1 - Motivation and objective

Goal
- Develop a model for efficient real-time patient monitoring and delivering high-quality personalized healthcare.

Motivation
- Addressing growing medical knowledge, evolving diseases, and COVID-19 challenges for enhanced patient monitoring and personalized care.

Problem
- Increase in chronic diseases

2 - Medical data Analysis

DATASET
The study utilized the health data of 30 patients who were hospitalized during the COVID-19 period. Regular analyses were conducted on these patients to monitor the progression of their health condition.

PREPROCESSING
- Preparation and cleaning of patient data to enhance the quality and relevance of subsequent analysis and treatment outcomes.

Idea
- Dimension reduction (PCA)

Clustering
- Clustering similar patients into homogeneous subgroups. The aim is to identify hidden structures and patterns in the patients' data.

Choice of the metric
- Kmeans clustering
- Hierarchical clustering

Kmeans clustering
- Choice of K

Hierarchical clustering
- Choice of linkage method

Applying PCA to the data allows for simplifying their representation, identifying the most important variables, facilitating visualization, and enhancing the performance of subsequent analysis techniques.

3 - Clustering automation (Supervised learning)

Goal
- Assisting doctors in classifying patients based on their test results.

Logistic Regression
- Formula: \(P(y = 1|x) = \frac{1}{1 + e^{-(ax + b)}} \)

Random Forest Classifier
- \(\hat{y} = \arg \max_{k} \sum_{i=1}^{K} \left(\frac{1}{n_i} \right) \left(1 + \frac{1}{R(\epsilon)} \right) \)

Support Vector Machine
- \(\hat{y} = \arg \max_{k} \sum_{i=1}^{K} \left(\frac{1}{n_i} \right) \left(1 + \frac{1}{R(\epsilon)} \right) \)

4 - Predictions with Markov Process

TRANSITION MATRIX PROPERTIES
- \(M \) is a stochastic, regular, irreducible, and diagonalizable matrix. Its largest eigenvalue is equal to 1. According to the Perron-Frobenius theorem, the Markov Process with a transition matrix \(M \) has a unique steady state. This steady state is represented by the normalized form of the eigenvector associated with the eigenvalue 1.

DAILY PATIENT DISTRIBUTION OVERVIEW

FORECAST PATIENT HEALTH CHANGES

FORECAST PATIENT TRAJECTORY

Goal
- Facilitates proactive interventions and timely treatment adjustments for better patient care.

5 - Limitations and Perspectives

- Independence assumption neglects key factors impacting health outcomes.
- Assumption of stationarity in Markov models conflicts with the dynamic nature of healthcare.

Using advanced modeling techniques such as non-stationary hidden Markov processes or regime-switching Markov models.