
@imos
http://imoz.jp/

/23

Fast Gaussian
Filtering Algorithm
Using Splines
Kentaro Imajo (M2, Kyoto University)

November 12, International Conference on Pattern Recognition 2012 1

/23

Contents
1. Background and Goal
2. Approximation of Gaussian Function
3. 1D Convolution
4. 2D Convolution
5. Outline of Algorithm
6. Experiments
7. Conclusions
November 12, International Conference on Pattern Recognition 2012
Chapter 0. Contents 2

/23

Background and Goal
Chapter 1 of 7

November 12, International Conference on Pattern Recognition 2012
Chapter 1. Background and Goal 3

/23

Background
Many algorithms such as SIFT
need to compute Gaussian filter.

Chapter 1. Background and Goal
November 12, International Conference on Pattern Recognition 2012

＊ =
2D Gaussian Func.

Figure Image Blurred by 2D Gaussian Filter

convolution

4

/23

Gaussian Filter
Gaussian Filter is computed by
convolutions with 2D Gaussian function.

2D Gaussian Function:

 where σ is spread.

Chapter 1. Background and Goal
November 12, International Conference on Pattern Recognition 2012

1�
2��

exp
�
�x2 + y2

2�2

�
Circle

5

/23

Propose an algorithm to
compute one Gaussian-filtered pixel
in constant time to area size n (∝ σ2).

Naïve method requires O(n) time.

Goal

Chapter 1. Background and Goal
November 12, International Conference on Pattern Recognition 2012

×
Area size is n Target Pixel

6

/23

Preceding Methods
•  Naïve method takes O(n) time.
•  FFT method is fast for all pixels,
 but it cannot compute pixels apart.
•  Down-sampling method has
 large errors.

 Within 3% error in constant time
Chapter 1. Background and Goal
November 12, International Conference on Pattern Recognition 2012 7

/23

Approximation of Gaussian Function
Chapter 2 of 7

Chapter 2. Approximation of Gaussian Function
November 12, International Conference on Pattern Recognition 2012 8

/23

Spline
Approximate Gaussian function
with a spline, which is written as:

 where a, b, n are parameters,
 and (･)+ is max(･, 0).

* Coordinates b are control points.
 Chapter 2. Approximation of Gaussian Function November 12, International Conference on Pattern Recognition 2012

�̃(x) =
�

i

ai (x� bi)
n
+

9

/23

-15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15

80

160

240

�̃(x) = 3(x + 11)2+ � 11(x + 3)2+
+11(x� 3)2+ � 3(x� 11)2+,

� 2.657� 102 exp
�
� x2

5.27202

�
.

Approximation

Chapter 2. Approximation of Gaussian Function
November 12, International Conference on Pattern Recognition 2012 10

× ×

× ×

－ Approximation
－ Gaussian func.
× Control points

/23

Evaluation
Approximation error is about 2%.
 (2D error is about 3%.)
Higher order improves more:
Approximation error of
4th order approximation is about 0.3%.

Chapter 2. Approximation of Gaussian Function
November 12, International Conference on Pattern Recognition 2012 11

�̃(x) = 70(x + 22)4+ � 624(x + 11)4+ + 1331(x + 4)4+
�1331(x� 4)4+ + 624(x� 11)4+ � 70(x� 22)4+.

/23

1D Convolution
Chapter 3 of 7

Chapter 3. 1D Convolution
November 12, International Conference on Pattern Recognition 2012 12

/23

Convolution
Convolution of a signal and a spline.

Key Idea:
Splines get discrete by differentiation.

Chapter 3. 1D Convolution
November 12, International Conference on Pattern Recognition 2012 13

-12 -8 -4 0 4 8 12

-240

-160

-80

80

160

240

-12 -8 -4 0 4 8 12

-25

25

-12 -8 -4 0 4 8 12

-10

-5

5

10

-12 -8 -4 0 4 8 12

-12

-8

-4

4

8

12

Differentiate

/23

Transformation
Transform convolution into summation.

