

Double pulse testing

Philip Abrahamsson

IMZ120R140M1H CoolSiC™ 1200V SiC Trench MOSFET						fined	
Electrical Ch	aracteristics						
3.3	Switching	characte	eristics				
Table 6	Switching cl	naracteristi	ics, Inductive load ⁴				
Parameter		Symbol	Conditions	Value			Unit
				min.	typ.	max.	
MOSFET Cha	racteristics, 7	_{vi} = 25°C					
Turn-on delay time Rise time		taloni	V ₀₀ = 800V, I ₀ = 6A,		5		ns
		t,	$V_{GS} = 0/18V$, $R_{G,oot} = 2\Omega$, $L_{G} = 40$ nH, diode: body diode at $V_{GS} = 0$ V see Fig. E	-	2	-	
Turn-off delay time		t _{d(off)}		-	10.3	-	
Fall time		tı		-	11.6	-	
Turn-on energy		Ece		-	62	-	μЈ
Turn-off energy Total switching energy		Ectt		-	12		
		Etot		-	74	-	
Body Diode	Characteristic	s, T _{vj} = 25°C					
Diode revers charge	erse recovery Q _{ir}		V ₀₀ = 800V, I _{SD} = 6A, V ₀₅ at diode = 0V,		100	-	nC
Diode peak reverse I _{mm} recovery current		$di/dt = 1000A/\mu s$, Q_{rr} includes also Q_{c} , see Fig. C		2		А	

Power Transistor

- © Infineon
 Coolsic™ MOSFET 62mm
- It takes some time for the current and voltage to fall/rise
- Losses are generated during a switching event

Figure 6.2: Approximate switching waveforms for the switch S.

Measure switching characteristics

- Measure current and voltage during turn on and off events.
- Double pulse testing

IMZ120R140M1H

CoolSiC™ 1200V SiC Trench MOSFET

Electrical Characteristics

3.3 Switching characteristics

Table 6	Switching	characteristics	Inductive load 4
I able o	SWILCHINE	Ciiai actei istics	, illuuctive toau

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
MOSFET Characteristics,	<i>T</i> _{νj} = 25°C			·		·
Turn-on delay time	$t_{\sf d(on)}$	$V_{DD} = 800$ V, $I_D = 6$ A, $V_{GS} = 0/18$ V, $R_{G,ext} = 2\Omega$, $L_{\sigma} = 40$ nH, diode: body diode at $V_{GS} = 0$ V see Fig. E	-	5	-	ns
Rise time	t _r		-	2	-	
Turn-off delay time	$t_{ m d(off)}$		-	10.3	-	
Fall time	t _f		-	11.6	-	
Turn-on energy	Eon		-	62	-	μЈ
Turn-off energy	E _{off}		-	12	-	
Total switching energy	E _{tot}		-	74	-	
Body Diode Characteristi	cs, <i>T</i> _{vj} = 25°C					
Diode reverse recovery charge	Qrr	$V_{DD} = 800V, I_{SD} = 6A,$ V_{GS} at diode = 0V,	-	100	-	nC
Diode peak reverse recovery current	I _{rrm}	$di_f/dt = 1000A/\mu s$, Q_{rr} includes also Q_c , see Fig. C	-	2	-	А

Double pulse tester – The different parts

Double pulse tester – Parasitics

- Paracitics are present in any real circuit
- Non ideal switching events

PCB design

A good PCB design can reduce stray inductance

Figure 6: Parallel plate overlap

Figure 7: Coplanar plate overlap

Figure 8: Parallel plate inductance approximation

Figure 9: Coplanar plate inductance approximation

Results – PCB (Prototype 1 only 30V)

Results

Video from the lab

Results

• Ringing is also caused by capacitance in the circuit

Results - Measurements

Measurement equipment - Properties

- Bandwidth
- Delay
- Accuracy

Measurement equipment – Examples of probes

Measurement equipment – Examples of probes

What else can the double pulse tester be used for?

Investigate how switching events effect electric insulation

- Switching events cause high dV/dt
- High dV/dt can break down insulation in electric machines

Test of electric insulation

Programmable gate driver

Filter - Reduce dV/dt

Summary

- A double pulse tester can be used to characterize power transistors
- PCB design is important for proper switching performance
- High bandwidth is needed for the measurement equipment

Questions?