Incremental Learning-Based Algorithm for Anomaly Detection Using Computed Tomography Data

Oluwabukola G. Adegboro, Abderrazak Chahid, Hossam A. Gabbar, Jing Ren

Smart Energy Systems Lab, Ontario Tech University (UOIT)

Contact Email: Hossam.Gaber@ontariotechu.ca Address: 2000 Simcoe Street North, Oshawa, ON, L1G0C5, Canada.

Introduction

Why Incremental Learning (IL)?

- Preserves past knowledge [1]
- Suitable for limited-memory or data restriction applications [2].
- Dynamically improves the predictions.

Contribution:

A new and dynamic thresholding scheme that can be integrated into existing continual learning methods to enhance model performance.

Results										
		Nons	selective Scheme	Selective Scheme						
Model	Method	Baseline	Soft Threshold	Selective Baseline	Selective Soft Threshold					
	EWC	84.44 ± 0.91	84.79 ± 1.38	79.26 ± 5.87	79.79 ± 1.88					
	Online EWC	82.97 ± 0.35	84.05 ± 1.71	79.76 ± 0.83	82.61 ± 1.16					
MLP	SI	83.43 ± 0.74	82.48 ± 1.65	81.57 ± 1.48	82.63 ± 0.13					
	MAS	83.45 ± 2.93	83.44 ± 1.54	82.34 ± 0.95	78.73 ± 2.85					
	EWC	99.06 ± 0.23	98.98 ± 0.28	93.44 ± 0.98	94.64 ± 1.56					
ResNet	Online EWC	98.99 ± 0.16	98.79 ± 0.12	91.83 ± 2.64	93.18 ± 1.51					
	SI	98.87 ± 0.28	99.29 ± 0.05	92.55 ± 1.34	91.78 ± 1.23					
	MAS	98.50 ± 0.57	98.91 ± 0.05	93.22 ± 0.50	93.84 ± 0.60					

Fig. 1: Domain Incremental learning. (Adapted from [3]).

Dataset:

• CT scan of Nuclear Power Plant tools with defect-free and defective parts.

Proposed Method

IL Framework: 'Soft Thresholding' and 'Selective Soft thresholding'

Fig. 3: Performance comparison using the ResNet18 architecture [4].

Confidence score = Minimum accuracy of the latest 5 testing accuracies.

	Experiment	MLP		ResNet	
	Baseline	SI	83.43	EWC	98.30
Confidence	Selective	MAS (S)	81.91	EWC (S)	93.44
Score	Soft Thresholding	EWC (+)	82.81	EWC (+)	98.30
	Selective Soft Thresholding	EWC Online (S+)	82.61	EWC Online (S+)	93.18

Discussion

Fig. 2: Flowchart - soft thresholding (without yellow box) and selective soft thresholding (with yellow box) [4].

Last Task (T18) Accuracy:

- The soft thresholding algorithm enhanced some baseline IL methods.
- SI had the overall highest last task accuracy of 99.29% using Resnet18.

Confidence Score:

- EWC(+) and EWC outperformed other methods with C= 98.30%.
- However, EWC(+) had a more stable performance by T5, unlike EWC which dropped at task 5 (T5) but recovered afterward.

Future Work

 Analyze the proposed scheme for multiclass or multilabel classification tasks and adapt the proposed scheme for reinforcement learning tasks.

Conclusion

- The new soft thresholding scheme can optimize the model prediction of existing CL frameworks.
- The proposed scheme could achieve a steady performance around the desired prediction accuracy for supervised-based anomaly detection using CT images.

 $dataset = [data_{old}, data_{new}]$ scan selection end ◊ Initializations $cnt = 0; C_{op} = 0$ Split the dataset into training and validation set $train_{set}$, $validation_{set} = dataset$ while $cnt < R_{max}$ or $C_{op} < C_{th}$ do ◊ Train the model $model_{path} = train the model (train_{set}, model_{path})$ cnt + = 1◊ Compute the model confidence C_{op} , model_{op} = test the model (validation_{set}, model_{path}) end **return** C_{op}, model_{op}

Algorithm 1: Proposed Soft Thresholding Scheme (left) & Optimal Scan Selection (right)

end

else

end

return dataset_{op}

while $data = \emptyset$ do ♦ Evaluate the model confidence *acc, data* = evaluate (*model*_{path}, *data*_{old}) ♦ Increase the accuracy threshold $acc_{th} += 5$ ♦ Re-select the optimal scans with $acc \leq acc_{th}$ if $data = \emptyset$ then $dataset_{op} = data_{old}$ $dataset_{op} = data$

*model*_{path}: trained model

*acc*_{th}: maximal accuracy threshold

Reference

- 1. M. Delange et al., "Continual Learning Survey: Defying Forgetting in Classification Tasks," IEEE Trans. Pattern Anal. Mach. Intell., 44, 3366–3385, 2022.
- 2. E. Belouadah, "Large-Scale Deep Class-Incremental Learning", Computer Vision and Pattern Recognition [cs.CV], Thesis, Ecole Nationale Supérieure Mines-Télécom Atlantique, Paris, France, 2021.
- 3. Y.-C Hsu, Y.-C Liu, A. Ramasamy, Z. Kira, "Re-evaluating Continual Learning Scenarios: A Categorization and Case for Strong Baselines," arXiv 2019, arXiv:1810.12488.
- 4. H. A. Gabbar, O. G. Adegboro, A. Chahid, and J. Ren, "Incremental Learning-Based Algorithm for Anomaly Detection Using Computed Tomography Data," Computation, vol. 11, no. 7, p. 139, Jul. 2023.

Acknowledgement: We acknowledge the amazing support of our lab members, Mitacs, Google, NVS Canada, Diondo and Fraunhover, Germany.