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Idea

We train a word embedding [1] on

Speaker Landscape

speech data extended by a token
representing the speaker.

The resulting speaker-token
embedding, which we call “speaker
landscape” [2], positions speakers
who speak similarly closely
together.
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We want to find out if this model
can help us to investigate political
polarisation.
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Word Embedding

Case study

We trained a speaker landscape
using quotes extracted from
Media Monitoring Africa’s
Southern African database of
digitized print and online news
media (2013-2021).

Pretraining was performed with
~3 Mio general quotes, after
which we fine-tuned the model
with 3356 quotes related to the
land debate in South Africa.

The plot on the left shows a
2-dimensional visualisation of
the landscape. Each dot
represents an embedded
speaker-token. N-grams from
the word embedding were
added to give context.

While speaker landscapes are solely measuring how similarly individuals speak, they expose complex social patterns. For example, the above

case study suggests that:

Speech similarity correlates well with political affiliation.

The landscape clearly distinguishes speakers by their party. As expected, South African opposition parties (Democratic Alliance, Economic Freedom Fighters, Freedom Front Plus) as well as the
traditional authorities appear spatially clustered, while the ruling party (African National Congress) is spread out.

Speech similarity carries a signature of polarisation.

The Democratic Alliance and Economic Freedom Fighters, whose political dispositions are very distinct — pro-capital versus pro-poor respectively — are placed at the polar ends of the landscape.

Speech similarity reflects political allies and outliers.

For example, Mmusi Maimane who left the Democratic Alliance in 2019 is located far away from the blue cluster; Nazier Paulsen, an Economic Freedom Fighters member in the Western Cape
parliament shares the language of the ruling Democratic Alliance; and Andile Mngxitama who was previously part of the Economic Freedom Fighters is still closely positioned with them.

We reproduced similar results in other case studies [3, 4], suggesting that speaker landscapes are a promising tool for social science research.
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