
ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem A

Digits Are Not Just Characters
Time Limit: 2 seconds

Mr. Manuel Majorana Minore made a number of files with numbers in their names. He wants
to have a list of the files, but the file listing command commonly used lists them in an order
different from what he prefers, interpreting digit sequences in them as ASCII code sequences,
not as numbers. For example, the files file10, file20 and file3 are listed in this order.

Write a program which decides the orders of file names interpreting digit sequences as numeric
values.

Each file name consists of uppercase letters (from ‘A’ to ‘Z’), lowercase letters (from ‘a’ to ‘z’),
and digits (from ‘0’ to ‘9’).

A file name is looked upon as a sequence of items, each being either a letter or a number. Each
single uppercase or lowercase letter forms a letter item. Each consecutive sequence of digits
forms a number item.

Two item are ordered as follows.

• Number items come before letter items.

• Two letter items are ordered by their ASCII codes.

• Two number items are ordered by their values when interpreted as decimal numbers.

Two file names are compared item by item, starting from the top, and the order of the first
different corresponding items decides the order of the file names. If one of them, say A, has
more items than the other, B, and all the items of B are the same as the corresponding items
of A, B should come before.

For example, three file names in Sample Input 1, file10, file20, and file3 all start with the
same sequence of four letter items f, i, l, and e, followed by a number item, 10, 20, and 3,
respectively. Comparing numeric values of these number items, they are ordered as file3 <
file10 < file20.

1

Input

The input consists of a single test case of the following format.

n
s0
s1
...
sn

The integer n in the first line gives the number of file names (s1 through sn) to be compared
with the file name given in the next line (s0). Here, n satisfies 1 ≤ n ≤ 1000.

The following n + 1 lines are file names, s0 through sn, one in each line. They have at least
one and no more than nine characters. Each of the characters is either an uppercase letter, a
lowercase letter, or a digit.

Sequences of digits in the file names never start with a digit zero (0).

Output

For each of the file names, s1 through sn, output one line with a character indicating whether
it should come before s0 or not. The character should be “-” if it is to be listed before s0;
otherwise, it should be “+”, including cases where two names are identical.

Sample Input 1 Sample Output 1

2

file10

file20

file3

+

-

Sample Input 2 Sample Output 2

11

X52Y

X

X5

X52

X52Y

X52Y6

32

ABC

XYZ

x51y

X8Y

X222

-

-

-

+

+

-

-

+

+

-

+

2

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem B

Arithmetic Progressions
Time Limit: 5 seconds

An arithmetic progression is a sequence of numbers a1, a2, . . . , ak where the difference of consec-
utive members ai+1−ai is a constant (1 ≤ i ≤ k−1). For example, the sequence 5, 8, 11, 14, 17
is an arithmetic progression of length 5 with the common difference 3.

In this problem, you are requested to find the longest arithmetic progression which can be formed
selecting some numbers from a given set of numbers. For example, if the given set of numbers
is {0, 1, 3, 5, 6, 9}, you can form arithmetic progressions such as 0, 3, 6, 9 with the common
difference 3, or 9, 5, 1 with the common difference −4. In this case, the progressions 0, 3, 6, 9
and 9, 6, 3, 0 are the longest.

Input

The input consists of a single test case of the following format.

n
v1 v2 · · · vn

n is the number of elements of the set, which is an integer satisfying 2 ≤ n ≤ 5000. Each vi
(1 ≤ i ≤ n) is an element of the set, which is an integer satisfying 0 ≤ vi ≤ 109. vi’s are all
different, i.e., vi 6= vj if i 6= j.

Output

Output the length of the longest arithmetic progressions which can be formed selecting some
numbers from the given set of numbers.

Sample Input 1 Sample Output 1

6

0 1 3 5 6 9

4

Sample Input 2 Sample Output 2

7

1 4 7 3 2 6 5

7

Sample Input 3 Sample Output 3

5

1 2 4 8 16

2

3

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem C

Emergency Evacuation
Time Limit: 3 seconds

The Japanese government plans to increase the number of inbound tourists to forty million in
the year 2020, and sixty million in 2030. Not only increasing touristic appeal but also developing
tourism infrastructure further is indispensable to accomplish such numbers.

