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Abstract 
Speed up binary classification on 2D/3D 
using the Gaussian kernel 
faster than C-SVMs if # of data is 150,000+. 
 
Training (pre-computation): 
    O(n3) → O(4dnlog2dn) 
Prediction: 
    O(n) → O(4dlog2dn) 
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Existing Work 
 
C-SVM is a good binary classifier, but 
–  learning takes O(n3) time, 
–  prediction takes O(n) time. 

 
We cannot use C-SVMs if # of data gets large. 
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Solution 
Training: O(n3) → We don’t learn. 
    But it takes O(4dnlog2dn) for pre-computation. 
Treat every datum equally. 
–   For future works, 
 we want to pretend learning of C-SVM, though. 

 
Prediction: O(n) → O(4dlog2dn) 
Speed it up 
using our fast Gaussian filtering algorithm. 
December 1, ALSIP 2012 
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Outline 
1. Fast Gaussian filtering algorithm (FGFA) 
–  A fundamental algorithm of this study 

2. Binary classification using FGFA 
–  Extension of the previous work 
 for binary classification 

3. Evaluations 
4. Conclusions 
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1. Fast Gaussian Filtering Algorithm 
2. Binary Classification Using 
    The Fast Gaussian Filtering Algorithm 
3. Evaluations 
4. Conclusions 
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The fast Gaussian filtering algorithm 
computes one Gaussian-filtered pixel  
in constant time to the area size n (∝ σ2). 
 
 
 
 
 
The naïve method requires O(n) time. 

Benefit of FGFA 

December 1, ALSIP 2012 
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Key Ideas of FGFA 
•   The Gaussian function can be 
 approximated with a spline. 

•   Splines become discrete 
 if they are differentiated some times. 

•   Convolution of an image and a spline 
 would be computed fast 
 since convolution of an image and 
 a discrete function is easy. 
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Gaussian Function 
The Gaussian filter is computed by 
convolutions with the 2D Gaussian function. 
 
The 2D Gaussian Function: 
 
 
 
                        where a parameter σ is variance. 
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Approximation of 2D 
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using a discrete image J , which is written as:

J(x, y) =
∑

(∆x,∆y)∈Z2
+

∆xn∆ynI(x − ∆x, y − ∆y).

When a source image I is given, the image J can be
computed in O(n2|I|) time by iterations as well as
Equation (6).

As a result, precomputing J at once, for any convo-
lution of a source image I and an nth-order 2D spline
function, a convoluted value (ψ̃II ∗ I)(x, y) can be com-
puted in O(m2) time.

6. Approximated Gaussian Functions

In this section, we present two good sets of param-
eters below to approximate the 1D Gaussian function.
Absolute values of parameters b of a good set should
be small for easy and fast computation, and absolute
values of the parameters b of the following sets are not
larger than 22, which is small, compared with ordinary
images.

Second-order approximation:

ψ̃2(x) = 3(x + 11)2+ − 11(x + 3)2+
+11(x − 3)2+ − 3(x − 11)2+, (7)

# 2.657 × 102 exp
(
− x2

5.27202

)
. (8)

Fourth-order approximation:

ψ̃4(x) = 70(x + 22)4+ − 624(x + 11)4+
+1331(x + 4)4+ − 1331(x − 4)4+
+624(x − 11)4+ − 70(x − 22)4+, (9)

# 7.621 × 107 exp
(
− x2

7.767802

)
. (10)

6.1. Evaluation of Approximated Functions

Next, we evaluate the approximated functions by cal-
culating error of two types EI,ψ̃ and EII,ψ̃ , which are
error in 1D and in 2D respectively. Using an approxi-
mation function ψ̃ and its targeted function ψ, they are
defined as:

EI,ψ̃ =

∫

R

∣∣∣ψ(x) − ψ̃(x)
∣∣∣ dx

∫

R
ψ(x)dx

, (11)

EII,ψ̃ =

∫∫

R2

∣∣∣ψ(x)ψ(y) − ψ̃(x)ψ̃(y)
∣∣∣ dxdy

∫∫

R2
|ψ(x)ψ(y)| dxdy

. (12)
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Figure 2. Second-order approximation
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Figure 3. Elevation and control points

Applying the equations, we can calculate values of
error of the two approximations (7) and (9), whose tar-
geted functions are (8) and (10) respectively, as follows:

EI,ψ̃2
≈ 0.02009, EII,ψ̃2

≈ 0.03473,
EI,ψ̃4

≈ 0.00305, EII,ψ̃4
≈ 0.00583.

Figure 2 compares the 2D Gaussian function and two
sections of the second-order approximated function in
two dimension. One of the sections is a horizontal sec-
tion z = ψ̃2(x)ψ̃2(0), and the other one is an oblique

section z =
(
ψ̃2( x√

2
)
)2

.

Figure 3 shows elevations of every 104 for the Gaus-
sian function and the approximation function in two di-
mension. As the Gaussian function is rotatable, eleva-
tions of the Gaussian function are perfect circles. On
the other hand, elevations of the approximated Gaus-
sian function, which are indicated by red solid lines, are
very similar to perfect circles. Therefore we can use the
approximated Gaussian function as an almost-rotatable
filter function.

