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Background of the Problem

Tuta Absoluta threatens tomato productivity globally.

Originated from South America then spread swiftly to the rest of the world

(Desneux, 2011).

It causes a heavy loss in tomato produce ranging from 80% to 100%.

Farmers are giving up production due to costs and losses it causes in tomato

production.

Excessive use of chemicals develops pests’ resistant.

Limited agriculture extension services.

No effective way for early detection and quantification of Tuta Absoluta’s

damage.

Figure 1. Lava the most dangerous stage of Tuta Absoluta’s life cycle.

Therefore, an early detection and quantification solution using Computer vision.

Targeted SDGs

RelatedWorks

Role of Deep Learning on plant diseases diagnostics

Deep learning methods (AlexNet, GoogleNet, CaffeNet) for early identification

and classification of plant diseases (Brahimi, 2017; Sladojevic et al., 2016).

Mkonyi et al. (2019) developed a VGGNet model for early identification of

Tuta absoluta on tomato plants. 91.9% accuracy.

A ResNet50 multi tasking system for identifying and estimating plant disease

severity (Liang et al., 2019).

A CNN multitask system for classification and severity estimation (Esgario et

al., 2020).

Conceptual Framework

The Dataset

Study area – Arusha and Morogoro, Tanzania.

Two (2) inhouse experiments were set up in Arusha and Morogoro regions.

Dataset - 5335 tomato images.

Material - Canon EOS Canon EOS Kiss X7 - High resolution (5184 x 3456).

Figure 2. Different tomato leaf images of different dates.

The images were labelled into healthy and infested classes. Then annotated using

Labelme VIA tools, resized and augmented.

Figure 3. Image Annotations.

Research Methodology

Model Development

U-Net for Semantic Segmentation.

Mask RCNN for Instance Segmentation.

Model Evaluation

U-Net - IoU & Dice Coefficient/F1-Score.

Mask RCNN - mean Average Precision (mAP).

U-Net Loss Function:

L =
m∑

i=1
−(yilog(pi) + (1 − yi)log(1 − pi)) (1)

Mask RCNN Loss Function:

LT =
∑

i

Lcls(pi, gi) +
∑

i

giLreg(ti, t∗
i ) +

∑
i

giLmask(mi, m∗
i ) (2)

Results

U-Net Loss Results

Figure 4. Training and validation loss for U-Net.

Mask RCNN Loss Results

Figure 5. Loss graph for (a) Mask RCNN-ResNet50, (b) Mask RCNN-ResNet101, (c) Mask RCNN-Resnet50 with augmentations, and (d) Mask

RCNN-Resnet101 with augmentations.

Evaluation Metrics

Method(s) mAP (%) IoU (%) F1-Score(%)

Mask RCNN-ResNet50 81.01

Mask RCNN-ResNet50 with augmentations 85.67

Mask RCNN-ResNet101 81.09

Mask RCNN-ResNet101 with augmentations 83.60

U-Net 78.60 82.86

Table 1. Evaluation Metrics Results.

Figure 6. Sample segmentations carried out by the proposed Mask RCNN model.

Conclusion and FutureWork

Taking appropriate control measures early could reduce costs, rescue farmers

from losses and improve tomato productivity.

Further improve robustness of the proposed model by expanding the diversity

of tomato pests and diseases.

In the future - Develop an expert system that suggests control measures based

on estimated severity. Link farmers with nearby agrovet shops.
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