

UNIVERSITY

IYUNIVESITHI

UNIVERSITEIT

Towards Learning to Speak and Hear Through Multi-agent Communication over a Continuous Acoustic Channel

Stellenbosch Kevin Eloff^{1,2*} Arnu Pretorious² Herman A. Engelbrecht¹ Herman Kamper¹ ¹MediaLab, E&E Engineering, Stellenbosch University, South Africa ²InstaDeep, Cape Town, South Africa

Background

- Multi-agent reinforcement learning has proven effective for investigating emergent communication.
- However, most studies focus on communication with discrete symbols.
- Humans learn language over a continuous channel and language evolved through spoken communication.
- Are we able to observe emergent language between agents with a continuous communication channel?
- We provide a platform to study emergent continuous signalling in order to see how it relates to human language acquisition and evolution.
- We propose a messaging environment where a Speaker agent needs to convey a set of attributes to a Listener over a noisy acoustic channel.

Environment

- ullet Let s represent a set of attribute values the Speaker must communicate to a Listener agent.
- Taking these attributes as input, the Speaker produces a waveform as output, which passes over a lossy acoustic channel.
- The agents must develop a common communication protocol such that $s = \hat{s}$.

Speaker agent

- ullet Speaker agent generates a phone sequence $oldsymbol{c}$ given s.
- GRU-based sequence generation model.
- Speaker is able to generate arbitrary length sequences, up to a maximum length.

Listener agent

- End-to-end: The Listener agent produces \hat{s} directly from the mel-spectrogram X.
 - CNN-GRU based architecture.
 - No intermediary steps from X to \hat{s} .
- Phone recogniser: A static pre-trained phone recogniser combined with a discrete Listener.
 - First extract a phone sequence from X, which is consumed by a discrete GRU-based Listener agent.
 - Phone recogniser trained to 6.42% CER.

Realistic communication channel

• Implementation of channel function $f(\cdot)$:

- The channel samples background noise and a room impulse response in each pass.
- CER per phone in the evaluation channel:

Different approaches in noisy environments

Per attribute accuracy of various models:

Model	Training rooms	Eval. rooms
Discrete baseline	0.621	0.612
Acoustic end-to-end	0.611	0.566
Acoustic* end-to-end	0.973	0.958
Acoustic $+$ phone recogniser	0.539	0.535
Acoustic* $+$ phone recogniser	0.609	0.591

- The discrete baseline is first trained in the discrete task, and then used with a phone mapping and phone recogniser during evaluation.
- Acoustic* uses the discrete baseline for pretraining.

Increasing sequence length

		No background noise		10dB SNR background noise			
L	no room	training rooms	meeting	stairway	training room	meeting	stairway
5	0.977	0.720	0.742	0.519	0.621	0.675	0.549
5	0.863	0.679	0.680	0.500	0.609	0.650	0.532
8	1.000	0.714	0.789	0.559	0.575	0.660	0.544
8	0.867	0.758	0.759	0.601	0.668	0.707	0.619
	5 5 8	5 0.977 5 0.863 8 1.000	L no room training rooms 5 0.977 0.720 5 0.863 0.679 8 1.000 0.714	L no room training rooms meeting 5 0.977 0.720 0.742 5 0.863 0.679 0.680 8 1.000 0.714 0.789	L no room training rooms meeting stairway 5 0.977 0.720 0.742 0.519 5 0.863 0.679 0.680 0.500 8 1.000 0.714 0.789 0.559	L no room training rooms meeting stairway training room 5 0.977 0.720 0.742 0.519 0.621 5 0.863 0.679 0.680 0.500 0.609 8 1.000 0.714 0.789 0.559 0.575	L no room training rooms meeting stairway training room meeting 5 0.977 0.720 0.742 0.519 0.621 0.675 5 0.863 0.679 0.680 0.500 0.609 0.650 8 1.000 0.714 0.789 0.559 0.575 0.660

Per-attribute accuracy as a function of maximum phone length L:

Emergent redundancy

 Samples of phones produced by the Acoustic **Speaker:**

Samples of phones produced by the **Discrete** Speaker:

				\mathcal{O}_1		
		0	1	2	3	4
	0	ouiaeaao	uoeaioia	ooueaiao	auaoieau	ueeaiaeo
	\vdash	eoeauaie	eoeaeioe	ooeeaioa	aeaoeaui	eeeaeioe
${f s}_2$	7	uoiuauei	uouiuaoe	ououiaou	auuaouiu	uueauiai
	\mathfrak{C}	uoiaeeou	uouaeiai	ooueauia	auaouiea	ueuaeaii
	4	euaoiaee	euoaioia	ooueaaio	auaoiaea	eueaeaio

- Acoustic Speaker: 2.477 repeated phones per utterance and 2.810 unique phones per utterance.
- **Discrete Speaker:** 1.258 repeated phones per utterance and 3.978 unique phones per utterance.

Conclusion

- We have laid the foundation for answering the larger question of whether we can observe emergent language over continuous acoustic channel trained through RL.
- We allow our agents to generate unique audio waveforms.
 - Speaker uses discrete units, could consider continuous articulation in future.
- We observe that the acoustic Speaker learns redundancy which improves Listener coherency.
 - An example of emergent linguistic behaviour that is not modelled in a purely discrete setting.
- **Future:** Multi-round communication games between two or more agents.