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Problem Statement

Overparameterized models have led to many breakthroughs in
machine learning.

Train Longer - Schedules
When we train longer -> more

to make.

Temporal Decisions (examples include):
> |earning Rate - Initial Learning Rat &
> Sparsity - Initial Sparsity &

Challenges:

% Larger Models:

> Efficient storage and inference.

> Efficient training of large models.

> Overfitting, regularization and generalization.
b+ Train Longer:

> Handle temporal dynamics of training.

What about these choices per layer?! - Layerwise Schedules.
Standard approach - choose these schedules through trial-and-error.

Question
Can we learn temporal (possibly layerwise) schedules in a principled manner?

Overparameterization - Sparsity/Pruning Related Work Examples of Simple Schedules:
Common method to handle challenges of overparatermization - Handcrafted schedules. Lo
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Our Approach - Can we learn these schedules using RL

Algorithm 1 Learning Sparsity Schedules using Reinforcement Learning

State
St = D (current density pattern) + A;_1 (previous action} + loss

Input: train dataset X;,qin_set, test dataset Xiesi_set, train network firqin, & accuracy.
eval network f.,.:, agent a, number of episodes /N, minimum density per layer
ming and maximum density per layer max,. [
a < init(ming, maxg) > Initialize agent a.
Xirain: solits Xual sptit SN Xrqin. set) > Split train dataset.
for episode=1.,N do

trieve trained agent a. CS’

Reward
Ry = accuracy on holdout set.

o A

> Run evaluation loop on
unseen network fo,a
using trained agent a.

e\-"al_lo(‘)p(a,, Xtra'in_set: X'l,’al_.€€t7 fe'val)

end for -
Agent \ Environment -l\leural Network /
d Agent - PPO.
1 Dataset - Cifar10. 02 | 08 |07 [0125) 09 | .. | d;
d  Sparsity:
d Random Pruning, with Random Regrowth (RP-RR)

d Magnitude Pruning, with Random Regrowth (MP-RR)

Action \}
Ay = (dy,ds, ..., dL),
where L is the number of layers and d; is the density for layer 1J

Results
Simple CNN - 5 Layers

1. Learned Schedules are Competitive 2. Learned Schedules are Layerwise 3. Learned a Handcrafted Schedule!
Table 1: Test Accuracy (mean and standard deviation) of different schedules on Diverse Piecewise Schedule for Random Pl‘uning- [8].
CIFAR-10, using Simple-CNN.
: Random Pruning with Magnitude Pruning with 0.5 _ | | | | T ! S ——
TargetDensity (%) Schedule Random Regrowth (RP-RR)  Random Regrowth (MP-RR) i 0.5 5 \_ﬂ_\‘ﬂ% ]
10 Linear 20365 + 17.952 60.418 + 1.362 0.4 d :
Quadratic 23.15 +- 20.043 61.259 +- 1.485 T 0.4 .
Cubic 33.721 +- 21.693 60.396 +- 0.832 i
Cosine 18.302 +- 14.379 59.807 +- 0.384 > 0.3 L I o i
Constant 61.475 +- 0.731 62.536 +- 0.314 = V.ol = 03¢
___________ Learned (Ours) _61.071+1.574 63191+ 0810 = I & o
50 Linear 64.54 +- 0.477 64.78 - 0464 o : - T i _
Quadratic 64.987 +- 0.86 63.933 +- 0.431 A 0.2 — convl - A 0.2 — convl 4
Cubic 65.31 +- 0.49 64315 +- 0.437 ! COnv?2 : conv2 |
e, wmiim o dorie ol o ol s
Learned (Ours) ~ 65.655 +- 0.515 65.686 +- 0.284 ! linearl 1 linearl ]
w00 Linear 66.228 +-0.691 ¢ 66.711 +-0.423 [ . i [ linear2 |
Quadratic 66.947 +- 0.749 6725 4-0.578 0.0 - linear2 1 ooc. Y
Cubic 66.857 +- 0.627 67.395 +- 0.547 . T 0 100 200 300 400
Full Dense §7.815 +- 0.146 67878 + 0482 0 100 _ 200 300 400 Pruning Steps
Learned (Ours) ~ 67.534 +- 0.174 67.908 +- 0.162 Pruning Steps
ResNet-18 Conclusion:
— T — In this work, we demonstrate that it is possible to learn well performing dynamic sparsity schedules
D iaa- using reinforcement learning. The schedules learned are not arbitrary and are distinct per layer and
Cubic 93.148 +- 0.156 .
Cosine 92.916 +- 0.105 prunlng methOd,

Constant (Fully Dense)

92.481 +- 0.641

Learned (Ours)

92.818 +- 0.048

Challenges:

1. Non-stationarity environment.
a. Our environment (the network we are learning a
schedule for) is learning and adapting while our

agent is learning to model the environment.

b. Worse for challenging networks - use techniques

like data augmentation and learning rate decay

(e.g. ResNet-18).

2. High dimension action and (possibly) state space.

3. Slow convergence - 25-50 episodes.
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