for input variables

Module 10: Terraform Output Values

○​ What are Output Values?: Understanding how to use outputs to display important

information

○​ Defining Output Values: Syntax and structure for defining outputs in a configuration

i27
Ac
ad
em
y

 i27Academy ​ 9381062032

○​ Accessing Resource Attributes: Using output values to display attributes from created

resources (e.g., IP addresses, VM names)

○​ Using Output Values Across Modules: Passing values between modules for modular and

reusable infrastructure

○​ Sensitive Outputs: Marking outputs as sensitive to hide confidential information

○​ Real-Time Implementations for Outputs

Module 11: Terraform Local Values

○​ What are Local Values?: Understanding the role of local values in Terraform

○​ Defining Local Values: Syntax and structure for creating local values

○​ Using Local Values for Reusability: Reducing repetition and improving maintainability in

configurations

○​ Local Values vs. Input Variables vs. Output Values: Understanding the difference between

these three types of values

○​ Real-Time Implementations for Local Values

Module 12: Terraform State

○​ What is Terraform State?: Understanding how Terraform tracks infrastructure

○​ Managing Local vs. Remote State: The difference between storing state locally and in a

remote backend

○​ Setting up a GCS Backend for State Management: Using Google Cloud Storage (GCS) as a

remote backend for state files

○​ State Locking: Ensuring consistency with state locking

○​ State Commands: Common state commands (terraform state list, terraform state show, etc.)

○​ Implementing terraform import into state file

○​ Real-Time Implementations for Terraform State

Module 13: Terraform Workspaces

○​ What are Workspaces?: Understanding how Terraform uses workspaces to manage multiple

environments

○​ Creating and Using Workspaces: Managing environments (dev, staging, prod) with

workspaces

○​ Switching Between Workspaces: Commands for switching and managing workspaces

○​ Real-Time Implementations for Workspaces

Module 14: Terraform Provisioners

○​ What What are Provisioners?: Understanding the purpose of provisioners in Terraform

○​ Types of Provisioners:

i.​ Local Provisioners: Running local scripts or commands

ii.​ Remote Provisioners: Executing commands on remote resources.

iii.​ File Provisioners: Uploading files to remote machines

○​ Provisioner Connections: Establishing connections to remote instances

○​ Handling Resource Creation Failures with Provisioners: Understanding the on_failure

behavior

○​ When to Use Provisioners: Best practices and avoiding common pitfalls

i27
Ac
ad
em
y

 i27Academy ​ 9381062032
○​ Real-Time Implementations for Provisioners

Module 15: Terraform Functions

○​ What are Functions in Terraform?: Overview of how functions are used in Terraform

○​ Below are the few functions we see use cases for.

○​ String Functions: join(), split(), format()

○​ Numeric Functions: min(), max()

○​ Collection Functions: length(), concat()

○​ Filesystem Functions: file(), filebase64()

○​ Date and Time Functions: timestamp()

○​ Real-Time Implementations for Functions

Module 16: Terraform Modules

○​ What are Terraform Modules?: Understanding how modules help with code reusability

○​ Creating and Using Modules: Structuring Terraform code using modules

○​ Module Sources: Using local, Git, and Terraform Registry modules

○​ Passing Variables Between Modules: Sharing input variables across modules

○​ Real-Time Implementations for Modules

Module 17: Integrating with CI Server

Module 18: Certification Preparation

 ​ ​ ​ ​ ​