One possible enhancement on transport is providing cars extremely long and/or wide, carrying
many passengers at a time. Too large a car, however, may require too long to evacuate all
passengers in an emergency. You are requested to help estimating the time required.

The car is assumed to have the following seat arrangement.

• A center aisle goes straight through the car, directly connecting to the emergency exit
door at the rear center of the car.

• The rows of the same number of passenger seats are on both sides of the aisle.

A rough estimation requested is based on a simple step-wise model. All passengers are initially
on a distinct seat, and they can make one of the following moves in each step.

• Passengers on a seat can move to an adjacent seat toward the aisle. Passengers on a seat
adjacent to the aisle can move sideways directly to the aisle.

• Passengers on the aisle can move backward by one row of seats. If the passenger is in front
of the emergency exit, that is, by the rear-most seat rows, he/she can get off the car.

The seat or the aisle position to move to must be empty; either no other passenger is there
before the step, or the passenger there empties the seat by moving to another position in the
same step. When two or more passengers satisfy the condition for the same position, only one
of them can move, keeping the others wait in their original positions.

The leftmost figure of Figure C.1 depicts the seat arrangement of a small car given in Sample
Input 1. The car have five rows of seats, two seats each on both sides of the aisle, totaling
twenty. The initial positions of seven passengers on board are also shown.

The two other figures of Figure C.1 show possible positions of passengers after the first and the
second steps. Passenger movements are indicated by fat arrows. Note that, two of the passengers
in the front seat had to wait for a vacancy in the first step, and one in the second row had to
wait in the next step.

Your task is to write a program that gives the smallest possible number of steps for all the
passengers to get off the car, given the seat arrangement and passengers’ initial positions.

4

Initial After Step 1 After Step 2

Figure C.1. Simple Model

Input

The input consists of a single test case of the following format.

r s p
i1 j1
...
ip jp

Here, r is the number of passenger seat rows, s is the number of seats on each side of the aisle,
and p is the number of passengers. They are integers satisfying 1 ≤ r ≤ 500, 1 ≤ s ≤ 500, and
1 ≤ p ≤ 2rs.

The following p lines give initial seat positions of the passengers. The k-th line with ik and jk
means that the k-th passenger’s seat is in the ik-th seat row and it is the jk-th seat on that row.
Here, rows and seats are counted from front to rear and left to right, both starting from one.
They satisfy 1 ≤ ik ≤ r and 1 ≤ jk ≤ 2s. Passengers are on distinct seats, that is, ik 6= il or
jk 6= jl holds if k 6= l.

Output

The output should be one line containing a single integer, the minimum number of steps required
for all the passengers to get off the car.

5

Sample Input 1 Sample Output 1

5 2 7

1 1

1 2

1 3

2 3

2 4

4 4

5 2

9

Sample Input 2 Sample Output 2

500 500 16

1 1

1 2

1 999

1 1000

2 1

2 2

2 999

2 1000

3 1

3 2

3 999

3 1000

499 500

499 501

499 999

499 1000

1008

6

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem D

Shortest Common Non-Subsequence
Time Limit: 5 seconds

A subsequence of a sequence P is a sequence that can be derived from the original sequence P by
picking up some or no elements of P preserving the order. For example, “ICPC” is a subsequence
of “MICROPROCESSOR”.

A common subsequence of two sequences is a subsequence of both sequences. The famous
longest common subsequence problem is finding the longest of common subsequences of two
given sequences.

In this problem, conversely, we consider the shortest common non-subsequence problem: Given
two sequences consisting of 0 and 1, your task is to find the shortest sequence also consisting of
0 and 1 that is a subsequence of neither of the two sequences.

Input

The input consists of a single test case with two lines. Both lines are sequences consisting only
of 0 and 1. Their lengths are between 1 and 4000, inclusive.

Output

Output in one line the shortest common non-subsequence of two given sequences. If there are
two or more such sequences, you should output the lexicographically smallest one. Here, a
sequence P is lexicographically smaller than another sequence Q of the same length if there
exists k such that P1 = Q1, . . . , Pk−1 = Qk−1, and Pk < Qk, where Si is the i-th character of a
sequence S.

