Fast Gaussian Filtering Algorithm Using Splines

Kentaro Imajo (M2, Kyoto University)

November 12, International Conference on Pattern Recognition 2012

Contents

- 1. Background and Goal
- 2. Approximation of Gaussian Function
- 3.1D Convolution
- 4.2D Convolution
- 5. Outline of Algorithm
- 6. Experiments
- 7. Conclusions

Chapter 1 of 7 Background and Goal

November 12, International Conference on Pattern Recognition 2012

Chapter 1. Background and Goal

Background

Many algorithms such as SIFT need to compute Gaussian filter.

Figure Image Blurred by 2D Gaussian Filter

November 12, International Conference on Pattern Recognition 2012 Chapter 1. Background and Goal

Gaussian Filter

Gaussian Filter is computed by convolutions with 2D Gaussian function.

November 12, International Conference on Pattern Recognition 2012

Goal

Propose an algorithm to compute one Gaussian-filtered pixel in constant time to area size $n (\propto \sigma^2)$.

Naïve method requires O(n) time.

November 12, International Conference on Pattern Recognition 2012 Chapter 1. Background and Goal

Preceding Methods

- Naïve method takes *O*(*n*) time.
- FFT method is fast for all pixels, but it cannot compute pixels apart.
- Down-sampling method has large errors.

November 12, International Conference on Pattern Recognition 2012 Chapter 1. Background and Goal

Chapter 2 of 7 Approximation of Gaussian Function

November 12, International Conference on Pattern Recognition 2012 Chapter 2. Approximation of Gaussian Function

Spline

Approximate Gaussian function with a spline, which is written as:

$$\tilde{\psi}(x) = \sum_{i} a_i (x - b_i)^n_+$$
where *a*, *b*, *n* are parameters
and (•)_+ is max(•, 0)

* Coordinates *b* are control points.

November 12, International Conference on Pattern Recognition 2012 Chapter 2. Approximation of Gaussian Function

Approximation

Chapter 2. Approximation of Gaussian Function

Evaluation

Approximation error is about 2%. (2D error is about 3%.) **Higher order improves more:** Approximation error of 4th order approximation is about 0.3%. $\tilde{\psi}(x) = 70(x+22)_{+}^{4} - 624(x+11)_{+}^{4} + 1331(x+4)_{+}^{4} - 1331(x-4)_{+}^{4} + 624(x-11)_{+}^{4} - 70(x-22)_{+}^{4}.$

November 12, International Conference on Pattern Recognition 2012 Chapter 2. Approximation of Gaussian Function

Chapter 3 of 7 **1D Convolution**

November 12, International Conference on Pattern Recognition 2012 Chapter 3. 1D Convolution

Convolution

Convolution of a signal and a spline.

Key Idea:

Splines get discrete by differentiation.

Chapter 3. 1D Convolution

Transformation

Transform convolution into summation.

$$\begin{split} (\tilde{\psi} * I)(x) &= \sum_{\Delta x \in \mathbb{Z}} \tilde{\psi}(\Delta x) I(x - \Delta x) \\ &= \sum_{\Delta x \in \mathbb{Z}} \left(\sum_{i=0}^{m} a_i (\Delta x - b_i)_+^n \right) I(x - \Delta x) \\ &= \sum_{i=0}^{m} a_i J(x - b_i), \ J(x) = \sum_{\Delta x \in \mathbb{Z}} \Delta x_+^n I(x - \Delta x) \\ \\ &\text{Several calculations} \quad \text{Pre-computed} \end{split}$$

Chapter 4 of 7 **2D Convolution**

November 12, International Conference on Pattern Recognition 2012

Chapter 4. 2D Convolution

2D Convolution

2D Gaussian func. can be decomposed:

$$\exp\left(-\frac{x^2+y^2}{2\sigma^2}\right) = \exp\left(-\frac{x^2}{2\sigma^2}\right)\exp\left(-\frac{y^2}{2\sigma^2}\right)$$

Approximation can be written as: $(\tilde{\psi} * I)(x, y) = \sum_{i=1}^{m} a_i \sum_{j=1}^{m} a_j J(x - b_i, y - b_i)$ where $J(x, y) = \sum_{(\Delta x, \Delta y) \in \mathbb{Z}^2_+} \Delta x^n \Delta y^n I(x - \Delta x, y - \Delta y)$

20 multiplications and 16 additions

November 12, International Conference on Pattern Recognition 2012 Chapter 4. 2D Convolution

Evaluation

Figure Elevation and control points

November 12, International Conference on Pattern Recognition 2012

Chapter 4. 2D Convolution

Chapter 5 of 7 Outline of Algorithm

November 12, International Conference on Pattern Recognition 2012

Chapter 5. Outline of Algorithm

Outline of Algorithm

- 1. Pre-compute *J* once an image in linear time to the area of the image. $J(x,y) = \sum_{(\Delta x,\Delta y) \in \mathbb{Z}^2_+} \Delta x^n \Delta y^n I(x - \Delta x, y - \Delta y)$
- 2. Compute a Gaussian filtered value in constant time (tens operations) for any combinations *a*, *b*.

$$(\tilde{\psi} * I)(x, y) = \sum_{i=1}^{m} a_i \sum_{j=1}^{m} a_j J(x - b_i, y - b_i)$$

November 12, International Conference on Pattern Recognition 2012 Chapter 5. Outline of Algorithm

Chapter 6 of 7 Experiments

November 12, International Conference on Pattern Recognition 2012

Experiments

Figure Computational time for one pixel on average

November 12, International Conference on Pattern Recognition 2012

Chapter 6. Experiments

Final Chapter **Conclusions**

November 12, International Conference on Pattern Recognition 2012

Conclusions

With pre-computing once an image, the proposed algorithm computes any size of the Gaussian filter

- in constant time to size,
- faster than naïve for 70+ pixels,
- within 3% error.

November 12, International Conference on Pattern Recognition 2012
Chapter 7. Conclusions