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How can agents coordinate their behaviour to achieve their individual and the
collective objectives of the system?

Motivation and Objective

Goal: To train RL agents to balance conflicting objectives in multi‐
agent environments.

Motivation: Robust reinforcement learning algorithms are required
to solve complex real‐world problems that necessitate coordination
among multiple agents as well as reasoning about their collective
and individual benefits.

Problem: These environments are challenging due to:

Divergent Rewards
Temporally and spatially extended, interdependent objectives
Severe non‐stationarity
Partial observability
Sparse Rewards

Case Study: Clean Up

Agents are rewarded for eating apples.
Apples grow at a rate based on the cleanliness of a nearby river.
The reward for cleaning the river is implicit.
There is a tension between the short‐term individual incentive and
the long‐term group interest.
A turn‐taking approach that benefits all agents would be an ideal
solution.

Figure 1. Clean Up Environment [1]

Current Approaches
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Figure 2. Training performance on Clean Up1

1Prosocial training uses the mean reward of all agents as a training signal. ACB is an actor‐critic baseline built on top of A3C [1]. RPM is a novel

MARL approach that randomly samples policies from a buffer [2]. Further details can be obtained from the papers.

Numerous baselines fail to perform meaningful learning.
Prosocial approaches have exhibited some success but such
methods struggle with credit assignment [1].
Agents should rather behave with a mixture of selflessness and
selfishness [3].

Proposed Approach

We propose:

Making the reward function explicit for all objectives.
Vectorising the reward function to handle‐trade‐offs and
incorporate preferences into the learning process [4].
Training a universal policy that is parametrised by preferences [5].
Introducing a high‐level controller that dynamically allocates
preferences to agents.
Semi‐sequential training for handling non‐stationarity.

FutureWork

Dividing agents into teams
Making the agents heterogeneous
Modelling the behaviour of agents in the environment
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