Sample Input 1 Sample Output 1

0101

1100001

0010

Sample Input 2 Sample Output 2

101010101

010101010

000000

Sample Input 3 Sample Output 3

11111111

00000000

01

7

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem E

Eulerian Flight Tour
Time Limit: 3 seconds

You have an airline route map of a certain region. All the airports in the region and all the
non-stop routes between them are on the map. Here, a non-stop route is a flight route that
provides non-stop flights in both ways.

Named after the great mathematician Leonhard Euler, an Eulerian tour is an itinerary visiting
all the airports in the region taking a single flight of every non-stop route available in the region.
To be precise, it is a list of airports, satisfying all of the following.

• The list begins and ends with the same airport.

• There are non-stop routes between pairs of airports adjacent in the list.

• All the airports in the region appear at least once in the list. Note that it is allowed to
have some airports appearing multiple times.

• For all the airport pairs with non-stop routes in between, there should be one and only
one adjacent appearance of two airports of the pair in the list in either order.

It may not always be possible to find an Eulerian tour only with the non-stop routes listed in
the map. Adding more routes, however, may enable Eulerian tours. Your task is to find a set
of additional routes that enables Eulerian tours.

Input

The input consists of a single test case.

n m
a1 b1
...
am bm

n (3 ≤ n ≤ 100) is the number of airports. The airports are numbered from 1 to n. m

(0 ≤ m ≤ n(n−1)
2) is the number of pairs of airports that have non-stop routes. Among the m

lines following it, integers ai and bi on the i-th line of them (1 ≤ i ≤ m) are airport numbers
between which a non-stop route is operated. You can assume 1 ≤ ai < bi ≤ n, and for any i 6= j,
either ai 6= aj or bi 6= bj holds.

8

Output

Output a set of additional non-stop routes that enables Eulerian tours. If two or more different
sets will do, any one of them is acceptable. The output should be in the following format.

k
c1 d1
...
ck dk

k is the number of non-stop routes to add, possibly zero. Each of the following k lines should
have a pair of integers, separated by a space. Integers ci and di in the i-th line (ci < di) are
airport numbers specifying that a non-stop route is to be added between them. These pairs,
(ci, di) for 1 ≤ i ≤ k, should be distinct and should not appear in the input.

If adding new non-stop routes can never enable Eulerian tours, output -1 in a line.

Sample Input 1 Sample Output 1

4 2

1 2

3 4

2

1 4

2 3

Sample Input 2 Sample Output 2

6 9

1 4

1 5

1 6

2 4

2 5

2 6

3 4

3 5

3 6

-1

Sample Input 3 Sample Output 3

6 7

1 2

1 3

1 4

2 3

4 5

4 6

5 6

3

1 5

2 4

2 5

9

Sample Input 4 Sample Output 4

4 3

2 3

2 4

3 4

-1

Sample Input 5 Sample Output 5

5 5

1 3

1 4

2 4

2 5

3 5

0

10

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem F

Fair Chocolate-Cutting
Time Limit: 2 seconds

You are given a flat piece of chocolate of convex polygon shape. You are to cut it into two pieces
of precisely the same amount with a straight knife.

Write a program that computes, for a given convex polygon, the maximum and minimum lengths
of the line segments that divide the polygon into two equal areas.

The figures below correspond to first two sample inputs. Two dashed lines in each of them
correspond to the equal-area cuts of minimum and maximum lengths.

Figure F.1. Sample Chocolate Pieces and Cut Lines

Input

The input consists of a single test case of the following format.

n
x1 y1
...
xn yn

The first line has an integer n, which is the number of vertices of the given polygon. Here, n is
between 3 and 5000, inclusive. Each of the following n lines has two integers xi and yi, which
give the coordinates (xi, yi) of the i-th vertex of the polygon, in counterclockwise order. Both
xi and yi are between 0 and 100 000, inclusive.

The polygon is guaranteed to be simple and convex. In other words, no two edges of the polygon
intersect each other and interior angles at all of its vertices are less than 180◦.

