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Abstract

Speed up binary classification on 2D/3D
using the Gaussian kernel
faster than C-SVMs if # of data is 150,000+.

Training (pre-computation):
O(n’) = O(4%nlog*?n)
Prediction:
O(n) = O(4%0g*?n)
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Existing Work

C-SVM is a good binary classifier, but
— learning takes O(xn?) time,
— prediction takes O(n) time.

We cannot use C-SVMs if # of data gets large.
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Solution

Training: O(n*) — We don't learn.
But it takes O(49nlog24n) for pre-computation.

Treat every datum equally.

— For future works,
we want to pretend learning of C-SVM, though.

Prediction: O(n) = O(440g%n)

Speed it up
using our fast Gaussian filtering algorithm.
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Outline

1. Fast Gaussian filtering algorithm (FGFA)
— A fundamental algorithm of this study
2. Binary classification using FGFA

— Extension of the previous work
for binary classification

3. Evaluations
4. Conclusions
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1. Fast Gaussian Filtering Algorithm
2. Binary Classification Using
The Fast Gaussian Filtering Algorithm
3. Evaluations
4. Conclusions
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Benefit of FGFA

The fast Gaussian filtering algorithm
computes one Gaussian-filtered pixel
iIn constant time to the area size n (x 62).

A

The naive method requires O(n) time.
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Key Ildeas of FGFA

« The Gaussian function can be
approximated with a spline.

* Splines become discrete
if they are differentiated some times.

« Convolution of an image and a spline
would be computed fast
since convolution of an image and
a discrete function is easy.
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Gaussian Function

The Gaussian filter is computed by
convolutions with the 2D Gaussian function.

The 2D Gaussian Function: e Ol
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where a parameter ¢ is variance.
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Approximation
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Approximation of 2D
(2, y) = P(2)Y(y)
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Properties of the Function

It is a 2"d order spline.

— Piecewise polynomial function

't has only 2% approximation error
([ () — p(@)ldz) / ([ [o(a)|dz)
't has only 4 contro pomts

't has unequal intervals of control points
while general approximation functions
often have equal intervals.

— Itis sufficiently optimized as a spline.
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Benefit of Splines

Differentiating splines, they get constant.

T %

Differentiate 3-times >

The Gaussian-like function
can also become discretel
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Speed Up of Convolution

Convolution can be reduced by
differentiating splines
until they become discrete.

Intuition:
Differentiated secomes DlSCR@
Y '?El*" ] (T }
@By (x) ( L) Q/I(w)dwi ) ()
=T Lar ! I
U A0 A v S
Integrated
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Transformation

Transform convolution into summation

(W*D)(x) = ) v(Ax)l(z— Az)

AxEZ

— Z (Z a;(Ax bz)'i) I(zx — Ax)
QrCZ \1=0___
5 . RN ~.
— :Z a;J(x —b;), J(z) =} > Axhi(x— Az),
(T o€z )

4

O(m) linear combination Pre-computed
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2D Convolution

The 2D Gaussian function is decomposed:

332—|—y2 5132 y2
P (‘ 202 ) = &P (‘5) xp (—ﬁ)

The approximation can be defined as:
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where J(z,y) = > (anagerz A" Ay (@ — Az,y — Ay)
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Overview of FGFA

Using J(x,y), which is an integrated image
of an input image, we can compute every
pixel apart in constant time to the area size.

7 RN
TR
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2. Binary Classification Using

The Fast Gaussian Filtering Algorithm
3. Evaluations
4. Conclusions
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Naive FGFA

If we regard 2D/3D spaces as images,
we can determine the class of any point
in constant time using the naive FGFA.
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Problem

Data of images (especially 3D images)

exhaust memory resources.

A T
Al

f the size of each
coordinate is 1000,
# of blocks gets 10°.

This is often lager
than # of training data.
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Goal

Extend FGFA to apply to sparse images.

However, FGFA computes this expression:

m m

(1; *I)(Cl?,y) — S‘aiyaﬂj‘](w - b’ivy - b])

_dq
i=1 j=1

J(x,y) = Z(A:::,Ay)ezi Az"Ay"I(x — Az, y — Ay)

Badly, J(x,y) cannot be pre-computed
because of memory space.
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What Is J(x)?

