An agent can learn who to trust when advised
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Setting: Contextual bandit, e.g. a medical diagnosis problem
where agent can observe patient symptoms and prescribe
any combination of available treatments.

Problem #1: Sample efficiency. Especially important when
dealing with a real-world environment.

Solution: Introduce a domain expert (e.g. a doctor) that can

tell the agent what to do when training. Typical assumption
involves a single, infallible expert.

Problem #2 : Experts aren't always perfect. They make
mistakes, and sometimes are even malicious...

Problem #3: What if we have multiple experts? What if they
disagree with each other? How do we work out who to trust?

Solution: We introduce CLUE (Cautiously Learning with
Unreliable Experts), an algorithm that augments bandit
decision-making algorithms with the ability to model the
reliability of experts and use these models to aggregate the
advice from a panel of experts to better inform decision-
making when exploring.

Model: Reliability p = 0 if expert is always suboptimal, p =1 if
always optimal. Estimate expected probability of expert
offering optimal advice, X = E(p). Denote evaluation with x.
Assess advice using Q function, setting x = 1 if the action
maximises Q and 0 otherwise. Using a recency-weighted
average controlled by o, we update the model using:

Xt+1 — (1 — 5)Xt + 5xt.

Decision-Making: Only follow advice when exploring, to
allow agent to surpass the experts. Combine all advice
received for state s, using Bayes rule. V. = all advice received,
v®) = advice received from expert e, E, = set of all experts
who advised for s..
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Results: Epsilon-Greedy Baseline, 3 panels of experts (1
good, 1 bad, 7 varied). Many random environments.

py multiple, potentially unreliable experts

Simulated experts. Compare against baseline and NAF (Naive
Advice Follower), which follows all advice it receives.
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Observations:

CLUE outperforms baseline when advised by a reliable
expert, converging faster

CLUE is robust to advice from an unreliable expert,
defaulting to baseline behaviour

CLUE can differentiate good experts from bad ones when
advised by a mixed panel, and use this to follow good
advice while ignoring bad advice

Conclusion: CLUE can benefit from increased sample
efficiency when advised by a largely reliable expert, but is
robust to advice from a largely unreliable expert. CLUE can
handle situations with multiple experts, even using their
consensus and contradictions to benefit further.

Th

e Future: The full RL problem, continuous states/actions,

real-world environments (robots!), breaking models into
areas of expertise.



