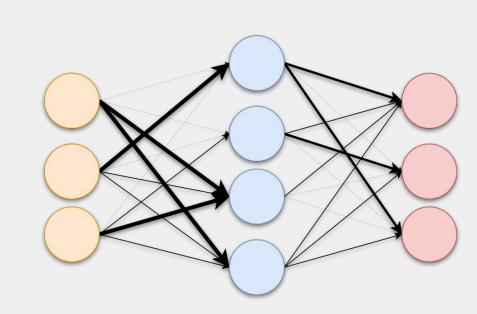


Learning Dynamic Networks

Kale-ab Tessera, Chiratidzo Matowe, Arnu Pretorius, Benjamin Rosman, Sara Hooker



Problem Statement

Overparameterized models have led to many breakthroughs in machine learning.

Challenges:

- Larger Models:
 - Efficient storage and inference.
 - **Efficient training** of large models. \succ
 - \succ **Overfitting**, regularization and generalization.
- Train Longer:
- \succ Handle **temporal** dynamics of training.

Train Longer - Schedules

When we train longer -> more critical temporal decisions to make.

<u>Temporal Decisions (examples include):</u>

- Learning Rate Initial Learning Rat & LR Schedule.
- Sparsity Initial Sparsity & Sparsity Schedule.

What about these choices per layer?! - Layerwise Schedules. Standard approach - choose these schedules through trial-and-error.

Question

Can we learn **temporal** (possibly **layerwise**) **schedules** in a principled manner?

Overparameterization - Sparsity/Pruning

Common method to handle challenges of overparatermization -**Pruning**.

Benefits - similar performance, with a **fraction of the weights**, faster training and more robust to noise.

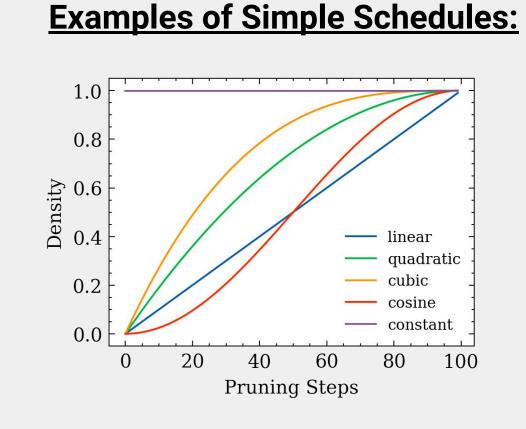
Our Approach - Can we learn these schedules using RL

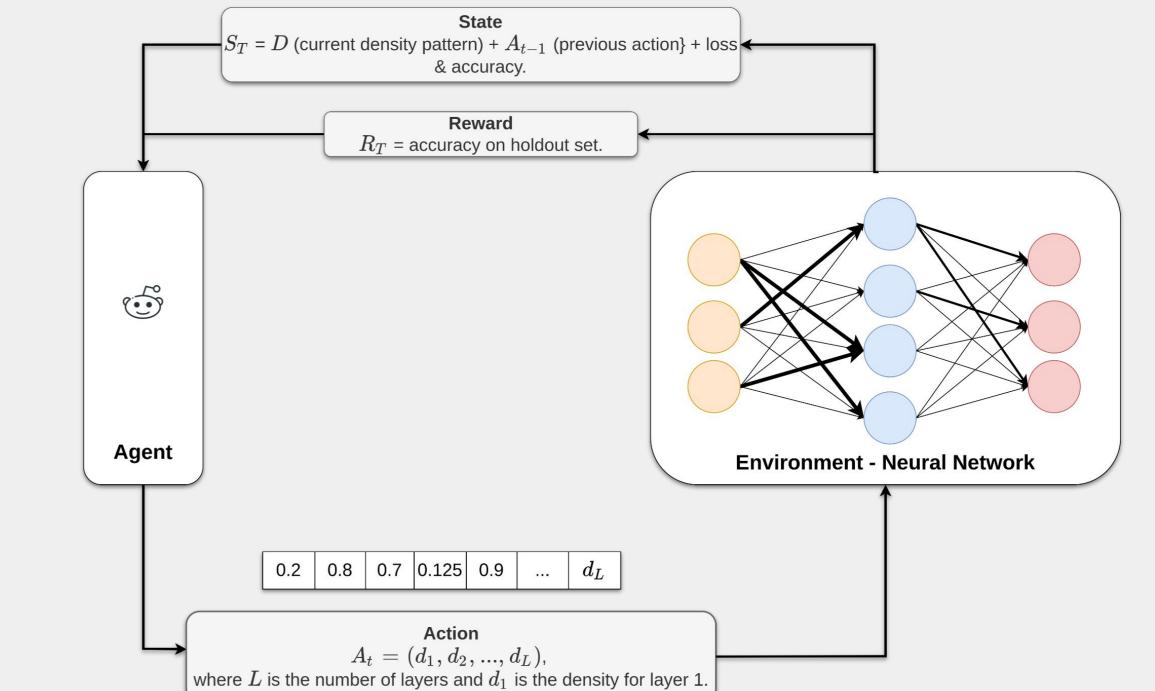
Algorithm 1 Learning Sparsity Schedules using Rei	nforcement Learning
Input: train dataset X_{train_set} , test dataset X_{test} eval network f_{eval} , agent a , number of episodes N , n min_d and maximum density per layer max_d .	
$a \leftarrow init(min_d, max_d)$	\triangleright Initialize agent a .
$X_{train_split}, X_{val_split} \leftarrow split(X_{train_set})$	▷ Split train dataset.
for episode=1,N do	
$a \leftarrow train_loop(a, X_{train_split}, X_{val_split}, f_{train})$	\triangleright Run train loop and retrieve trained agent a .
$eval_loop(a, X_{train_set}, X_{val_set}, f_{eval})$	▷ Run evaluation loop on unseen network f_{eval} using trained agent a .
end for	0