�̃(x, y) = �̃(x)�̃(y)

1. Fast Gaussian Filtering Algorithm 
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Properties of the Function 
•   It is a 2nd order spline. 
–  Piecewise polynomial function 

•   It has only 2% approximation error 
–   

•   It has only 4 control points 
•   It has unequal intervals of control points 
 while general approximation functions 
 often have equal intervals. 
–  It is sufficiently optimized as a spline. 
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Benefit of Splines 
Differentiating splines, they get constant. 
 
 
 
 
 
 
The Gaussian-like function 
can also become discrete! 
 
December 1, ALSIP 2012 
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Speed Up of Convolution 
Convolution can be reduced by 
differentiating splines 
until they become discrete. 
Intuition: 

December 1, ALSIP 2012 
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Transformation 
Transform convolution into summation 
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(�̃ � I)(x) =
�

�x�Z
�̃(�x)I(x��x)

=
�

�x�Z

�
m�

i=0

ai(�x� bi)n
+

�
I(x��x)

=
m�

i=0

aiJ(x� bi), J(x) =
�

�x�Z
�xn

+I(x��x)

Pre-computed O(m) linear combination 
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The 2D Gaussian function is decomposed: 
 
 
The approximation can be defined as: 
 
 
where 

(�̃ � I)(x, y) =
m�

i=1

ai

m�

j=1

ajJ(x� bi, y � bj)

2D Convolution 
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Overview of FGFA 
Using J(x,y), which is an integrated image 
of an input image, we can compute every 
pixel apart in constant time to the area size. 

December 1, ALSIP 2012 
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1. Fast Gaussian Filtering Algorithm 
2. Binary Classification Using 
    The Fast Gaussian Filtering Algorithm 
3. Evaluations 
4. Conclusions 
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Naïve FGFA 
If we regard 2D/3D spaces as images, 
we can determine the class of any point 
in constant time using the naïve FGFA. 

December 1, ALSIP 2012 
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Problem 
Data of images (especially 3D images) 
exhaust memory resources. 
 
If the size of each 
coordinate is 1000, 
# of blocks gets 109. 
This is often lager 
than # of training data. 

December 1, ALSIP 2012 
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Goal 
Extend FGFA to apply to sparse images. 
 
However, FGFA computes this expression: 
 
 
 
Badly, J(x,y) cannot be pre-computed 
because of memory space.  
 
 
December 1, ALSIP 2012 
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0 1 0 0 0 0 0 2 0 0 0 ○ ○ 

What Is J(x)? 
J(x) is an integrated array of an input I(x). 
 
1D Case: 
I(x): 
○ → 
 
○ → 
 
J(x): 
December 1, ALSIP 2012 
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0 0 1 4 9 16 25 36 49 64 81 

0 0 0 0 0 0 0 0 2 8 18 
+ + + + + + + + + + + 

= = = = = = = = = = = 

0 0 1 4 9 16 25 36 51 72 99 
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What Is J(x,y)? 
J(x,y) is an extend version of J(x) for 2D. 
 
If such I(x,y) is given, 
J(x,y) gets... 

December 1, ALSIP 2012 
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If such I(x,y) is given, 
J(x,y) gets this. 
 
Example: 
675 = 
2･32･52+1･52･32 

0 0 0 0 0 0 
0 0 0 2 8 18 
0 0 0 8 32 72 
0 1 4 27 88 187 
0 4 16 68 192 388 
0 9 36 131 344 675 

What Is J(x,y)? 
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J(x, y) =
�

(�x,�y)�Z2
+

�xn�ynI(x��x, y ��y)
I was 2 
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Solution 
The proposed method builds a data structure 
that can answer J(x,y) fast using range trees. 
 
Task: 
Answer J(x,y) fast, but you cannot have 
the size of combinations of coordinate values.  

December 1, ALSIP 2012 
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+
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Range Tree 
A d-dimensional range tree can compute 
the total sum in a box x1-x2 
in O(logdn) time with O(nlogdn) space. 
 

December 1, ALSIP 2012 
26 

Total is 3 
Total is 4 

O(logdn) time 

O(nlogdn) space 
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Deformation of J(x) 
Range tree can give                       , 
 
but J is                           , which contains a. 
 
It can be deformed into: 
  

December 1, ALSIP 2012 
27 

�

i=a,··· ,b

f(x)I(x)

�

i=0,··· ,a

(a� x)nI(x)

�

i=0,··· ,a

(a� x)2I(x) =
�

i=0,··· ,a

x2I(x)

�2a
�

i=0,··· ,a

xI(x)

+a2
�

i=0,··· ,a

I(x)
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Deformation of J(x) 
Example (1D case): 
 
If you want to calculate J(3/4)             , 
 
you can calculate it using three K: 
 
                       -3/2            +9/16            . 
 
  
December 1, ALSIP 2012 
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Deformation of J(x,y) 
Range tree can give: 
 
 
 
Using this, J can be computed with: 
 

December 1, ALSIP 2012 
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3 FGFA for Sparse Data

FGFA assumes that an input data consists of dense data such as an image. The
precomputation of FGFA takes linear time on the number of pixels of an input
image. If we deal with continuous values for coordinates as is, a large number
of pixels are required to approximate. Therefore, this section extends the d-
dimensional range query algorithm to calculate integrated values of sparse data,
and it applies the extension to FGFA.

