
Adegboyega Adebayo Olumide O.  Obe, Francis 

Osang

TRACKING DYNAMICS CHANGE PARAMETERS OF 

INFECTIOUS DISEASE OUTBREAK WITH BIFURCATED

TIME-SERIES LSTM

If the spread of highly infectious diseases is undetected early enough, they can

peak at a critical fatality rate in a short period, due to the prevalence of unhygienic

social behaviour, and ineffective healthcare policies.

The chaotic phenomenon of outbreaks makes it a perturbed problem both to

predict and to combat (Obe et.al.,2022).

Interestingly, the deep learning-based time-series predictive modelling of

infectious disease outbreaks has gained significant traction.

The difficulty mostly encountered is the inability to represent the causality

mechanics which propagate infectious disease outbreaks in deep learning models.

Therefore, theory-based mechanistic methods have become a mainstay of

epidemic forecasting due to their ability to capture the underlying causal

processes through mathematical and computational representations (Wang

et.al.,2022).

Introduction

Research Motivation

This study seeks to validate the prospect of enhancing deep learning

algorithms with bifurcation theory (Obe et.al.,2022) using pre-

vaccination era measles outbreak epidemiological data

Most epidemiological modelling techniques have struggled to

quantify uncertainties (Keshavamurthy et.al.,2022) that marred the

predictions of infectious disease outbreaks (Scarpino et.al., 2019).

[20] assumptions about the prospect of combining techniques 

from other fields with machine learning could aid to obtain 

plausible results in the prediction of trends of infectious disease 

outbreaks.

Experimental Dataset
The measles epidemiological data used in this study is public 

domain license data obtained from Kaggle open-source repository. 

The dataset originally belongs to HealthData.gov - Project 

Tycho(https://healthdata.gov/dataset/Project- Tycho-Level-1-

Data/g89t-x93h). Figure 2 (Feng et.al.,2020) five stage classification of pre-vaccination era 
measles epidemics in California (1930-1964)

Figure 1 The Proposed System Architecture.

The Infectious Disease Ontology (IDO core)

http://purl.obolibrary.org/obo/ido.owl) helps to identify California as the 

epicentre with recurring waves of the outbreaks were at the average 

incidence rate of 8.86 per 100,000 population sample.

Exploratory Analysis of Epidemiological Data

Table 1 Summarizes the descriptive analysis of the measles outbreak in California (1928-1967). 
 

Statistical Attribute Estimate 
Epidemic weeks Count 1,457 

Average New Cases 833 
Maximum weekly cases 6930 
75th percentile of cases ¡1229 

Average Standard Deviation 1018 
Cumulative cases 1213912 

 

http://purl.obolibrary.org/obo/ido.owl


Table 2 Results of quarterly correlation of measles epidemic stages for twenty-five epidemic years 
in California.  

Season Epidemic stage Correlation Statistical Significance 
First quarter Initial, Pre-peak,Peak 0.7092 p-value ¡ 0.05 

Second quarter Peak -0.4623 p-value ¡ 0.05 
Third quarter Receding -0.6775 p-value ¡ 0.05 

Fourth quarter Receding 0.3276 p-value ¡ 0.05 

 
LSTM Time Series Predictive Modelling

Table 4 Shows the Measles Epidemic data components used to develop the LSTM model. 
 

Data set Year 
Training Data 1930-1956 

Validation Data 1962-1957 
Test Data 1964 

 

𝒚 𝒕 = 𝒈 𝒙 𝒕 (𝟏)

Where

y(t) : actual output measles cases per week,

x(t) : Input series of Measles cases in a time step ,                                                                          

g : Rn× Rm →Rn , static LSTM nonlinear map function.

𝒚 𝒕 = 𝒈 𝒙 𝒕 ≡ ሶ𝒚 𝒕 (𝟐)

where ሶ𝒚 𝒕 is the static nonlinear LSTM model of measles spread

The LSTM model with the minimum loss function was searched 

using the following categories of optimization techniques to train 3 

three LSTM architectures 

• Gradient-Based Optimization,

• Evolutionary Optimization, 

• Bayesian Optimization, 

• and the Hybrid Optimization. 

Table 5 Shows the best models of each optimization technique and the 
corresponding LSTM architecture.  

Model Loss 
GS LSTM 0.1090 

GS CNN LSTM 0.1372 
PSOS LSTM 0.1259 

LMA CNN LSTM 0.1348 
BS LSTM 0.1142 

BS CNN LSTM 0.1268 

 

Model Loss 
GS LSTM 0.0956 
BS LSTM 0.0998 

 

Table 6 LSTM models at Increased Input Series.

