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Introduction - Digital Slides Dataset

Human epidermal growth factor 2 (HER2) is an oncogene that has an
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important role in cell growth and differentiation [1] e Samples stained with Haematoxylin and Eosin 147 TCGA-BRCA whole slide images i
e Amplification of the HER2 gene is associated with aggressive tumour stain (H&E) with available HERZ status were
growth and poor prognosis [2] e Typical pathology samples are digitised at a downloaded from the GDC portal [8] £
e HER2+ cancer accounts for 20-25% of all breast cancers [1] resolution of .25 microns/pixel, or 40X Annotated areas of invasive breast =
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e Standard testing methods include immunohistochemistry (IHC), with
equivocal cases confirmed by fluorescence in situ hybridisation (FISH) [5]
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e These molecular assays are time-consuming, cause tissue damage, are contained in S g e 364, 585 tissue patches with classes
expensive and not available in many countries; results can also vary an image i ‘ {benign, tumour (HER2-), tumour (HER2+)} e mmeerofpaches per i
S across laboratories due to preparation protocols and pathologist pyramid g e
Q"':h Y subjectivity [6] e Multiple yis o
% e The use of inexpensive, widely available H&E slides can decrease costs : oA < el
' and accelerate biomarker detection, reducing time to treatment decisions NPEssafe - o X0 o
e Changes at the molecular level can bring about phenotypic changes in stored at 5 - L
tumour cells as well as their microenvironment [7] different . J 1A
e Can molecular features of cancer be inferred from morphological resolutions |
features in H&E images alone? : el R L s
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N ex.l. s.l.e s e Cross validation for both models e Calculate slide-level HER2 status from patch-level predictions
P eee e Report AUC confidence intervals via bootstrapping e Test models on independent dataset
e Further stage 2 model training for improved results e [nvestigate saliency maps using SmoothGrad for stage 2 model interpretability
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