7. The Dataset

» Dataset - 5335 tomato images.
» Material - Canon EOS Canon EOS Kiss X7 - High resolution
(5184 x 3456) and Samsung SM-G570F - Low resolution (320 x

240).
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8. Research methodology
Image Pre processing

» Labelling & Cropping (Arusha — 1107 H & 1212 NH, Morogoro -
1870 H & 1046 NH).
» Image Annotation
v Tools — Labelme & VIA tool
v Formats — VOC (1212 Images) & COCO (1240 Images)
» Resizing the Images — 512x512
» Augmentation (rotation, shifts, shear, zooming, flips)

Model Development

» U-Net for Semantic Segmentation
» Mask RCNN for Instance Segmentation
» Quantification - OpenCV library

Model Evaluation

» U-Net - loU & Dice Coefficient/F1-Score
» Mask RCNN - Mean Average Precision (mAP)
» U-Net Loss Function

L=~ (nlog() + (1= ydlog(1= pp)

» Mask RCNN Loss Function

Ly = Z Leis (pi'gi) & ZgiLr‘eg(ti' t:) iy Zgil‘mask(mi'm;)
i i i

Experimental Setup

» Computer — Windows 10, Intel® Core™ i7-8550U 3.6 GHz
CPU, Intel® Iris® Plus Graphics, 512 GB SSD storage, and 16
GB RAM.

» Google Collaboratory with Tesla P100-PCIE GPU and 27GB
High-RAM.

» Python 3, TensorFlow, Keras library

9. Results
The Dataset

Table 2: Train/test set splits

U-Net (VOC format) 1212

Mask RCNNICOCO farmat) 1240
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Fig.Image annotations

U-Net Loss Results
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Fig . Training and validation loss for U-Net.

Mask RCNN Loss Results
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Fig. Training and validation loss curve for Mask RCNN. Loss graph for (a) Mask RCNN-ResNet50, (b) Mask
RCNN-ResNet101, (c) Mask RCNN-Resnet50 with augmentations, and (d) Mask RCNN-Resnet101 with
augmentations.

Evaluation and Sample Detections

Table 3: Evoluation Metrics Results

Evaluation Metric (s)
Method (s) mAP (%) Jaccard Index/loU (%) Dice Coefficient (%)
Maosk RCNN-ResNet50 81.01
Mosk RCNN-ResNet50 with ougmentations. B567
Maosk RCNN-ResNet101 8109
Mosk RCNN-ResMNet101 with cugmentations  83.60
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Fig. Sample segmentations carried out by the proposed Mask RCNN model

Quantification Results

» A custom model function built on top of the Mask RCNN
model for counting detected tuta mines.

Fig. Sample quantification results.

10. Conclusion and Recommendations

» Deep learning is the new promising technology for fully
automatic plant disease diagnosis.

» Automated solution reduces the workload of the limited
extension officers in the country.

» Taking appropriate control measures early could reduce
costs, rescue farmers from losses and improve tomato
productivity.

» Further improve robustness of the proposed model by
expanding the diversity of tomato pests and diseases.

» In the future, we intend to develop a CNN decision support
system and link farmers with nearby agrovet shops.