Figure 3 show graphs of the comparing actual and prediction outputs of 
the prospective regular LSTM models.



Figure 5 show graphs of the prediction outputs of the 
prospective regular models at increased input time series.

The architecture and optimization techniques of the LSTM models observed so

far have been unable to adequately fit the non-linear relationship of the input

data at a low error margin.

Bifurcation Theory
Bifurcation theory involves the search for the trajectory path of changes in model 

behaviours. To track the trajectory change, the model was normalized in the 

following dynamic forms:

f(x, µ) = 

dx 

= µ − x2 
(3) 

  

dt 

f(x, µ) = 

dx 

= µx − x2 
(4) 

  

dt 

f(x, µ) = dx = µx − x3 
(5) 

 

Where µ is the parameter dependency of the dynamic models, and f(x) is the

LSTM model to be perturbed.

The task performed was to perturb the high-precision models with the

bifurcation canonical forms (equations 3- 5) to a bifurcation point at which the

prediction performance of bifurcated LSTM has significantly improved on the

regular LSTM

Results
Table 7 Comparing the Evaluations of Best Regular LSTM and Bifurcated-LSTM Models (1962 
California Measle Outbreak). 

 
Models Bifurcation Points RMSE 

GS LSTM NA 0.1833 
BS LSTM NA 0.1892 

SADDLE BIFURCATED BS LSTM 1.5 0.1740 
PITCHFORK BIFURCATED BS LSTM 1.5 0.1684 

TRANSCRITICAL BIFURCATED GS LSTM 1.0 0.1824  
 

Table 8 Comparing the Evaluations of Best Regular LSTM and Bifurcated-LSTM Models (1964 
California Measle Outbreak). 

 
Models Bifurcation Points RMSE 

GS LSTM NA 0.2962 
BS LSTM NA 0.2933 

PITCHFORK BIFURCATED BS LSTM 1.5 0.2776 
PITCHFORK BIFURCATED GS LSTM 0.5 0.2907 
PITCHFORK BIFURCATED GS LSTM 1.5 0.2882 
PITCHFORK BIFURCATED GS LSTM 2.0 0.2916 

 

 
 
 

Figure 6 Shows prediction graphs of Bayesian Optimized regular single-layered LSTM and Bayesian trained Pitchfork 

Bifurcated single-layered LSTM at   for the first twenty weeks of 1962 California Measles Outbreak. 
 

 
Figure 7 Shows prediction graphs of Bayesian Optimized regular single-layered LSTM and Bayesian trained Pitchfork 

Bifurcated single-layered LSTM at   for the first twenty weeks of the 1964 California Measles Outbreak. 



Discussion

An optimized measles outbreak LSTM model was enhanced with

bifurcation formalisms Equations 3 − 5 and possible numeric values of

control dependency parameters to predict the basic reproduction and

bifurcation pattern that represent the changing dynamics of the 1962

and 1964 measles outbreak.

The parameters obtained aided an improved overall prediction

performance of LSTM (see Tables 7 & 8).

The pitchfork bifurcated LSTM stimulated a qualitative change in the

loss land-scape of the regular LSTM (see Figures 6,7) at the

bifurcation point of 1.5 when its’ hyperparameters crossed to transit

the model from a single stable equilibrium to un-stable which resulted

in two additional equilibria [19].

This bifurcation phenomenon influenced the convergence of the

model at a new local minimum that generalizes on new data for both

the 1962 and 1964 epidemic years, and hence reduced the error

margin from the initial stage to the peak stage.

Conclusion

The asymmetric spread of pre-vaccination era measles

outbreaks re-occurred at the peak stage of some epidemic

years.

The regular LSTM architectures and optimization techniques

observed in this study have been unable to learn the non-linear

relationship of the epidemiological data at a low error margin.

However, the increase in time steps of the input data led to a

trifle reduction of the cost function.

It could be implied that the parameters of dynamic change of the

epidemic was influenced by the basic reproduction of infection agents

at 1<R0<2.

The dynamics change parameters are dependent on the stochastic

nature of the optimization algorithm engaged, and the chaotic nature of

an infectious disease outbreak.

A pitchfork bifurcation of LSTM at bifurcation point =1.5, matches

the dynamic change inherent in California’s pre-vaccination era

measles outbreak at the improved prediction performances of root

mean squared error (RMSE) = 0.1684 for the 1962 outbreak, and

root mean squared error (RMSE)= 0.2776 for 1964 outbreak.
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