Chapter 3. 1D Convolution
November 12, International Conference on Pattern Recognition 2012 14

(�̃ � I)(x) =
�

�x�Z
�̃(�x)I(x��x)

=
�

�x�Z

�
m�

i=0

ai(�x� bi)n
+

�
I(x��x)

=
m�

i=0

aiJ(x� bi), J(x) =
�

�x�Z
�xn

+I(x��x)

Pre-computed Several calculations

/23

2D Convolution
Chapter 4 of 7

Chapter 4. 2D Convolution
November 12, International Conference on Pattern Recognition 2012 15

/23

2D Gaussian func. can be decomposed:

Approximation can be written as:

where

(�̃ � I)(x, y) =
m�

i=1

ai

m�

j=1

ajJ(x� bi, y � bi)

2D Convolution

Chapter 4. 2D Convolution
November 12, International Conference on Pattern Recognition 2012 16

exp
�
�x2 + y2

2�2

�
= exp

�
� x2

2�2

�
exp

�
� y2

2�2

�

20 multiplications and 16 additions

J(x, y) =
�

(�x,�y)�Z2
+

�xn�ynI(x��x, y ��y)

/23

Evaluation

Chapter 4. 2D Convolution
November 12, International Conference on Pattern Recognition 2012 17

using a discrete image J , which is written as:

J(x, y) =
∑

(∆x,∆y)∈Z2
+

∆xn∆ynI(x − ∆x, y − ∆y).

When a source image I is given, the image J can be
computed in O(n2|I|) time by iterations as well as
Equation (6).

As a result, precomputing J at once, for any convo-
lution of a source image I and an nth-order 2D spline
function, a convoluted value (ψ̃II ∗ I)(x, y) can be com-
puted in O(m2) time.

6. Approximated Gaussian Functions

In this section, we present two good sets of param-
eters below to approximate the 1D Gaussian function.
Absolute values of parameters b of a good set should
be small for easy and fast computation, and absolute
values of the parameters b of the following sets are not
larger than 22, which is small, compared with ordinary
images.

Second-order approximation:

ψ̃2(x) = 3(x + 11)2+ − 11(x + 3)2+
+11(x − 3)2+ − 3(x − 11)2+, (7)

2.657 × 102 exp
(
− x2

5.27202

)
. (8)

Fourth-order approximation:

ψ̃4(x) = 70(x + 22)4+ − 624(x + 11)4+
+1331(x + 4)4+ − 1331(x − 4)4+
+624(x − 11)4+ − 70(x − 22)4+, (9)

7.621 × 107 exp
(
− x2

7.767802

)
. (10)

6.1. Evaluation of Approximated Functions

Next, we evaluate the approximated functions by cal-
culating error of two types EI,ψ̃ and EII,ψ̃ , which are
error in 1D and in 2D respectively. Using an approxi-
mation function ψ̃ and its targeted function ψ, they are
defined as:

EI,ψ̃ =

∫

R

∣∣∣ψ(x) − ψ̃(x)
∣∣∣ dx

∫

R
ψ(x)dx

, (11)

EII,ψ̃ =

∫∫

R2

∣∣∣ψ(x)ψ(y) − ψ̃(x)ψ̃(y)
∣∣∣ dxdy

∫∫

R2
|ψ(x)ψ(y)| dxdy

. (12)

0 10 20
x

0

4 × 104

8 × 104

z

· · · Gaussian
— Horizontal section
- - - Oblique section

Figure 2. Second-order approximation

-15 0 15
x

-15

0

15

y

× × × ×

× × × ×

× × × ×

× × × ×

· · · Gaussian — Approximation × Control point

Figure 3. Elevation and control points

Applying the equations, we can calculate values of
error of the two approximations (7) and (9), whose tar-
geted functions are (8) and (10) respectively, as follows:

EI,ψ̃2
≈ 0.02009, EII,ψ̃2

≈ 0.03473,
EI,ψ̃4

≈ 0.00305, EII,ψ̃4
≈ 0.00583.

Figure 2 compares the 2D Gaussian function and two
sections of the second-order approximated function in
two dimension. One of the sections is a horizontal sec-
tion z = ψ̃2(x)ψ̃2(0), and the other one is an oblique

section z =
(
ψ̃2(x√

2
)
)2

.

Figure 3 shows elevations of every 104 for the Gaus-
sian function and the approximation function in two di-
mension. As the Gaussian function is rotatable, eleva-
tions of the Gaussian function are perfect circles. On
the other hand, elevations of the approximated Gaus-
sian function, which are indicated by red solid lines, are
very similar to perfect circles. Therefore we can use the
approximated Gaussian function as an almost-rotatable
filter function.

