Creating and comparing machine learning-based reverse vaccinology models for predicting viral protective antigens

Zakia Salod, Serestina Viriri and Ozayr Mahomed
University of KwaZulu-Natal, Durban, South Africa

Which is (are) the best-performing machine learning-based reverse vaccinology model(s) for predicting viral protective antigens?

Background
Vaccines protect against disease-causing pathogens such as viruses. Traditional vaccine development is difficult, time-consuming, and costly. Reverse vaccinology (RV) is an intriguing alternative to conventional vaccinology. RV programs predict protective antigens from pathogen proteins. However, predictive accuracy remains a challenge for machine learning-based RV and has, so far, primarily focused on bacteria [1].

Aim
To identify the best-performing machine learning-based reverse vaccinology model(s) for predicting viral protective antigens.

Conclusion
The best-performing model(s) could be used to create an artificial intelligence tool in the future.

References

This QR code takes you to my website, which includes all my social links.