11

Output

Two lines should be output. The first line should have the minimum length of a straight line
segment that partitions the polygon into two parts of the equal area. The second line should
have the maximum length of such a line segment. The answer will be considered as correct if
the values output have an absolute or relative error less than 10−6.

Sample Input 1 Sample Output 1

4

0 0

10 0

10 10

0 10

10

14.142135623730950488

Sample Input 2 Sample Output 2

3

0 0

6 0

3 10

4.2426406871192851464

10.0

Sample Input 3 Sample Output 3

5

0 0

99999 20000

100000 70000

33344 63344

1 50000

54475.580091580027976

120182.57592539864775

Sample Input 4 Sample Output 4

6

100 350

101 349

6400 3440

6400 3441

1200 7250

1199 7249

4559.2050019027964982

6216.7174287968524227

12

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem G

What Goes Up Must Come Down
Time Limit: 2 seconds

Several cards with numbers printed on them are lined up on the table.

We’d like to change their order so that first some are in non-decreasing order of the numbers on
them, and the rest are in non-increasing order. For example, (1, 2, 3, 2, 1), (1, 1, 3, 4, 5, 9, 2),
and (5, 3, 1) are acceptable orders, but (8, 7, 9) and (5, 3, 5, 3) are not.

To put it formally, with n the number of cards and bi the number printed on the card at
the i-th position (1 ≤ i ≤ n) after reordering, there should exist k ∈ {1, . . . , n} such that
(bi ≤ bi+1 ∀i ∈ {1, . . . , k − 1}) and (bi ≥ bi+1 ∀i ∈ {k, . . . , n− 1}) hold.

For reordering, the only operation allowed at a time is to swap the positions of an adjacent card
pair. We want to know the minimum number of swaps required to complete the reorder.

Input

The input consists of a single test case of the following format.

n
a1 . . . an

An integer n in the first line is the number of cards (1 ≤ n ≤ 100 000). Integers a1 through an
in the second line are the numbers printed on the cards, in the order of their original positions
(1 ≤ ai ≤ 100 000).

Output

Output in a line the minimum number of swaps required to reorder the cards as specified.

Sample Input 1 Sample Output 1

7

3 1 4 1 5 9 2

3

Sample Input 2 Sample Output 2

9

10 4 6 3 15 9 1 1 12

8

13

Sample Input 3 Sample Output 3

8

9 9 8 8 7 7 6 6

0

Sample Input 4 Sample Output 4

6

8 7 2 5 4 6

4

14

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem H

Four-Coloring
Time Limit: 2 seconds

You are given a planar embedding of a connected graph. Each vertex of the graph corresponds
to a distinct point with integer coordinates. Each edge between two vertices corresponds to
a straight line segment connecting the two points corresponding to the vertices. As the given
embedding is planar, the line segments corresponding to edges do not share any points other than
their common endpoints. The given embedding is organized so that inclinations of all the line
segments are multiples of 45 degrees. In other words, for two points with coordinates (xu, yu)
and (xv, yv) corresponding to vertices u and v with an edge between them, one of xu = xv,
yu = yv, or |xu − xv| = |yu − yv| holds.

21

3 4

5

21

5

43

6

Figure H.1. Sample Input 1 and 2

Your task is to color each vertex in one of the four colors, {1, 2, 3, 4}, so that no two vertices
connected by an edge are of the same color. According to the famous four color theorem, such
a coloring is always possible. Please find one.

Input

The input consists of a single test case of the following format.

n m
x1 y1
...
xn yn
u1 v1
...
um vm

The first line contains two integers, n and m. n is the number of vertices and m is the number
of edges satisfying 3 ≤ n ≤ m ≤ 10 000. The vertices are numbered 1 through n. Each of
the next n lines contains two integers. Integers on the v-th line, xv (0 ≤ xv ≤ 1000) and yv

15

(0 ≤ yv ≤ 1000), denote the coordinates of the point corresponding to the vertex v. Vertices
correspond to distinct points, i.e., (xu, yu) 6= (xv, yv) holds for u 6= v. Each of the next m lines
contains two integers. Integers on the i-th line, ui and vi, with 1 ≤ ui < vi ≤ n, mean that there
is an edge connecting two vertices ui and vi.