- Agent PPO.
- Dataset Cifar10.
- Sparsity:
- □ Random Pruning, with Random Regrowth (**RP-RR**)
- □ Magnitude Pruning, with Random Regrowth (MP-RR)

Related Work Handcrafted schedules.

- **Constant** SET [1], Deep Rewiring (DeepR) [2] and Neural Network Synthesis Tool (NEST) [3].
- **Cosine** RigL [4] and Sparse Network From Scratch (SNFS) [5]
- *Cubic* [6],[7].





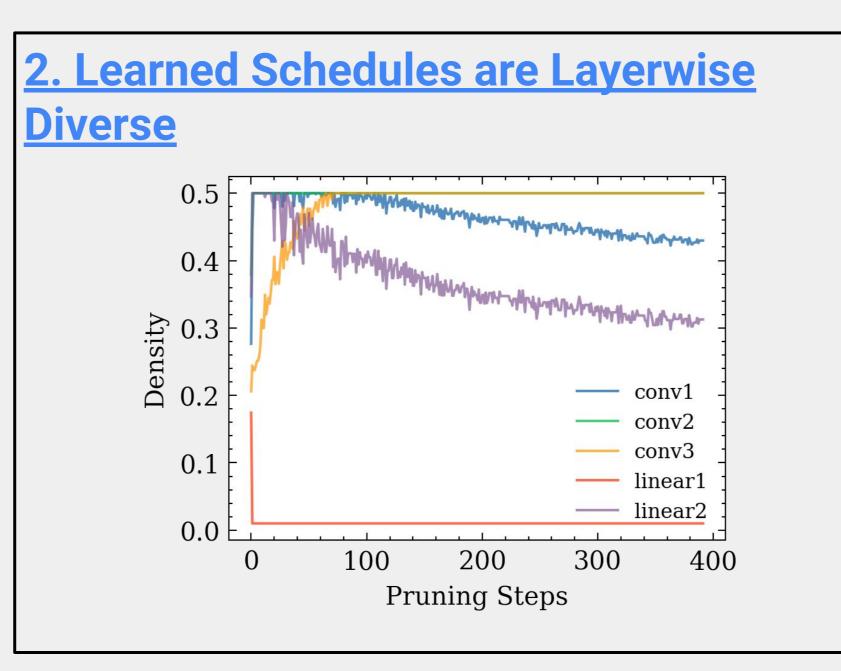
Results

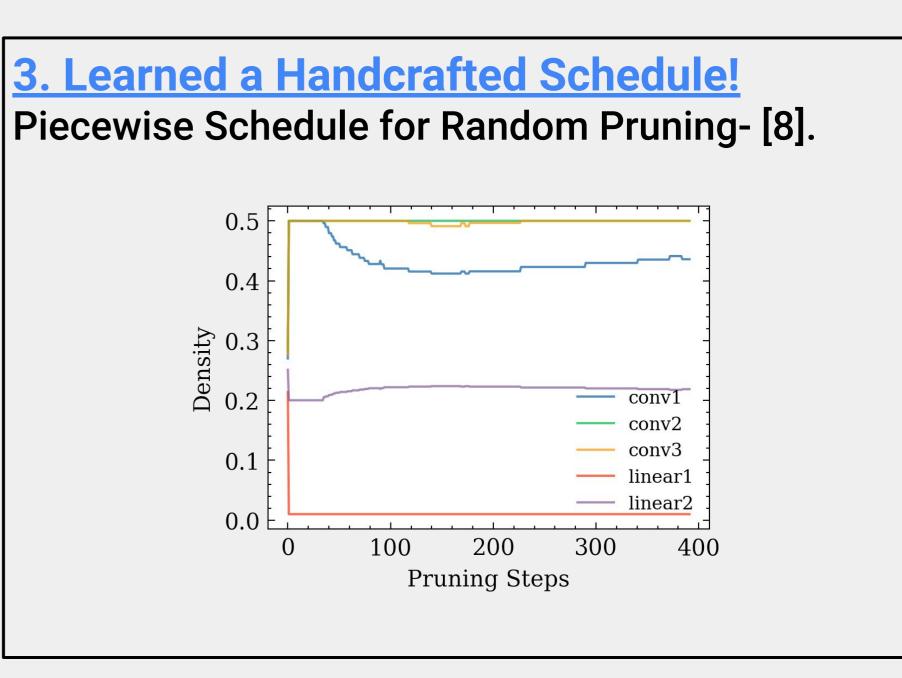
Simple CNN - 5 Layers

1. Learned Schedules are Competitive

Table 1: Test Accuracy (mean and standard deviation) of different schedules on CIFAR-10, using Simple-CNN.

Target Density (%)	Schedule	Random Pruning with Random Regrowth (RP-RR)	Magnitude Pruning with Random Regrowth (MP-RR
10	Linear	20.365 +- 17.952	60.418 +- 1.362
	Quadratic	23.15 +- 20.043	61.259 +- 1.485
	Cubic	33.721 +- 21.693	60.396 +- 0.832
	Cosine	18.302 +- 14.379	59.807 +- 0.384
	Constant	61.475 +- 0.731	62.536 +- 0.314
	Learned (Ours)	61.071 +- 1.574	63.191 +- 0.810
50	Linear	64.54 +- 0.477	64.78 +- 0.464
	Quadratic	64.987 +- 0.86	63.933 +- 0.431
	Cubic	65.31 +- 0.49	64.315 +- 0.437
	Cosine	64.672 +- 0.771	64.737 +- 0.345
	Constant	65.1 +- 0.283	65.388 +- 0.375
	Learned (Ours)	65.655 +- 0.515	65.686 +- 0.284
100	Linear	66.228 +- 0.691	66.711 +- 0.423
	Quadratic	66.947 +- 0.749	67.25 +- 0.578
	Cubic	ubic $66.857 + 0.627$ $67.395 + 0.547$	67.395 +- 0.547
	Cosine	66.074 +- 0.282	66.18 +- 1.027
	Full Dense	67.815 +- 0.146	67.878 +- 0.482
	Learned (Ours)	67.534 +- 0.174	67.908 +- 0.162





<u>et-18</u>		
Schedule	Test Accuracy	
Linear	93.019 +- 0.024	
Quadratic	93.106 +- 0.107	
Cubic	93.148 +- 0.156	
Cosine	92.916 +- 0.105	
Constant (Fully Dense)	92.481 +- 0.641	
Learned (Ours)	92.818 +- 0.048	

Conclusion:

