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Contributions

This work explores incorporating graphical flows into VAEs.

This is achieved by extending both the decoder prior and inference network with

graphical residual flows—efficiently invertible residual flows that encode

conditional independence by masking the weight matrices of the flow’s residual

blocks.

Experiments show our model’s potential for more efficiently learning in

data-sparse settings.

Graphical Residual Flows

Graphical flows add structure to normalizing flows, by encoding non-trivial variable

dependencies from a Bayesian network (BN). Graphical Residual Flows (GRFs) [1] in-

corporate incorporate the graphical structure of a BN into a residual flow by suitably

masking the weight matrices of each residual block before applying spectral normaliza-

tion (indicated by subscript s).

Two GRFs are used in the SIReN-VAE model, each in a different direction. GRFn (with

Jacobian Jn) is normalizing and is used to evaluate the prior in the VAE.

GRF (normalizing): ft+1(z(t)) := z(t) + (W2 � M2)s · h((W1 � M1)s · z(t) + b1) + b2

Figure 1. The update to z at flow step t. Edges removed by the masks M1 and M2 are not shown.
The remaining edges encode the graphical structure of the given BN. Mask construction: Each

output node is assigned the set consisting of the associated variable and its parents in the BN. Each

hidden node is assigned a set consisting of either a single variable or a variable and its parents.

Edges are retained when the set in the next layer is a superset of the set in the previous layer.

For example, the transformation applied to variable z2 is only conditioned on its parents within the
residual block (shown here with solid arrows).

GRFg (with Jacobian Jg) is generative and used to approximate the posterior in the

VAE by conditioning on an observation. The structures of GRFn and GRFg are related

by faithful inversion of the BN [2].

GRF (generating): ft+1(z(t); x) := z(t) + (W2 � M2)s · h((W1 � M1)s(z(t) ⊕ x) + b1) + b2
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Structured Invertible Residual Network VAE

Figure 2. SIReN-VAE encodes the BN’s graphical structure into the decoder (right) via masking of

the normalizing GRF and decoder neural network weights. The inverted BN structure is similarly

encoded in the inference network’s generating GRF (left).

We assume access to a BN graph specifying the dependencies between observed x
and latent z variables. Our goal is to incorporate this dependency information into
the VAE’s encoder and decoder. This means that the VAE’s likelihood p(x|z) and prior
p(z) should factorize as specified by the BN. Approximating the posterior p(z|x)while
taking the knowledge from the BN into account requires suitably inverting the BN

such that one obtains edges from x to z [2].

Benefit of Incorporating Graphical Structures in Data-sparse Settings

Table 1. Negative Log-likelihood (NLL) and reconstruction error (RE) results. The number of observed (D)

and latent (K) variables, as well as the number of edges (E) in the datasets’ associated BNs are provided.

Subscript ind indicates a model that encodes conditional independence between all latent variables in
the decoder, FC indicates a fully-connected structure and true indicates a model that encodes the BN
faithfully.

2 × |G| training samples 100 × |G| training samples
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29 15 59

VAE 42.99±1.50 6.21±.32 36.95±.01 4.68±.01
SIReN-VAEind 43.77±0.16 6.32±.08 35.84±.23 4.07±.10
SIReN-VAEFC 42.91±1.04 6.03±.29 35.77±.23 4.05±.09
SIReN-VAEtrue 38.98±0.81 4.95±0.22 36.22±.19 3.88±.10
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67 40 150

VAE 74.13±3.27 6.13±.70 38.92±.06 4.50±.02
SIReN-VAEind 42.60±0.38 4.85±.02 38.84±.11 4.45±.02
SIReN-VAEFC 42.15±0.00 4.82±.00 39.06±.07 4.49±.01
SIReN-VAEtrue 42.06±0.40 4.80±.01 38.86±.22 4.42±.04
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5 59 102

VAE 15.70±1.89 11.95±2.58 10.18±.21 7.30±.60
SIReN-VAEind 14.66±1.08 16.66±1.40 10.03±.00 9.12±.01
SIReN-VAEFC 12.41±3.34 12.05±3.99 10.03±.00 9.13±.01
SIReN-VAEtrue 10.83±0.64 11.13±1.95 10.02±.01 8.91±.29

Figure 3. Negative ELBO (lower is better) vs training set size for the EColi70 dataset. Error bars show

one standard deviation from the mean.
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