
i27
Ac
ad
em
y

              i27Academy                                                                                           9381062032  
 

                                                                 
 
 

                                                  

            Master Infrastructure as a Code with Terraform 
                              From Fundamentals to Advanced including Certification 

 
 
 

Module 1 :   Introduction to Infrastructure as Code (IaC) and Terraform 
○ Challenges with Traditional IT Infrastructure 

○ Types of IaC: Declarative vs. Imperative 

○ Why and What is Terraform? 

○ Overview of Terraform and its advantages over traditional methods 

○ Key use cases in GCP 

Module 2:  Getting Started with Terraform, gcloud, and IDE Setup 
○ Installing Terraform on Windows, macOS, and Linux 

○ Installing Google Cloud SDK (gcloud CLI) 

○ Authenticating gcloud to GCP: 

i. Using Principal Account Authentication 

ii. Using Service Account Authentication 

iii. Application-Based Authentication 

○ Setting up IDEs for Terraform: 

i. Visual Studio Code with Terraform plugins 

ii. JetBrains IntelliJ with Terraform support 

Module 3 :  Terraform Architecture 

○ Understanding Terraform Workflow: Initialization, Planning, Applying, Destroying 

○ Terraform Core Commands: terraform init, terraform plan, terraform 
apply, terraform destroy 

○ Terraform Configuration Syntax: Overview of how configurations are structured in .tf files 

○ Terraform Settings Block: Specifying provider versions, Terraform version, etc. 

○ Terraform Provider Block: Defining and configuring the Google Cloud provider 

○ Dependency Lock File: Understanding the .terraform.lock.hcl file and version locking 



i27
Ac
ad
em
y

              i27Academy                                                                                           9381062032  
 

○ Terraform Resource Block: Defining resources such as GCP VM instances, networks 

○ Terraform Data Block: Using data sources to reference external resources 

○ Handling Multiple Providers: Managing and configuring multiple cloud providers in the same 

Terraform configuration 

○ Terraform State File 
 

Module 4 :  Terraform Providers and the Provider Registry 
○ What are Terraform Providers? 

○ Understanding the Terraform Provider Registry: Exploring available providers for GCP and 

other platforms 

○ Installing and Versioning Terraform Providers: Managing provider versions and ensuring 

compatibility 

○ Explain Multi-Cloud and Provider-Agnostic Benefits: Advantages of using Terraform across 

multiple cloud platforms 

○ Writing Terraform Configuration Using Multiple Providers: Examples of using multiple 

providers within a single configuration 

○ Describe How Terraform Finds and Fetches Providers: How Terraform discovers and 

downloads providers from the registry                                                   

Module 5 :  Terraform Settings Block 
○ Defining the Terraform Settings Block: The purpose and components of the terraform block 

○ Specifying Required Terraform Version: Ensuring compatibility by specifying the minimum 

required Terraform version 

○ Defining Required Providers: Specifying which providers are required for the configuration 

○ Adding Version Constraints: Setting constraints on provider versions to ensure compatibility 

and avoid breaking changes 

○ Configuring Backend Settings: Setting up remote state backends such as GCS or S3 

Module 6 :  Terraform Resource Block      

○ What is the Terraform Resource Block?: Understanding the structure and purpose of 

resource blocks 

○ Terraform Resource Block Syntax: Proper syntax and structure for defining resources 

○ Creating Resources: How to define and create resources like VM instances, networks, and 

more in GCP 

○ Understanding Resource Arguments and Attributes: Accessing and using resource arguments 

(e.g., machine types) and attributes (e.g., IP addresses) 

○ Resource Behavior: 

i. Create resources 

ii. Destroy resources 

iii. Update in-place resources 

iv. Destroy and re-create resources 

 

 

 

 



i27
Ac
ad
em
y

              i27Academy                                                                                           9381062032  
 

Module 7 :  Terraform Data Sources  

○ What are Data Sources in Terraform?: Understanding the purpose of data sources 

○ Using Data Sources to Fetch Existing Infrastructure: Querying existing resources in GCP 

○ Data Source Syntax: Proper structure and usage of data sources in Terraform 

○ Common Data Sources in GCP: Examples like google_compute_image, google_project 

○ Combining Data Sources and Resources: Using data sources to provide input for resource 

creation 

Module 8:  Terraform Meta Arguments 

○ What are Meta Arguments? 