J(x) is an integrated array of an input I(x).

1D Case:

1(x): ® 0

() — 0O 1 4 9 16 25 36 49 64 8]
+ + + 4+ 4+ 4+ + + o+ o+ 4+

O — 0 2 8 18

Jx): oo 14916253651 |72]99
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What Is J(x,y)?

J(x,y) is an extend version of J(x) for 2D.

T such I(x,y) is given, %

J(x,y) gets...
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What Is J(x,y)?

J(x,y) = Z(Ax,Ay)eZi Ax"Ay"I(x — Az, y — Ay)

| | was 2 l

If such I(x,y) is given,

J(x,y) gets this. ]

| | was 1 ,O ;
Example: 0 (§
6/5= 014
2.32.52+].52.32 0| g
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Solution

The proposed method builds a data structure
that can answer J(x,y) fast using range trees.

Task:

Answer J(x,y) fast, but you cannot have
the size of combinations of coordinate values.

J(x '\y) = (A, Ay)ez? Ax"Ay”](x — Ax,y — Ay)

’ ~

---ﬂ, ~\ -------------- N I \----
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Range Tree

A d-dimensional range tree can compute

the total sum in a box x,-x,
in O(logn) time with O(nlog?n) space.

~
-----------
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Deformation of J(x)

Range tree can give Z f (2),

1= a,

butJis Y (a—z)"I(x vvh|<:h contains a.

i=0,- ,a

't can be deformed into:

Y @-im= Y 2l
- —2a | Z xl(x)
+a? | Z I(x)
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Deformation of J(x)

Example (1D case):

It you want to calculate J(3/4) <§ - w) :

you can calculate it using three K:

e |
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Deformation of J(x,y)

Range tree can give:

K;j(z,y) = > Az’ Ay I(Ax, Ay).
(Avay)E{(an)a”'v(xay)}

Using this, J can be computed with:

y? B Koo(z,y) Kiolz,y) Koo(z,y) x?
J(x,y) = ( —2y ) ( Ko1(z,y) Kl,lgac,y) Kg,lgzv,y) ) ( —2x ) :

1 Koo(z,y) Kiao(z,y) Koa(x,y) 1

/N N
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Binary Classifier

The proposed binary classifier can decide
the class of any point in O(49og??n) time,
and the pre-computation is O(49nlog?¢n) time.

FGFA

&
Q)

Range Trees
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3. Evaluations
4. Conclusions
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Relations to C-SVM

ObJchve functlon ofC SVM: 2
a3 w5,

’L].j].

st.: 0<ou<C (i=1,- Zazyz—()
Proposed method:
st: 0<an<C (i=1,-.n)

— The solutionis a,= C.
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Experiments for Accuracy

Accuracy of binary classification:

Proposed C-SVM
Method C=0.1 C=1 C =10 C =10°
oc=20.1 93% 58% 68% 69% 69%
oc=0.3 93% 83% 94% 93% 93%
o=1 93% 93% 95% 93% 92%
oc=3 86% 90% 94% 95% 89%
o=10 84% 85% 90% 93% 92%

Figure Accuracy for Iris Flower Data Set

It is not so worse than C-SVM.
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Experiments for Time

CPU time of training and prediction:

# of training data 1, 000 10,000 100,000 | 1,000,000
Proposed Prediction 2.43 ms 2.48 ms 2.55 ms 2.96 ms
method (Precomputation) || (0.13 s) (1.48 s) (17.8 s) (203 s)
Prediction 0.02 ms 0.22 ms 2.29 ms 23.6 ms

LIBSVM Mg (0.055) | (447s) | (442) | (1000+ s)

Figure Time of Training and Prediction for 2D Data

The proposed method is faster
when # of training data is over 150,000.
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4. Conclusions
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Conclusions

We proposed a new binary classifier.

« |tis not so worse than C-SVM, and
it can also speed up prediction of C-SVM.

» Pre-computation is O(49nlog??n) time,
and prediction is O(44og2n) time.

The proposed method consists of
« Fast Gaussian filtering algorithm,
« Range trees.
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