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Introductions

Over the years, large language models (LLMs) have exponentially increased in data and computational

complexity. To ensure effective performance, most LLMs rely on abundant unlabeled text corpora,

which unfortunately are limited forAfrican languages [6]. Consequently, the absence or limited amount

of African languages during the pre-training phase of LLMs leads to poor performance in these lan-

guages, presenting a predicament for natural language processing (NLP) tasks [5]. This scenario has

been termed the ”low-resource double-bind” by [2] to capture the coexistence of data and computa-

tion limitations on resources. Despite its prevalence in the NLP setting for low-resource languages,

there is a notable lack of comprehensive research on the performance trade-offs involved.

A noteworthy initiative to address the scarcity of low-resource African languages in LLMs is the de-

velopment of AfriBERTa, a language model based on XLM-RoBERTa specifically tailored to these lan-

guages [7]. AfriBERTa stands out as the first multilingual language model trained entirely from scratch

on African languages, utilizing less than 1GB of data. Surpassing large language models like mBERT

[4] and XLM-R [3], AfriBERTa has demonstrated exceptional performance in text categorization and

named entity recognition (NER) tasks, producing competitive results. Remarkably, instead of rely-

ing on high-resource languages for transfer learning, AfriBERTa leverages linguistic similarities among

low-resource languages, leading to promising outcomes. This approach proves highly advantageous

for these languages and significantly impacts the sustainability of language models trained on limited

datasets.

In this work, we investigate the effects of pruning, knowledge distillation, and quantization on AfriB-

ERTa, a small-data language model exclusively trained on low-resource languages. Through a compre-

hensive series of experiments, we evaluate the effects of compression on model size, inference time,

and performance across various metrics beyond accuracy.

Objectives

1. How tiny can we construct a small-data model using the knowledge distillation framework?

2. What are the efficiency, performance, and generalization limits of pruning on a small-data model?

3. What are the optimal reductions we can achieve in model size and inference time utilizing

quantization methods without sacrificing accuracy?

Experimental Setup

For our experiments, we separately apply three compression techniques to the large and base AfriB-

ERTa models [7].

Compression Techniques
Pruning; unstructured magnitude pruning

Distillation; Task-specific and Task agnostic

Quantization; Dynamic Quantization and 8-bit Matrix Multiplication(LLM.int8())

Datasets
AfriBERTa Corpus [7]; Was used for distilling knowledge from teacher models

MasakhaNER [1]; Used for downstream evaluations.

Models; AfriBERTa base model and AfriBERTa large model.

Results for all experiments are average over three runs with different seeds.

Findings

Figure 1. Mean F1 scores of languages over sparsity levels.

The limits of pruning for small-data pre-trainedModels? We find that at 50% and 60% sparsity, the

model maintained consistent performance. Some languages also showed moderate performance at

90% and 95% sparsity, indicating the model’s potential robustness to pruning.

However, at 90% and 95% sparsity, certain languages like Yoruba and Luganda experienced sig-

nificant performance reductions, possibly due to their specific linguistic characteristics and sparse

datasets, making them more susceptible to pruning-induced degeneration.

To validate the findings, cross-lingual transfer experiments were conducted on AfriBERTa after prun-

ing. The study highlights the importance of considering each language’s unique qualities and dataset

when determining the ideal sparsity level for pruning to achieve aggressive pruning while maintain-

ing performance.

How does Pruning affect Out-of-Domain Generalization for this kind of model? The findings show

that pruning can have a positive effect on OOD generalization for some languages, but its benefits

are limited for others. Surprisingly, for many languages, including Swahili, pruned models perform

as well as or even better than the original dense model up to 60% sparsity, achieving between 85%

and 90% F1 score for Swahili.

However, for languages like Yoruba, which have higher linguistic complexity, even the dense model’s

performance is relatively low, with an F1 score of around 60%. The pruned models of such lan-

guages experience a significant drop in performance beyond 50% sparsity, revealing the challenge

of compressing models with intricate linguistic structures.

Distillation strategy Teacher #Layers #Att. Heads #Params amh hau ibo kin lug luo pcm swa wol yor avg

Task-agnostic AfriBERTa-base 4 4 83M 64.96 87.28 83.58 68.15 74.57 63.02 78.92 83.89 55.46 73.62 73.35

4 6 83M 64.23 87.34 83.84 67.59 74.60 60.00 79.40 84.00 57.21 73.38 73.16

6 4 97M 65.96 87.60 85.55 70.16 75.90 64.61 81.65 85.48 57.70 74.82 74.94

6 6 97M 66.92 87.91 85.28 69.81 77.19 68.40 81.72 85.08 60.28 75.47 75.81

AfriBERTa-large 4 4 83M 65.28 87.28 84.15 68.83 73.82 63.79 79.80 84.13 56.30 73.43 73.68

