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INTRODUCTION OBJECTIVE

« NER datasets consists of pairs of sentences. The first

« Transformer models perform well on tasks such as
Named Entity Recognition (NER) with African languages. sentence in each pairis a sentence in any language.

« The other sentence consists of NER tokens that are labels

- While this is encouraging, in a low-ressource setting, it for each word in the first sentence.

would be advangtageous to analyse the performance

of models when the quality of the dataset used varies. Arnol is presinting a poster in Tunis at DL Indaba 2022
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A i « In a low ressource setting, it is hard to find annotators that

can provide labels for words in African Languages.

RESULTS & F IND'NG s « Therefore, How is the performance of our NER models

affected by the availability of these labels for every

sentences?
« More labels per sentence does not necessarily mean more performance.

« NER models can surprinsignly perform well with less labels

« Multi-language models perform better in such scenarios

A METHODOLOGY
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ANALYSIS ° Kinyarwanda

« For each language, we construct derived dataset where the
NIGERIAN PIDGIN KINYARWANDA number of token labels per sentences is capped and the

surplus removed.
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« For each dataset created, we train a set of NER models and
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record the F1-score on an evaluation set left un-changed.
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« As we increase the cap from 1to 10, the

performance benefits reduces.

« There is still some margin of improvement DOND LUS'ON

on Nigerian Pidgin. Maybe due to its similarity

F1-Score

0.5 [ with English which is one of the high-resource A linear increase in the number of labels
0.4 - languages used during the pre-training of per sentence does not forcefully lead to a
’ Y ity Label Cop . these NER models. consistent linear improvement in the

performance of NER models on
African Languages.
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