○ Using count for Creating Multiple Instances: Dynamically creating multiple instances of a 

resource 

○ Using for_each for Iterating Over Complex Collections: Handling multiple items with more 

control over the resource creation process 

○ Using depends_on to Manage Resource Dependencies: Explicitly defining dependencies 

between resources 

○ Using lifecycle to Control Resource Lifecycle: Managing creation, update, and deletion 

behavior for resources 

○ Using provider to Override the Default Provider: Assigning a specific provider to a resource 

block 

Module 9:  Terraform Input Variables 

○ Using What are Input Variables?: Understanding how to use input variables for dynamic 

configuration 

○ Defining Input Variables: Syntax and structure of variable blocks 

○ Variable Types: Understanding string, number, list, map, and complex object types 

○ Providing Input Values: Multiple ways to supply values, including: 

○ Using default values 

i. Interactive input prompts during execution 

ii. Via CLI using -var or -var-file flags 

iii. Environment variables using TF_VAR_name 

iv. Using var-file for structured input 

v. Using a terraform.tfvars file 

vi. Auto vars in automatically loaded .auto.tfvars files 

vii. Sensitive variables to protect confidential input 

○ Using Default Values: Setting default values for variables 

○ Validating Variables: Implementing validation rules for input variables 

○ Variable Precedence: Understanding the order of precedence for input variables 

Module 10:  Terraform Output Values 

○ What are Output Values?: Understanding how to use outputs to display important 

information 

○ Defining Output Values: Syntax and structure for defining outputs in a configuration 

 



i27
Ac
ad
em
y

              i27Academy                                                                                           9381062032  
 

○ Accessing Resource Attributes: Using output values to display attributes from created 

resources (e.g., IP addresses, VM names) 

○ Using Output Values Across Modules: Passing values between modules for modular and 

reusable infrastructure 

○ Sensitive Outputs: Marking outputs as sensitive to hide confidential information 

○ Real-Time Implementations for Outputs 

Module 11:  Terraform Local Values 

○ What are Local Values?: Understanding the role of local values in Terraform 

○ Defining Local Values: Syntax and structure for creating local values 

○ Using Local Values for Reusability: Reducing repetition and improving maintainability in 

configurations 

○ Local Values vs. Input Variables vs. Output Values: Understanding the difference between 

these three types of values 

○ Real-Time Implementations for Local Values 

Module 12:  Terraform State 

○ What is Terraform State?: Understanding how Terraform tracks infrastructure 

○ Managing Local vs. Remote State: The difference between storing state locally and in a 

remote backend 

○ Setting up a GCS Backend for State Management: Using Google Cloud Storage (GCS) as a 

remote backend for state files 

○ State Locking: Ensuring consistency with state locking 

○ State Commands: Common state commands (terraform state list, terraform state show, etc.) 

○ Implementing terraform import into state file 

○ Real-Time Implementations for Terraform State 

Module 13:  Terraform Workspaces 

○ What are Workspaces?: Understanding how Terraform uses workspaces to manage multiple 

environments 

○ Creating and Using Workspaces: Managing environments (dev, staging, prod) with 

workspaces 

○ Switching Between Workspaces: Commands for switching and managing workspaces 

○ Real-Time Implementations for Workspaces 

Module 14:  Terraform Provisioners 

○ What What are Provisioners?: Understanding the purpose of provisioners in Terraform 

○ Types of Provisioners: 

i. Local Provisioners: Running local scripts or commands 

ii. Remote Provisioners: Executing commands on remote resources. 

iii. File Provisioners: Uploading files to remote machines 

○ Provisioner Connections: Establishing connections to remote instances 

○ Handling Resource Creation Failures with Provisioners: Understanding the on_failure 

behavior 

○ When to Use Provisioners: Best practices and avoiding common pitfalls 



i27
Ac
ad
em
y

              i27Academy                                                                                           9381062032  
○ Real-Time Implementations for Provisioners 

 

Module 15:  Terraform Functions 

○ What are Functions in Terraform?: Overview of how functions are used in Terraform 

○ Below are the few functions we see use cases for. 

○ String Functions: join(), split(), format() 

○ Numeric Functions: min(), max() 

○ Collection Functions: length(), concat() 

○ Filesystem Functions: file(), filebase64() 

○ Date and Time Functions: timestamp() 

○ Real-Time Implementations for Functions 

Module 16:  Terraform Modules 

○ What are Terraform Modules?: Understanding how modules help with code reusability 

○ Creating and Using Modules: Structuring Terraform code using modules 

○ Module Sources: Using local, Git, and Terraform Registry modules 

○ Passing Variables Between Modules: Sharing input variables across modules 

○ Real-Time Implementations for Modules 

Module 17:  Integrating with CI Server 

Module 18:  Certification Preparation  

                             
 


