

Metabolomic analysis of *T. congolense* treated with isometamidium chloride and in silico modeling of potential drug targets

Laurah N. Ondari^{1,2*}, Suhaila O. Hashim², Pieter Steketee³, Daniel Masiga¹, Michael P. Barrett⁴

¹International Center of Insect Physiology and Ecology (*icipe*), ²Department of Biochemistry and Biotechnology, Pwani University. P.O. Box 195-80108 Kilifi, Kenya, ³The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK, ⁴School of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK londari@icipe.org

INTRODUCTION

- Animal African Trypanosomiasis (AAT) is a serious and fatal parasitic disease in Africa that is transmitted by *Glossina* species.
- AAT is caused by various Trypanosoma species including T. congolense, T. *vivax*, and *T. brucei*¹. The disease affects about 50 million animals and causes losses of about 4.5 million USD p.a¹.
- Six compounds are licensed for treatment of AAT and the most commonly used are diminazene aceturate (DZ) – first-line drug, isometamidium chloride (ISM) – for prophylaxis and treatment, and homidium salts.
- Control against AAT is heavily dependent on chemotherapy with \sim 35 mil.

RESULTS

doses/yr administered to prevent progression in endemic areas². However, efforts to eliminate AAT have been hindered by resistance, toxicity, poor efficacy, and limited knowledge or lack thereof of the mechanism of action (MOA) of existing drugs.

OBJECTIVES

- To investigate how **ISM** impacts the metabolome of *T. congolense* and identification of potential drug targets.
- To infer the interaction mechanisms of **ISM** against identified drug targets through in silico modeling.

Figure 1: a. Treated samples clustered closely on the Principal Component Analysis (PCA) plot where 49.8% variance was observed between the first 2 principal components. **b.** Clustering heatmap of dysregulated metabolites showing distinct clustering between the control and treatment groups.

2. Can metabolomic analysis aid the identification of ISM drug targets? Why do NTPs decrease and NMPs and un-phosphorylated nucleosides increase?

autoscaling

- PCA, One-way ANOVA with Tukey's HSD post hoc
- Volcano plot analysis
- Clustering heatmap

BIOVIA

Molecular docking and visualisation

CONCLUSIONS

- Statistical and metabolomic analysis identified possible competitive inhibition of \bullet the *T. congolense* glucose transporter which was further evidenced in the molecular docking assay where isometamidium chloride interacted with the same substrate binding site as glucose.
- Owing to the lower energy of binding displayed by isometamidium chloride it is possible that isometamidium chloride has a higher competitive affinity for TcoHT1 compared to glucose.

Figure 2: **a.** Classic glycolysis in PCF *T. brucei* that is hypothesized to resemble BSF T. congolense³. **b.** The nucleotide phosphorelay system in Pseudomonas fluorescens⁴.

3. Interaction of ISM and the T. congolense glucose transporter (TcoHT1)

Figure 3: a. Interactions of glucose with the predicted T. congolense glucose

IMPACT

- Metabolomic and molecular docking analyses show that **ISM** impacts the metabolome of *T. congolense* by interacting with the substrate binding site of the glucose transporter.
- This study identified the potential drug target for **ISM**. These findings provide new insights into the mechanism of action of **ISM** and suggest avenues for future drug development efforts.

International Centre of Insect Physiology P.O. Box 30772-00100, Nairobi, Kenya

E-mail: <u>icipe@icipe.org</u>

www.icipe.org

transporter (TcoHT1)(-5.7 kcal/mol). b. Interactions of ISM with the predicted T. congolense glucose transporter (TcoHT1) (-10.1 kcal/mol).

ACKNOWLEDGEMENT

We gratefully acknowledge Glasgow Polyomics who generated the data used in this study.

REFERENCES

- 1. Yaro et al., (2016). Veterinary Parasitology, 225, 43–52.
- 2. Richards et al., (2021). Trends in Parasitology, 37(9), 831–843.
- Michels et al., (2021). Experimental Parasitology, 224.
- 4. Appanna at al., (2016). Archives of Biochemistry and Biophysics, 606, 26–33.

