Incremental Learning Based Anomaly Detection For Computed Tomography (CT) Oluwabukola G. Adegboro, Abderrazak Chahid, Prof. Hossam Gaber

Smart Energy Systems Lab, Ontario Tech University (UOIT)

Contact Email: Hossam.Gaber@ontariotechu.ca | Address: 2000 Simcoe Street North, Oshawa, ON, L1G0C5, Canada.

Introduction

Why Incremental Learning (IL)?

- **Suitable** for limited-memory or data restriction applications.
- Preserves past knowledge.
- **Dynamically** improves the predictions.

Contribution:

Table 1: Experimental performance using the 'skip' approach.

Task	Episode	Defect	Training Accuracy (%)	Testing Accuracy (%)	New Scan
T0	E0 - rep1	F0, F5	100	0	M1, M19
T1	E1 - rep1	F0, F3	97.4	62.3	M1, M12
T2	E2 previous	F0, F3	92	92	M1, M13
T3	E3 - rep1	F0, F5	100	56.3	M2, M20
T4	E4 previous	F0, F2	99.3	99.3	M2, M6
T5	E5 - rep1	F0, F2	100	92.4	M2 M9
T6	E6 - rep1	F0, F1	100	51.7	M2, M4
T7	E7 previous	F0, F4	100	100	M1, M17
T8	E8 - rep1	F0, F5	99.9	100	M1, M21
T9	E9 previous	F0, F3	100	100	M1, M10

classification-based incremental learning framework that learns continuously from past data over time to enhance model performance.

Dataset:

CT scan of tools with defect-free and defective parts.

Proposed Method

• IL Framework '*with* skip' and '*without* skip' approach.

T10	E10 - rep1	F0, F5	100	100	M1, M18
-----	------------	--------	-----	-----	---------

Confidence score = Minimum accuracy of the latest 5 testing accuracies.

Without skip With skip

Figure 1: Incremental Learning Flowchart 'With Skip' Approach

Input : *data*_{op_old}: optimal old data $data_{new}$: new data *model_path*: optimal model C_{th} : confidence threshold. Default= 95% *param*: training parameters

Output: C_{op} : The new model confidence $Model_{op}$: path to the optimal model

◊ Test on the new data $C, model_{op} = run_incremental_learning(data_{op_old}, data_{new}, model_path)$ if $C \geq C_{th}$ then

◊ No need for retrain

Task

Performance comparison 'with' skip approach using different optimal size

Discussion

The achievable *Confidence score is :*

- Pipeline size = 2: 51% (with skip) | 85% (without skip)
- Pipeline size = *3*: **81%**

As more data that are similar to the previously trained data are introduced, the model is able to make an improved prediction on them.

Overall, the incremental learning framework 'without' the skip approach can identify, with a higher level of confidence, the prediction on new scans.

Conclusion

- The preliminary results show that the IL 'without' skip approach using *pipeline size=2* achieved a higher confidence score of 85%.
- The IL framework can be used for other deep learning application: object detection, segmentation.

 $C, model_{op} = train(data_pipeline, model_path, param)$

Algorithm 1: Incremental Learning 'With Skip' Approach algorithm

Future Work

- Analyze the proposed framework using different model architectures.
- Validate the obtained results with more data and more tasks.

Reference

- 1. M. De Lange et al., "A Continual Learning Survey: Defying Forgetting in Classification Tasks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3366-3385, 1 July 2022.
- 2. H. A. Gabbar, A. Chahid, Md. J. A. Khan, O. G. Adegboro, and M. I. Samson, "CTIMS: Automated Defect Detection Framework Using Computed Tomography," Applied Sciences, vol. 12, no. 4, pp. 2175, Feb. 2022.

Acknowledgement: We acknowledge the support of our amazing team members, and partners, Mitacs and NVS Canada.