In this work, we demonstrate that it is **possible** to learn well performing dynamic sparsity schedules using reinforcement learning. The schedules learned are not arbitrary and are distinct per layer and

Challenges:

1. Non-stationarity environment.

- a. Our environment (the network we are learning a schedule for) is learning and adapting while our agent is learning to model the environment.
- b. Worse for challenging networks use techniques like data augmentation and learning rate decay (e.g. ResNet-18).
- High dimension action and (possibly) state space. 2. **Slow convergence** - 25-50 episodes. 3.

pruning method.

References

- Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., and Liotta, A. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature communications, 9 (1):1-12, 2018.
- Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep rewiring: Training very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017. 2.
- Dai, X., Yin, H., and Jha, N. K. Nest: A neural network synthesis tool based on a grow-and-prune paradigm. IEEE Transactions on Computers, 68(10):1487–1497, 2019. 3.
- Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen, E. Rigging the lottery: Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952. PMLR, 2020. 4.
- Dettmers, T. and Zettlemoyer, L. Sparse networks from scratch: Faster training without losing performance. arXiv preprint arXiv:1907.04840, 2019. 5.
- Zhu, M. and Gupta, S. To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.
- Mostafa, H. and Wang, X. Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization. In International Conference on Machine Learning, pp. 4646-4655. PMLR, 2019.
- 8. Gale, T., Elsen, E., and Hooker, S. The state of sparsity in deep neural networks, 2019. URL https://arxiv. org/abs/1902.09574.

ICML Workshop Paper- Workshop on Dynamic Neural Networks.

