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Abstract Corpus Creation and Statistics Results

We built a simple web application with text prompts of short sentences from Our experiments are performed with Yoruba, Igbo and Edo accented
1132 phonetically balanced sentences from the CMU Arctic Database [2]. speech.

In this paper, we introduce SautiDB-Naija: a speech corpus of non-native
speakers of English intended for research in accent translation, voice
conversion, and accent classification. This initial release of our corpus
includes over 900 recordings of non-native speakers of English whose first
language (L1) is amongst the most common in Nigeria, namely Yoruba,
Igbo, Edo,, Efik-lbibio and Igala. To the best of our knowledge, this is the
first documented effort to curate a corpus of Nigerian accents for machine
learning research to date. We demonstrate that neural networks are

—; Our results show that our data contain informative differentiating accents.
E : e — We obtained our best model using wav2vec feature extractor with batch
normalization.

The two-dimensional projection plot of that the embedding space clusters
the audios by speaker accents.
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Advances in education, technology and transportation have made the world Experlments and RGSU"ZS
a much smaller place --- with people from different cities, regions and CO“C'USIO“

countries commonly speaking a hypercentral or global language[1]. As a We attempt to quantify the fidelity of the accent information in our

result, there is the need to build voice-enabled tools that are adaptable to SautiDB-Naija corpus by learning the accent embeddings through an accent
different accents. To this end, we make the following contributions: classification supervised learning task.

We presented SautiDB-Naija, a non-native English speech database of
short sentences consisting of 5 Nigerian languages to support accent
classification, conversion or translation tasks. Our experiments point
towards possible future use cases for SautiDB-Naija. Future work will focus
on expanding and diversifying the corpus while commencing research on L2
accent translation tasks

1. SautiDB: a web-app for crowdsourcing English language speech
recordings from a distributed network of volunteer Nigerian speakers.
The name sauti is the Swabhili word for sound.

2. SautiDB-Naija: a non-native English speech corpus consisting of 919
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