
Match identity explains the response
process in continuous orientation recall:

a Bayesian inference framework
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Introduction

An organism’s reproduction R of a stimulus S is not exactly S;
there is systematic behavioural variability.

S X R
stimulus internal representation response

1. How do humans use the posterior to make a response?

•Deterministic e.g. Mean, mode or median

•Posterior sampling

2. Consider including a participant’s reporting tool, the match.
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If distributional beliefs are all you need, changing stimulus
features in the match should not matter.

Visual orientation reconstruc-
tion task with different matches

Participants are cued to reconstruct one of two remembered
visual orientation gratings (S ∼ U(−90, 90]) by rotating a
match, which can be a grating or Gabor.

This task and similar ones produce the well-known picture of
bias away from cardinal (horizontal and vertical) orientations.
Various models aim to explain this bias, e.g via efficient coding
(e.g. Taylor and Bays, 2018), but cannot account fully for how
participants choose responses.

We use ideas from Bayesian inference to create models for
psychophysical (behavioural) data.

We directly recover likelihood functions from the joint
sample-response histogram, which participants may combine
with an internal prior to create a posterior – their response.

What statistic do participants use from the likelihood function
(histogram rows) to decide their response? We can compute
the mean as the circular mean and the mode using a kernel
density estimate with von Mises kernels.

Expectations of distributional beliefs
can explain participant responses

Responses with a grating match stimulus correspond to the
mean of the likelihood function rather than the mode.

We fail to find significant Fourier coefficient magnitudes for
the error between likelihood function mean and true response,
comparing the bootstrapped distribution to a constructed null
0-error distribution – the error is consistent with a constant, 0.

We replicate agreement with the mean decision rule when the
stimulus is a Gabor and the match a grating: it is
match-dependent.

Responses seem to be distributionally accurate in expectation,
employing a uniform (flat) internal learned prior, in
contradiction with statistical learning theory.

Posterior sampling can-
not explain the data

Additionally, posterior sampling cannot explain the data.
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Random sampling is symmetric up to how S are produced, so
the joint histogram should be symmetric for a uniform prior, yet
it isn’t. No prior Qr can be fitted that reconciles the result.

Surprisingly, results
depend on match identity

The mean of the likelihood function does not explain responses
when the match is a Gabor.

We replicate violation of the mean decision rule when the
stimulus and match are both Gabors: it is match-dependent.

Responses are pushed away from cardinal relative to the
likelihood function mode or mean.

The optimally fitted prior is anti-
cardinal, contradicting literature

What if we employ a non-uniform prior on the Gabor match
likelihood functions, then take the mean of the posterior?

Given r = E
[ ∫

eiSF (S|r)pinternal(S)dS
]
∀r, where F (S|r) is

the likelihood function, we fit an optimal learned prior pinternal
using gradient descent. In particular, given the loss we find
pinternal = argminpint L(pint(S)), where
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∑
r
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(
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)2

+λGPloss

The Gaussian Process loss regularisation uses a RBF kernel –
purpose is to smooth the fitted prior. We have to normalise the
prior density to 1, but only at the end of the descent algorithm.

The optimal prior is anti-cardinal, contradicting previous
findings based on statistical learning that priors are
pro-cardinal (Girshick et al., 2010).

Which other models could account
for anti-cardinal response shifts?

1. The following models cannot work:

(a) Serial one-back effects (conditioning on most recent R orientation)
biases cardinally.

(b) Adding symmetric response noise (ϵR) biases cardinally.

(c) Selectively switching strategy for stimuli and matches of the same
identity, i.e. pixel-matching (De Gardelle, 2010).

2. Current work involves exploring:

(a)Higher-order (cosine) loss functions between response and
stimulus internal distributions (Hahn and Wei, 2022), e.g.

cosP (θS, θM ) = (1− cos (θS − θM ))
P
2 .

(b) Incorporating uncertainty in the internal representation of the
match (Mao and Stocker, 2022): optimise/grid search von Mises κs in

p(R∗|S) =
∫∫∫

p(R∗|R)p(R|XM)p(XM |XWM)p(xWM |S)dRdXMdXWM .
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Conclusions

•A probabilistic ML and Bayesian inference lens and using
machine learning techniques like optimisation and Gaussian
processes is informative for neuroscience studies.

•A circular, continuous report dataset allows for identification
of complete likelihoods.

• Surprisingly, changes in match identity affect response
strategy. Match characteristics that may be important could
include spatial frequency and Gaussian envelopes.

•To our knowledge, in existing models that might explain the
influence of a match, responses are shifted towards cardinal
(if at all). This cannot account for the anti-cardinal effect
when participants rotate a Gabor match.
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