Clinical Decision support system for diagnosis of Heart Diseases

Gizeaddis Lamesgin Simegn1,2, Worku Birhanie Gebeeyehu1, Mizanu Zelalem Degu1,3
1School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma Ethiopia, 2AI and Biomedical Imaging Research Unit, Jimma Institute of Technology, Jimma University, Ethiopia. 3Faculty of Computing, Jimma Institute of Technology, Jimma University, Jimma Ethiopia

Introduction
- The rapid economic transformation leading to environmental changes and unhealthy lifestyles are increasing the risk factors and incidence of cardiovascular disease, leading to death.
- The limited access to health facilities, lack of expert cardiologists, and lack of regular health check-up trends make CVD major causes of mortality in low-resource settings.

Purpose
- AI-based computer-aided heart disease diagnosis decision support system has been proposed using clinical data, patient information, and electrocardiogram (ECG) data.

Methods

Heart disease prediction based on clinical data
- A total of 1190 observations containing different attribute information including age, sex, chest pain type, blood pressure, cholesterol in mg/dl, blood sugar, maximum heart rate etc. were used
- Two machine learning models (XGBoost and Random Forest), and an artificial neural network (ANN) deep learning model were trained and tested with the same attribute information for heart disease prediction.

Heart diseases multiclassification based on 12-lead ECG Data
- For the classification of the 18-cardiac conditions/abnormalities from 12-lead ECG data, a conventional neural network (CNN) was trained and validated

Results

Conclusions
- This paper presents an integrated AI-based decision support tool for diagnosis and assessment of cardiac conditions.
- Different machine learning and deep learning models were trained, evaluated and deployed in a custom designed web-based user interface for prediction of heart disease and multiclassification of cardiac conditions.
- The developed system can provide a reference for clinical diagnosis, remove the opportunities for human error, saves time and money, and improve the diagnosis ability of clinicians for heart disease enabling timely decision making and treatment planning.