4 6 83M 65.25 87.62 84.28 68.82 74.66 62.60 78.88 84.07 55.11 73.85 73.51

6 4 97M 69.38 88.25 85.08 69.49 75.44 63.87 82.71 85.87 56.42 73.89 75.04

6 6 97M 71.98 88.72 85.76 71.76 78.30 68.10 84.24 87.07 61.45 77.61 77.50

Task-specific AfriBERTa-base 4 4 83M 65.04 87.12 83.13 67.62 75.01 62.90 78.19 83.96 54.04 69.22 72.62

4 6 83M 65.52 87.27 83.93 68.18 75.56 63.78 79.03 83.70 57.46 69.98 73.44

6 4 97M 67.28 87.27 85.72 71.68 77.18 66.58 81.85 84.92 60.20 74.78 75.75

6 6 97M 69.45 88.23 85.47 69.88 74.90 65.79 82.27 85.36 59.12 76.25 75.67

AfriBERTa-large 4 4 83M 65.66 87.60 83.42 67.38 74.28 62.37 79.62 83.78 55.72 72.89 73.27

4 6 83M 71.20 88.27 84.66 70.70 77.11 65.58 82.09 86.06 58.00 76.21 75.99

6 4 97M 69.38 88.25 85.08 69.49 75.44 63.87 82.71 85.87 56.42 73.89 75.04

6 6 97M 72.58 88.33 86.05 71.16 78.56 69.87 84.03 86.32 61.49 76.66 77.51

Table 1. Results for the distilled models on NER task across 10 languages. The scores are averaged over 3 runs using

different seeds. The best student variant for each teacher is highlighted, and the best variant for each strategy is

underlined.

How small can we make these models? We investigate this with two variations of distillation (task

agnostic and task-specific) with the intent of maintaining competitive performance. Considering the

ablation study in [7], we achieved up to 31% compression with only a 7% performance drop for the

least-performing student model and a 1.9% decline compared to the best-performing original AfriB-

ERTa model at 22% compression. The comparison between teacher and student models shows very

competitive scores, with minimal differences for some languages. Interestingly, the student model

trained by the large teacher even outperformed the base teacher on certain languages. Addition-

ally, the task-agnostic models performed better in terms of F1 score compared to the task-specific

models, with relatively minor differences.

Who is the best teacher? We examine the effectiveness of both base and large models at teach-

ing the student models. The AfriBERTa large model produced the best-performing student but had

a small 1.9% performance decline compared to the original AfriBERTa large model. However, the

best-performing student by the base model only showed a 1.3% performance drop compared to

the original base teacher, indicating that the base model is relatively better at transferring its knowl-

edge to its students. As the attention head and layer ratio reduced, students taught using the base

model caught up to those using the large model, with no noticeable difference in performance.

These findings suggest that, when condensing knowledge into a compact student model with fewer

parameters, the base model might be a more effective instructor. The instructor model selection

significantly influences the performance of student models.

Language Baseline Dynamic LLM.int8()

amh 26.01 12.78 13.27

hau 31.08 19.99 13.31

ibo 31.84 21.67 15.03

kin 27.19 20.95 16.85

lug 21.10 12.35 10.62

luo 22.40 5.53 5.47

pcm 41.70 17.96 16.34

swa 35.50 20.14 17.37

wol 25.38 20.95 14.78

yor 34.45 23.14 18.36

Inference Time Comparison (ms) for the

Different Quantization Methods

Language Baseline Dynamic LLM.int8()

Amh 73.36 68.02 73.28

Hau 89.93 85.35 89.95

Ibo 86.96 82.21 86.88

Kin 73.98 61.58 73.91

Lug 79.78 68.94 79.83

Luo 70.04 42.40 69.77

Pcm 85.23 74.37 85.18

Swa 87.89 84.58 87.93

Wol 61.73 47.36 61.71

Yor 80.76 65.10 80.74

Inference Time Comparison (ms) for the

Different Quantization Methods

The effects of quantization on model performance and inference speed? We see the performance

of quantized models vary across languages, with some outperforming the original dense model while

others perform worse with negligible differences. The LLM.int8() shows superiority over dynamic

quantization in terms of F1 scores, loss, and inference time across all languages, it achieves a 64.08%

model size reduction and 52.3% inference time reduction. Quantization significantly reduces infer-

ence time for all languages, making it an effective technique for optimization even for small data

pre-trained models for deployment on resource-limited devices. However, there is no one-size-

fits-all solution, as quantization performance depends on factors like language, data type, and the

quantization technique used.

Conclusion

We examined the impact of pruning, knowledge distillation, and quantization on the small-data lan-

guage model, AfriBERTa, for low-resource languages. Our findings provide support to other findings

relating to some of the works of compression on larger models as we extend those experiments to

small-data pre-trained language models and find that these compression techniques also effectively

improve the efficiency and performance of small-data models while maintaining a balance between

efficiency, accuracy, and generalization capabilities.
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Limitations

Some of the limitations of our work are;

We solely focus on NER as the NLP task and no introduction of a new technique

lacks coverage of language families beyond the selected 10 African languages, etc.
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