
Adaptive Storage Optimization Scheme for
Blockchain-IIoT Applications Using Deep

Reinforcement Learning
Nana Kwadwo Akrasi-Mensah * et al.

*Distributed IoT Platforms, Privacy and Edge-Intelligence Research (DIPPER) Lab,
Faculty of Electrical and Computer Engineering, KNUST.

Background

Blockchain‐IIoT integration into industrial processes promises greater security, transparency, and trace‐
ability, particularly in collaborative production systems such as food supply chains. In the blockchain,
a network of peers maintain a decentralized ledger as each peer stores a full copy of the ledger. The
ledger can only be appended to and is updated through the consensus of the peers in the network.
Data generation may exceed the peers’ capacity to store blocks in the high transaction environment of
IIoT networks, which would limit the involvement of devices with limited resources, such as low‐power
IoT devices. Literature has proposed utilizing cloud storage systems to mitigate the storage pressure
on peers in IoT systems. However, this increases latency and impacts the blockchain’s performance
[1].

Block Selection Problem

The block selection problem is an optimization problem in which the conflicting objectives of query
probability of blocks in the cloud, cloud storage cost, and local space occupancy should be minimized
while selecting M, the ideal set of blocks to transfer to cloud storage, out of N, the total number of
blocks on the blockchain.

min (OM , PM , CM),
s.t. 1 ≤ M ≤ N . (1)

Figure 1. Bi‐directional Block Selection: (a) The agent selects a locally stored block and moves it to the cloud. (b) The
agent selects a block stored in the cloud and moves it to local storage.

Proposed Approach Using DRL

In this work, DRL is proposed as an alternative to the evolutionary algorithms introduced in [2] and
[3] for solving the multi‐objective optimization problem of block selection for storage optimization in
blockchain‐IIoT systems [1]. This approach may offer benefits over evolutionary algorithms and custom
heuristics such as a shorter runtime, strong generalization ability and scalability [4].

Figure 2. DRL‐based Storage Optimization Scheme

MDP Formulation

An MDP can be defined by the 4‐tuple (S, A, P , R), which corresponds to the state space, action
space, state transition function and reward function.

The system state s, at any given time step t, can be denoted by:

st = [Ft, st, Bt], (2)

where Ft = {F1t, . . . , FNt
}, st = {s1t, . . . , sNt

} and Bt = {B1t, . . . , BNt
}. Ft represents the initial

query frequency of a block, st represents the size of the block and Bt represents the block status.

The agent needs to select an action at every time step. The actions available to the agent is given
by the discrete set of block numbers. The action is given by the number of the block to be selected.
If no block is selected, the action is represented by zero.

at =

{
k, 1 ≤ k ≤ N ,
0, no block selected.

(3)

The reward function is given by:

R = α(1 − PM) + β(1 − CM

Cmax
) + γ(1 − OM). (4)

α, β and γ represent the objective function weights for denoting the importance of each objective
relative to the other objectives and are such that α + β + γ = 1.

rt =

R, DU < DL and CM ≤ CL,
−R, DU ≥ DL and Cs = 0,
(DL−DU

DL
) × R, DU ≥ DL and Cs > 0,

0, CM > CL.

(5)

Results and Conclusion

The simulated environment for training was implemented in Python using OpenAI’s Gym. The agents
based on the proposed DRL algorithms were also implemented in Python using Stable Baselines3
which is based on PyTorch. The DRL agents used in our approach were first trained over 50,000 time
steps before being evaluated.

Parameter Value
N 200 blocks
Ns 300 blocks
D 300MB

savg 1MB
Mb $0.1766 per 100MB
θ 0.1

DL 150MB
CL $0.1766
α 0.5
β 0.2
γ 0.3
F0 0.95
sbi

1KB < sbi
≤ 2MB

Bi (0,1)

Table 1. Optimization Parameters

Algorithm Run‐time
PPO 46.7s
A2C 53.6s

AT‐MOPSO 384.2s
NSGA3 474.1s

Table 2. Run‐time of DRL Algorithms and Evolutionary
Algorithm

On average, the A2C agent received higher rewards than the PPO agent. However the PPO agent
showed improvement over the course of the test and received a higher reward at the end of the test
compared to the A2C agent.

Figure 3. Rewards obtained by trained agents over 200 episodes

(a) (b)

(c) (d)

Figure 4. Comparison of algorithms on objective functions and storage reduction

The significant storage reduction achieved and the fast execution time of the trained model makes
this approach a better solution for the block selection problem in blockchain‐IIoT environments where
speed and efficiency are critical. The short execution time also means less energy is consumed in
computation.

References

[1] N. K. Akrasi‐Mensah, A. S. Agbemenu, H. Nunoo‐Mensah, E. T. Tchao, A.‐R. Ahmed, E. Keelson,
A. Sikora, D. Welte, and J. J. Kponyo, “Adaptive storage optimization scheme for blockchain‐iiot
applications using deep reinforcement learning,” IEEE Access, vol. 11, pp. 1372–1385, 2023.

[2] M. Xu, G. Feng, Y. Ren, and X. Zhang, “On Cloud Storage Optimization of Blockchain with a
Clustering‐Based Genetic Algorithm,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8547–8558,
2020.

[3] C. Nartey, E. T. Tchao, J. D. Gadze, B. Yeboah‐Akowuah, H. Nunoo‐Mensah, D. Welte, and
A. Sikora, “Blockchain‐IoT peer device storage optimization using an advanced time‐variant
multi‐objective particle swarm optimization algorithm,” EURASIP Journal on Wireless
Communications and Networking, vol. 2022, no. 1, 2022. [Online]. Available:
https://doi.org/10.1186/s13638‐021‐02074‐3

[4] K. Li, T. Zhang, and R. Wang, “Deep Reinforcement Learning for Multiobjective Optimization,”
IEEE Transactions on Cybernetics, vol. 51, no. 6, pp. 3103–3114, 2021.

DIPPER Lab Faculty of Electrical and Computer Engineering, KNUST – Kumasi, Ghana https://dipperlab.knust.edu.gh

https://doi.org/10.1186/s13638-021-02074-3
https://dipperlab.knust.edu.gh

