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Graph Decision Networks (GDNs)

Allowing agents to share information through communication is crucial for solving
complex tasks in multi-agent reinforcement learning (MARL). Many of the most suc-
cessful methods can be captured within the following framework:

1. At each time step, define an attributed graph G = (V,E, a) with nodes V (G) :=
{all agents}, edges E(G) := {(i, j) | agent i is communicating with j}, and for all
agents i, the node i is labeled with the observation of i.

2. Pass this graph through a GNN f which outputs values for each node

3. Pass each resulting node value through the actor network of the corresponding
agent

We refer to communication methods that fall within this paradigm as Graph Deci-
sion Networks (GDNs). If the actor networks used shared weights (very common),
then any GDN reduces to a Graph Neural Network (GNN) node labelling problem.

Limited Expressivity

There is a plethora of research into the expressivity of GNNs. In particular, the
expressivity of standard GNNs corresponds to that of the 1-WL algorithm. These
limitations are thus also inherited by GDNs. However, we can also use insights from
GNNs to go beyond these expressivity limits.

Figure 1: A pair of graphs indistinguishable by 1-WL

Furthermore, even GDNs which can capture any equivariant graph function are un-
able to perform symmetry breaking: i.e. they cannot solve problems which require
similar agents that have identical observations to take different actions.

Universally Expressive Communication

Ideally, MARL communication methods should possess all the following properties:

1. Universal expressivity for equivariant graph functions

2. Symmetry breaking for coordination problems

3. Computational efficiency

We apply two existing GNN augmentations to GDNs to achieve this, both of which
come with minimal extra computational cost. We first prove that standard GDNs are
unable to produce different actions for identical agents with the same observations.

Theorem 1. Given a GDN f , observations O = {o1, ..., on}, and communication
graph G such that nodes i and j are similar in G and oi = oj, then f (O)i = f (O)j.

We prove that concatenating noise to the agent observations achieves universal
approximation and the solving of symmetry-breaking coordination problems.

Theorem 2. Let n ≥ 1 and let f : Gn → Rn be equivariant. Then for all ϵ, δ > 0,
there is a GNN with RNI that (ϵ, δ)-approximates f .

Theorem 3. Let n ≥ 1 and consider a set T , where each (G,A) ∈ T is a graph-
labels pair, such that G ∈ Gn and there is a set of target labels Ak ∈ A for each orbit
rk ∈ R(G), with |Ak| = |rk|. Then for all ϵ, δ > 0 there is a GNN with RNI g which
satisfies:

∀(G,A) ∈ T ∀rk ∈ R(G), {g(G)i | i ∈ rk} ∼=ϵ,δ Ak

Giving each agent a unique ID in its observations enables the same.

Theorem 4. Let n ≥ 1 and let f : Gn → Rn be equivariant. Then for all ϵ > 0, there
is a GNN with unique node IDs that ϵ-approximates f .

Theorem 5. Let n ≥ 1 and consider a set T , where each (G,A) ∈ T is a graph-
labels pair, such that G ∈ Gn and there is a set of target labels Ak ∈ A for each orbit
rk ∈ R(G), with |Ak| = |rk|. Then for all ϵ > 0 there is a GNN with unique node IDs
g which satisfies:

∀(G,A) ∈ T ∀rk ∈ R(G), {g(G)i | i ∈ rk} ∼=ϵ Ak
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Figure 2: Environments: Traffic Junction (benchmark), Predator-Prey (benchmark), Drone Scatter (designed to test
symmetry breaking), Box Pushing (designed to test expressivity beyond 1-WL)

We use 6 successful MARL communication algorithms for our experiments: Comm-
Net, IC3Net, TARMAC, TARMAC-IC3Net, DGN, and MAGIC. We consider augmen-
tations of each of them with random noise and unique node IDs in the observations.

Conclusions

• Unique IDs or smaller RNI augmentations can typically be applied without detri-
ment on standard environments, but do not readily provide improved performance

• On environments where more complex coordination is required, these augmen-
tations are essential for strong performance and both outperform the baselines

• RNI is best suited to environments requiring increased expressivity

• Unique IDs is best suited to environments requiring symmetry-breaking

• Future work: other insights into GNN architectures can be leveraged in GDNs
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Figure 3: Some of the results across each environment
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