Output

The output should consist of n lines. The v-th line of the output should contain one integer
cv ∈ {1, 2, 3, 4} which means that the vertex v is to be colored cv. The output must satisfy
cu 6= cv for every edge connecting u and v in the graph. If there are multiple solutions, you may
output any one of them.

Sample Input 1 Sample Output 1

5 8

0 0

2 0

0 2

2 2

1 1

1 2

1 3

1 5

2 4

2 5

3 4

3 5

4 5

1

2

2

1

3

16

Sample Input 2 Sample Output 2

6 10

0 0

1 0

1 1

2 1

0 2

1 2

1 2

1 3

1 5

2 3

2 4

3 4

3 5

3 6

4 6

5 6

1

2

3

4

2

1

17

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem I

Ranks
Time Limit: 3 seconds

A finite field F2 consists of two elements: 0 and 1. Addition and multiplication on F2 are those
on integers modulo two, as defined below.

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

A set of vectors v1, . . . ,vk over F2 with the same dimension is said to be linearly independent
when, for c1, . . . , ck ∈ F2, c1v1 + · · · + ckvk = 0 is equivalent to c1 = · · · = ck = 0, where 0 is
the zero vector, the vector with all its elements being zero.

The rank of a matrix is the maximum cardinality of its linearly independent sets of column

vectors. For example, the rank of the matrix

[
0 0 1
1 0 1

]
is two; the column vectors

[
0
1

]
and[

1
1

]
(the first and the third columns) are linearly independent while the set of all three column

vectors is not linearly independent. Note that the rank is zero for the zero matrix.

Given the above definition of the rank of matrices, the following may be an intriguing question.
How does a modification of an entry in a matrix change the rank of the matrix? To investigate
this question, let us suppose that we are given a matrix A over F2. For any indices i and j, let
A(ij) be a matrix equivalent to A except that the (i, j) entry is flipped.

A
(ij)
kl =

{
Akl + 1 (k = i and l = j)

Akl (otherwise)

In this problem, we are interested in the rank of the matrix A(ij). Let us denote the rank of A by
r, and that of A(ij) by r(ij). Your task is to determine, for all (i, j) entries, the relation of ranks
before and after flipping the entry out of the following possibilities: (i) r(ij) < r, (ii) r(ij) = r,
or (iii) r(ij) > r.

Input

The input consists of a single test case of the following format.

n m
A11 . . . A1m
...
An1 . . . Anm

18

n and m are the numbers of rows and columns in the matrix A, respectively (1 ≤ n ≤ 1000,
1 ≤ m ≤ 1000). In the next n lines, the entries of A are listed without spaces in between. Aij

is the entry in the i-th row and j-th column, which is either 0 or 1.

Output

Output n lines, each consisting of m characters. The character in the i-th line at the j-th
position must be either - (minus), 0 (zero), or + (plus). They correspond to the possibilities (i),
(ii), and (iii) in the problem statement respectively.

Sample Input 1 Sample Output 1

2 3

001

101

-0-

-00

Sample Input 2 Sample Output 2

5 4

1111

1000

1000

1000

1000

0000

0+++

0+++

0+++

0+++

Sample Input 3 Sample Output 3

10 10

1000001001

0000010100

0000100010

0001000001

0010000010

0100000100

1000001000

0000010000

0000100000

0001000001

000-00000-

0-00000-00

00-00000-0

+00000+000

00-0000000

0-00000000

000-00000-

0-000-0-00

00-0-000-0

+00000+000

Sample Input 4 Sample Output 4

1 1

0

+

19

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem J

Colorful Tree
Time Limit: 5 seconds

A tree structure with some colors associated with its vertices and a sequence of commands on it
are given. A command is either an update operation or a query on the tree. Each of the update
operations changes the color of a specified vertex, without changing the tree structure. Each
of the queries asks the number of edges in the minimum connected subgraph of the tree that
contains all the vertices of the specified color.

Your task is to find answers of each of the queries, assuming that the commands are performed
in the given order.