3.1 Extension of d-dimensional Range Tree

The d-dimensional range tree algorithm provides a method to calculate sum-
mation of a rectangular area of d-dimensional spaces. Using the method, this
section shows a method to calculate J in Equation 6. The d-dimensional range
tree algorithm can compute a value Ki,j(x, y) in O(logd n)-time that is written
as:

Ki,j(x, y) =
∑

(∆x,∆y)∈{(0,0),···,(x,y)}

∆xi∆yjI(∆x,∆y). (7)

Using the values K, J can be rewritten as:

J(x, y) =




x2

−2x
1








y2

−2y
1




T


K0,0(x, y) K1,0(x, y) K2,0(x, y)
K0,1(x, y) K1,1(x, y) K2,1(x, y)
K0,2(x, y) K1,2(x, y) K2,2(x, y)



 . (8)

Therefore, J can be computed in O(log2d n) time.

3.2 Extension of FGFA

Since the extension of d-dimensional range tree offers a method to calculate J in
O(log2d n) time, we reveal that FGFA can be computed in O(4d log2d n) time.

3.3 Proposed Classifier

Using the extension of FGFA, the proposed classifier approximates the following
function ytest for binary classification:

ytest = sgn

(
n∑

i=1

yi exp

(
− |xtest − xi|2

σ2

))
. (9)

J(x, y) =

�

�
y2

�2y
1

�

�
T �

�
K0,0(x, y) K1,0(x, y) K2,0(x, y)
K0,1(x, y) K1,1(x, y) K2,1(x, y)
K0,2(x, y) K1,2(x, y) K2,2(x, y)

�

�

�

�
x2

�2x
1

�

� .
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Binary Classifier 
The proposed binary classifier can decide 
the class of any point in O(4dlog2dn) time, 
and the pre-computation is O(4dnlog2dn) time. 
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    The Fast Gaussian Filtering Algorithm 
3. Evaluations 
4. Conclusions 
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Relations to C-SVM 
Objective function of C-SVM: 
 
 
 
Proposed method: 
 
 
 
–  The solution is αi = C. 

December 1, ALSIP 2012 
32 

max :
n�

i=1

�i �
1
2

n�

i=1

n�

j=1

�i�jyiyj exp

�
� |xi � xj |2

�2

�
,

s.t. : 0 � �i � C (i = 1, · · · , n),
n�

i=1

�iyi = 0,

max :
n�

i=1

�i,

s.t. : 0 � �i � C (i = 1, · · · , n).
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Experiments for Accuracy 
Accuracy of binary classification: 
 
 
 
 
 
 
It is not so worse than C-SVM. 

December 1, ALSIP 2012 
33 

Binary Classification Using Fast Gaussian Filtering Algorithm 5

Table 1. Accuracy of classification of the Iris flower data set
(Classification between two species with 5-fold cross validation)

Proposed C-SVM
Method C = 0.1 C = 1 C = 10 C = 106

σ = 0.1 93% 58% 68% 69% 69%
σ = 0.3 93% 83% 94% 93% 93%
σ = 1 93% 93% 95% 93% 92%
σ = 3 86% 90% 94% 95% 89%
σ = 10 84% 85% 90% 93% 92%

Table 2. Computational time to predict a class
(Every vector has two real numbers between 0 and 10, σ is 1)

# of training data 1, 000 10, 000 100, 000 1, 000, 000

Proposed Prediction 2.43 ms 2.48 ms 2.55 ms 2.96 ms
method (Precomputation) (0.13 s) (1.48 s) (17.8 s) (203 s)

LIBSVM
Prediction 0.02 ms 0.22 ms 2.29 ms 23.6 ms
(Training) (0.05 s) (4.47 s) (442 s) (1000+ s)

predicts a class by calculating all the distances between a target and training
data. Precomputation of the proposed method takes nearly linear on the number
of training data. Training of LIBSVM takes time that is nearly proportional to
the square of the number of training data.

6 Conclusions

This paper showed that FGFA can be applied to sparse data using the d-
dimensional range tree algorithm. This is the same classification as a C-SVM
whose parameter C approaches 0, and it has as good accuracy as C-SVMs. Ad-
ditionally, we revealed that this can reduce time of prediction of C-SVMs when
the number of support vectors is larger than 10,000.
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Experiments for Time 
CPU time of training and prediction: 
 
 
 
 
 
The proposed method is faster 
when # of training data is over 150,000. 
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predicts a class by calculating all the distances between a target and training
data. Precomputation of the proposed method takes nearly linear on the number
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Conclusions 
We proposed a new binary classifier. 
•   It is not so worse than C-SVM, and 
 it can also speed up prediction of C-SVM. 

•   Pre-computation is O(4dnlog2dn) time, 
 and prediction is O(4dlog2dn) time. 
The proposed method consists of 
•   Fast Gaussian filtering algorithm, 
•   Range trees. 
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