

Weak labeling for cropland mapping in Africa

Gilles Hacheme¹, Girmaw Abebe Tadesse¹, Caleb Robinson², Rahul Dodhia², and Juan Lavista Ferres² ¹ Microsoft, AI for Good Lab, Nairobi, Kenya² and Microsoft, AI for Good Lab, Redmond, USA³ {ghacheme, gtadesse, caleb.robinson, rahul.dodhia, jlavista}@microsoft.com

Abstract

• Cropland mapping is crucial for environmental, agricultural, and food security policies in Africa.

Using K-means to Strengthen Weak Labels

- Unfortunately, most previous cropland maps for Africa are low or medium-resolution.
- Building higher-resolution cropland mapping typically requires extensive human labeling, which is a significant bottleneck for scalability.
- To address this challenge, we propose a method that improves existing weak labels using K-means clustering to train higher-resolution cropland mapping models.

• Our results demonstrate the added value of this approach for large-scale cropland mapping.

Introduction

- Accurate cropland mapping through high-resolution satellite imagery is crucial for environmental and food security policies in Africa.
- Existing methods offer low to medium-sized resolution and require extensive human labeling, which hinders large-scale cropland mapping.
- We propose a method that leverages K-means clustering to improve weak labels and train higherresolution deep semantic segmentation cropland mapping models.

Problem Statement

Consider an area of interest (AOI) represented by a $k \times k$ dimensional matrix A where a_{ij} is the pixel from A located at (i, j). We assume that we have a corresponding mask M with the same dimen-

K-means clustering to improve weak labels

- We use weak labels obtained from The Nature Conservancy (TNC) and Planetscope Basemap imagery provided by Norway's International Climate and Forests Initiative (NICFI).
- K-means clustering is used to improve existing weak labels and create better boundaries.

Simulation Experiments

- 1. Human labels: we train the model on the AOI with the complete set of human labels, and we evaluate on the exact same AOI.
- 2. Human mined labels: we train the model on the AOI with the complete set of human labels and improved weak (mined) labels.
- 3. Human mined negative labels: we train the model on the AOI with the complete set of human labels and improved weak (mined) negative labels (i.e., Non-cropland labels only).
- 4. Human mined positive labels: we train the model on the AOI with the complete set of human labels and improved weak (mined) positive labels.
- sions, where each pixel from $M, m_{ij} \in \{0, 1, 2\}$, and where 0 = unknown, 1 = non cropland, 2 = cropland. In a cropland mapping semantic segmentation problem, let's consider the distribution of M's pixels in different scenarios:
- 1. Complete ground truth (CGT): we would like the distribution of m_{ij} to be $\{0:0,1:1-p,2:p\}$, where $p \in [0,1]$ is the ground truth proportion of pixels covering croplands.
- 2. Complete labeling (CL): in this case, we may want to label through a labeling tool every single pixel a_{ij} . In this case, we can reasonably assume that the distribution of m_{ij} is $\{0:0,1:1-(p-\epsilon),2:p-\epsilon\}$ where $(p-\epsilon) \in [0,1]$ and $\epsilon \in [0,1]$ is the level of noise (mislabels) introduced by the labeling.
- 3. **Partial labeling** (PL): in this case, labeling is not performed on the whole AOI, which is often the case in real-life settings. So, the distribution of m_{ij} is $\{0 : q, 1 : 1 - (p - \epsilon + \alpha q), 2 : p - (\epsilon + (1 - \alpha)q)\}$ where $(p - (\epsilon + (1 - \alpha)q)) \in [0, 1]$, and $q \in [0, 1]$ is the share of unknown/unlabeled pixels.
- 5. Human TNC labels: we train the model on the AOI with the complete set of human labels and TNC's raw positive weak labels.
- 6. Human TNC mined negative labels: we train the model on the AOI with the complete set of human labels, TNC's raw positive weak labels, and the improved weak (mined) negative labels.
- 7. Half human labels [mined [negative/positive] labels]: we conduct the same experiments as previously but with only half human labels. This case is for simulating more realistic real-world scenarios where we only have a fraction of the whole data labeled by humans.

Conclusion

Our proposed approach addresses the human labeling bottleneck for scaling cropland mapping.
By improving existing weak labels, we can train higher-resolution cropland mapping models.
Our approach could be an essential tool for large-scale cropland mapping in Africa.

		%Pixels H	luman Labe	els Mined	Labels Hu	uman Area	Mined Area	F1 score	Precision	Recall
Experiment	Label									
Human labels	Cropland	4.056	67	0		7.093	0.000	0.980	1.000	0.960
	Non-Cropland	l 95.944	26	0		167.764	0.000	0.991	1.000	0.982
Human mined labels	Cropland	4.056	67	60	6	7.093	11.016	0.979	0.999	0.960
	Non-Cropland	l 95.944	26	36	9	167.764	6.702	0.991	1.000	0.982
			%Pixels H	uman Labels	s Mined La	abels Human	Area Mined A	rea F1 scor	e Precision	Recall
Experiment		Label								
Half human labels		Cropland	4.056	34	0	3.43	9 0.000	0.533	0.408	0.767
		Non-Cropland	d 95.944	13	0	84.29	0.000	0.962	0.991	0.935
Half human mined labels	5	Cropland	4.056	34	606	3.43	9 11.016	6 0.694	0.553	0.931
		Non-Cropland	d 95.944	13	369	84.29) 0 6.702	0.974	0.999	0.950
Half human mined negat	tive labels	Cropland	4.056	34	606	3.43	9 11.016	6 0.841	0.916	0.777
		Non-Cropland	d 95.944	13	369	84.29	6.702	0.985	0.992	0.979
Half human mined positive labels		Cropland	4.056	34	606	3.43	9 11.016	6 0.324	0.196	0.929
		Non-Cropland	d 95.944	13	369	84.29) 0 6.702	0.901	0.998	0.821
Half human TNC labels		Cropland	4.056	34	0	3.43	9 0.000	0.289	0.170	0.960
		Non-Cropland	d 95.944	13	0	84.29	0.000	0.880	1.000	0.785
Half human TNC mined	negative labels	Cropland	4.056	34	606	3.43	9 11.016	6 0.581	0.417	0.959
		Non-Cropland	d 95.944	13	369	84.29	6.702	0.961	1.000	0.925
Note: Some experiment rows have been removed from the table for conciseness. Areas are in km^2 .										

Deep Learning Indaba Conference 2023, Accra — Ghana