Input

The input consists of a single test case of the following format.

n
a1 b1
...
an−1 bn−1

c1 . . . cn
m
command1
...
commandm

The first line contains an integer n (2 ≤ n ≤ 100 000), the number of vertices of the tree. The
vertices are numbered 1 through n. Each of the following n − 1 lines contains two integers ai
(1 ≤ ai ≤ n) and bi (1 ≤ bi ≤ n), meaning that the i-th edge connects vertices ai and bi. It
is ensured that all the vertices are connected, that is, the given graph is a tree. The next line
contains n integers, c1 through cn, where cj (1 ≤ cj ≤ 100 000) is the initial color of vertex
j. The next line contains an integer m (1 ≤ m ≤ 100 000), which indicates the number of
commands. Each of the following m lines contains a command in the following format.

U xk yk
or

Q yk

When the k-th command starts with U, it means an update operation changing the color of
vertex xk (1 ≤ xk ≤ n) to yk (1 ≤ yk ≤ 100 000). When the k-th command starts with Q, it

20

means a query asking the number of edges in the minimum connected subgraph of the tree that
contains all the vertices of color yk (1 ≤ yk ≤ 100 000).

Output

For each query, output the number of edges in the minimum connected subgraph of the tree
containing all the vertices of the specified color. If the tree doesn’t contain any vertex of the
specified color, output -1 instead.

Sample Input 1 Sample Output 1

5

1 2

2 3

3 4

2 5

1 2 1 2 3

11

Q 1

Q 2

Q 3

Q 4

U 5 1

Q 1

U 3 2

Q 1

Q 2

U 5 4

Q 1

2

2

0

-1

3

2

2

0

21

ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2018–12–09

Problem K

Sixth Sense
Time Limit: 5 seconds

Ms. Future is gifted with precognition. Naturally, she is excellent at some card games since she
can correctly foresee every player’s actions, except her own. Today, she accepted a challenge
from a reckless gambler Mr. Past. They agreed to play a simple two-player trick-taking card
game.

Cards for the game have a number printed on one side, leaving the other side blank making
indistinguishable from other cards.

A game starts with the same number, say n, of cards being handed out to both players, without
revealing the printed number to the opponent.

A game consists of n tricks. In each trick, both players pull one card out of her/his hand.
The player pulling out the card with the larger number takes this trick. Because Ms. Future is
extremely good at this game, they have agreed to give tricks to Mr. Past when both pull out
cards with the same number. Once a card is used, it can never be used later in the same game.
The game continues until all the cards in the hands are used up. The objective of the game is
to take as many tricks as possible.

Your mission of this problem is to help Ms. Future by providing a computer program to determine
the best playing order of the cards in her hand. Since she has the sixth sense, your program can
utilize information that is not available to ordinary people before the game.

Input

The input consists of a single test case of the following format.

n
p1 · · · pn
f1 · · · fn

n in the first line is the number of tricks, which is an integer between 2 and 5000, inclusive. The
second line represents the Mr. Past’s playing order of the cards in his hand. In the i-th trick, he
will pull out a card with the number pi (1 ≤ i ≤ n). The third line represents the Ms. Future’s
hand. fi (1 ≤ i ≤ n) is the number that she will see on the i-th received card from the dealer.
Every number in the second or third line is an integer between 1 and 10 000, inclusive. These
lines may have duplicate numbers.

22

Output

The output should be a single line containing n integers a1 · · · an separated by a space, where
ai (1 ≤ i ≤ n) is the number on the card she should play at the i-th trick for maximizing
the number of taken tricks. If there are two or more such sequences of numbers, output the
lexicographically greatest one among them.

Sample Input 1 Sample Output 1

5

1 2 3 4 5

1 2 3 4 5

2 3 4 5 1

Sample Input 2 Sample Output 2

5

3 4 5 6 7

1 3 5 7 9

9 5 7 3 1

Sample Input 3 Sample Output 3

5

3 2 2 1 1

1 1 2 2 3

1 3 1 2 2

Sample Input 4 Sample Output 4

5

3 4 10 4 9

2 7 3 6 9

9 7 3 6 2

23

