${ \cal H } ^ { T } = \frac { 4 G _ { F } } { \sqrt { 2 } } V _ { u b } V _ { u q } ^ { * } \sum _ { i = 1 } ^ { 2 } c _ { i } ( \mu ) O _ { i } ^ { ( u ) } , \qquad { \cal H } ^ { P } = - \frac { 4 G _ { F } } { \sqrt { 2 } } V _ { t b } V _ { t q } ^ { * } \sum _ { i = 3 } ^ { 6 } c _ { i } ( \mu ) O _ { i } , $
138
$\mathbf{\hat{y}}$
${ \cal H } ^ { T } = \frac { 4 G _ { F } } { \sqrt { 2 } } V _ { u b } V _ { u q } ^ { * } \sum _ { i = 1 } ^ { 2 } c _ { i } ( \mu ) O _ { i } ^ { ( u ) } , \qquad { \cal H } ^ { P } = - \frac { 4 G _ { F } } { \sqrt { 2 } } V _ { t b } V _ { l q } ^ { * } \sum _ { i = 3 } ^ { 6 } c _ { i } ( \mu ) O _ { i } , $
138
$\mathbf{y}$_seq
{ \cal H } ^ { T } = \frac { 4 G _ { F } } { \sqrt { 2 } } V _ { u b } V _ { u q } ^ { * } \sum _ { i = 1 } ^ { 2 } c _ { i } ( \mu ) O _ { i } ^ { ( u ) } , \qquad { \cal H } ^ { P } = - \frac { 4 G _ { F } } { \sqrt { 2 } } V _ { t b } V _ { t q } ^ { * } \sum _ { i = 3 } ^ { 6 } c _ { i } ( \mu ) O _ { i } ,
138
$\mathbf{\hat{y}}$_seq
{ \cal H } ^ { T } = \frac { 4 G _ { F } } { \sqrt { 2 } } V _ { u b } V _ { u q } ^ { * } \sum _ { i = 1 } ^ { 2 } c _ { i } ( \mu ) O _ { i } ^ { ( u ) } , \qquad { \cal H } ^ { P } = - \frac { 4 G _ { F } } { \sqrt { 2 } } V _ { t b } V _ { l q } ^ { * } \sum _ { i = 3 } ^ { 6 } c _ { i } ( \mu ) O _ { i } ,