INTRODUCTION

Language grounding aims at linking the symbolic representation of language (e.g., words) into the rich perceptual knowledge of the physical world.

ARCHITECTURE

- Trained on COCO dataset with parallel multilingual captions.
- The alignment M is trained on a limited number of words (those that occur in the captions), then applied to all the textual vectors to generate “zero-shot” grounded embeddings.

QUANTITATIVE RESULTS

<table>
<thead>
<tr>
<th>Language Pair</th>
<th>WSim</th>
<th>MEN</th>
<th>RW</th>
<th>MTurk</th>
<th>SimVerb</th>
<th>SimLex</th>
</tr>
</thead>
<tbody>
<tr>
<td>English/Arabic</td>
<td>3.9%</td>
<td>5.4%</td>
<td>4.6%</td>
<td>6.8%</td>
<td>1.8%</td>
<td>2.6%</td>
</tr>
<tr>
<td>Arabic/English</td>
<td>6.9%</td>
<td>6.9%</td>
<td>9.3%</td>
<td>7.0%</td>
<td>9.3%</td>
<td>7.0%</td>
</tr>
<tr>
<td>German/English</td>
<td>9.6%</td>
<td>10.4%</td>
<td>6.0%</td>
<td>6.3%</td>
<td>9.6%</td>
<td>10.4%</td>
</tr>
</tbody>
</table>

 Improvement in Pearson correlation (%) of the grounded embeddings compared to their textual counterparts on unsupervised semantic similarity benchmarks. The table shows the result of grounding a single language (left) vs. the addition of a second language (right).

QUALITATIVE RESULTS

Out of the top 10 nearest neighbors for each query word, only the differing neighbors between the textual embeddings and the grounded embeddings are reported.

CONCLUSION

- Grounding improves embeddings in all three languages.
- Similar languages benefit from each other, but differing languages seem to conflict on some aspects.
- A more advanced architecture is needed to link the three languages.
- Analysing inter-lingual grounding in fine granularity is to be investigated.