Figure Elevation and control points

/23

Outline of Algorithm
Chapter 5 of 7

Chapter 5. Outline of Algorithm
November 12, International Conference on Pattern Recognition 2012 18

/23

Outline of Algorithm
1. Pre-compute J once an image
 in linear time to the area of the image.

2. Compute a Gaussian filtered value
 in constant time (tens operations)
 for any combinations a, b.

Chapter 5. Outline of Algorithm
November 12, International Conference on Pattern Recognition 2012 19

(�̃ � I)(x, y) =
m�

i=1

ai

m�

j=1

ajJ(x� bi, y � bi)

J(x, y) =
�

(�x,�y)�Z2
+

�xn�ynI(x��x, y ��y)

/23

Experiments
Chapter 6 of 7

Chapter 6. Experiments
November 12, International Conference on Pattern Recognition 2012 20

/23

Experiments

Chapter 6. Experiments
November 12, International Conference on Pattern Recognition 2012 21

Method Precomputation Computation for all pixels Computation for one pixel
Naı̈ve method No O(NM) O(M)
FFT method No O(N log N) N/A

Proposed method O(N) at first O(N) O(1)

Table 1. Comparison of computational order
N and M is the size of a source image and the Gaussian filter respectively.

N/A indicates that the FFT method cannot compute values apart.

100 101 102 103 104

of application pixels of the filter

10−8

10−7

10−6

10−5

10−4

C
om

pu
ta

tio
na

lt
im

e
(s

ec
.)

— Proposed method - - - Naı̈ve method

Figure 4. Computational time for one pixel
on average

7. Experiments

Comparing with the naı̈ve method and the Fast
Fourier Transform method, we evaluate the proposed
method with a 1024 × 1024 gray-scale image and the
Gaussian filter whose the parameter σ is 47.448 and the
application area is 99 × 99 pixels. We implemented
them in C++ and compiled them with GNU C++ Com-
piler and execute them on Mac Pro (6-core 2.93GHz
Xeon). As the result of computation, the naı̈ve method
took 13.7 seconds, and the FFT method took 0.373 sec-
onds, and the proposed method took 0.102 seconds. In
this case, the proposed method can do it more than 100
times as fast as the naı̈ve method does.

Next, we evaluate computational time to figure out
a filtered value of one pixel. Table 1 shows computa-
tional order of the precomputation and computation of
all pixels and computation of one pixel for each method.
Computational time of the naı̈ve method depends on ap-
plication area of the filter. Figure 4 shows the proposed
method is faster than the naı̈ve method if application
area of the filter is larger than 8 × 8.

8. Conclusion

We proposed a fast method to apply the Gaussian
filter to a 2D image. In order to compute one Gaus-
sian filtered pixel value, the naı̈ve method spends O(M)
time, where M is the size of the Gaussian filter. While
the FFT method compute all Gaussian filtered pixel val-
ues simultaneously in O(N log N) time, where N is the
size of a source image, it cannot compute them sparsely.
The proposed method computes one Gaussian filtered
pixel value in constant time on the size of a source im-
age and the Gaussian filter.

The proposed method approximates the Gaussian fil-
ter function using a spline function whose number of the
control points is small. Although precomputation takes
time linear in the size of a source image, the precom-
putation does not depend on the size of the Gaussian
filter, so we do not need to recalculate the precomputa-
tion even if we use a different size of the Gaussian filter.

As a result, the proposed method is more than 100
times as fast as the naı̈ve method when application area
is 99× 99 pixels. Furthermore, unlike the FFT method,
the proposed method can compute a filtered pixel value
at any position with any size of the Gaussian filter in
constant time.

References

[1] David G. Lowe. Object recognition from local
scale-invariant features. The Proceedings of the
Seventh IEEE International Conference on Com-
puter Vision, 2:1150–1157, 1999.

[2] David G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and
Luc Van Gool. SURF: Speeded up robust fea-
tures. European Conference on Computer Vision,
110(3):346–359, 2006.

Figure Computational time for one pixel on average

For 70+ pixels
our algorithm is faster

Diameter of 9
has 69 pixels

/23

Conclusions
Final Chapter

Chapter 7. Conclusions
November 12, International Conference on Pattern Recognition 2012 22

/23

Conclusions
With pre-computing once an image,
the proposed algorithm computes
any size of the Gaussian filter
•  in constant time to size,
•  faster than naïve for 70+ pixels,
•  within 3% error.

Chapter 7. Conclusions
November 12, International Conference on Pattern Recognition 2012 23

