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Setting: Contextual bandit, e.g. a medical diagnosis problem 
where agent can observe patient symptoms and prescribe 
any combination of available treatments.

Problem #1: Sample efficiency. Especially important when 
dealing with a real-world environment.

Solution: Introduce a domain expert (e.g. a doctor) that can 

tell the agent what to do when training. Typical assumption 
involves a single, infallible expert.

Problem #2 : Experts aren’t always perfect. They make 
mistakes, and sometimes are even malicious…

Problem #3: What if we have multiple experts? What if they 
disagree with each other? How do we work out who to trust?

Solution: We introduce CLUE (Cautiously Learning with 
Unreliable Experts), an algorithm that augments bandit 
decision-making algorithms with the ability to model the 
reliability of experts and use these models to aggregate the 
advice from a panel of experts to better inform decision-
making when exploring.

Model: Reliability ρ = 0 if expert is always suboptimal, ρ = 1 if 
always optimal. Estimate expected probability of expert 
offering optimal advice, Χ ≈ E(ρ). Denote evaluation with x. 
Assess advice using Q function, setting x = 1 if the action 
maximises Q and 0 otherwise. Using a recency-weighted 
average controlled by δ, we update the model using: 

Χ𝑡+1 = 1 − 𝛿 Χ𝑡 + 𝛿𝑥𝑡.

Decision-Making: Only follow advice when exploring, to 
allow agent to surpass the experts. Combine all advice 
received for state st using Bayes rule. Vt = all advice received, 
vt

(e) = advice received from expert e, Et = set of all experts 
who advised for st.
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Results: Epsilon-Greedy Baseline, 3 panels of experts (1 
good, 1 bad, 7 varied). Many random environments. 
Simulated experts. Compare against baseline and NAF (Naïve 
Advice Follower), which follows all advice it receives.

Corresponding estimates of reliability:

Observations:
• CLUE outperforms baseline when advised by a reliable 

expert, converging faster
• CLUE is robust to advice from an unreliable expert,

defaulting to baseline behaviour
• CLUE can differentiate good experts from bad ones when 

advised by a mixed panel, and use this to follow good 
advice while ignoring bad advice

Conclusion: CLUE can benefit from increased sample 
efficiency when advised by a largely reliable expert, but is 
robust to advice from a largely unreliable expert. CLUE can 
handle situations with multiple experts, even using their 
consensus and contradictions to benefit further.

The Future: The full RL problem, continuous states/actions, 
real-world environments (robots!), breaking models into 
areas of expertise.
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