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Abstract Evaluation and analysis

Self-supervised speech representation learning aims to discover representations of unlabeled speech.
HUBERT, an English-based self-supervised speech representation learning approach is said to out-
perform other state-of-the-art systems on downstream tasks such as ASR and speech synthesis. Its
approach utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction
l0ss. It applies the prediction loss over the masked regions only, which forces the model to learn a
combined acoustic and language model over the continuous inputs.

1. Phone Purity, Phone Purity quantifies how consistent the phone labels are within a cluster, which
means how often the frames in a cluster are assigned the same phone label.Higher phone purity
indicates that frames in a cluster mostly share the same phone label

2. Unit Purity quantifies how consistent the larger linguistic units are within a cluster. How well the
representations group together similar linguistic units low unit purity would indicate that the

frames within a cluster are more diverse in terms of the linguistic units they represent.
These learnt sequences of discrete units have been evaluated to capture sub-phonetic events such 3

as the distinct closure and release portions of plosives in English language. While certain speech
sounds are similar to English, the Yoruba language places significant importance on its tonal system,

. PNMI. measures how much uncertainty about the true phone labels (y) is reduced after observing
the k-means clustering labels (z). The higher the PNMI value, the better the k-means clustering

. . . . L. . ualit
distinguished by high and low tones. Operating as a tonal language, Yoruba utilizes distinct pitch . 4
patterns to distinguish between individual words and grammatical variations of those words. :
. . . . Units 50 100 200
The question here is to what extent does HUBERT sequence of discrete units represent the phonemes :
and tones in the Yoruba language? We present an analysis of the discrete units discovered extracted Phone purity 0.42°0.51 0.56
from Yoruba language speech using a pre-trained HUBERT model, to see how well HUBERT represen- Unit purity  0.40 0.32 0.23
tations might capture phonemes unseen in its monolingual training data. PNMI 0.47°0.55 0.60
. Table 1. Purity measures across different Kmeans clusters for English data
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Figure 2. HUBERT approach to discovering hidden units targets through clustering, these hidden unit representations are \ . , ,
then quantised into speech codes A vve/a 110, 10, 10, 38, 38, 0, 8, 8, 3, 3: AXT: 210/AX2: 162
B Wa 110, 10, 38, 38, 8, 8, 8, 8, 8, 8,8, 8] BX1: 255/BX2: 209
X1 wo [10, 10, 29, 29, 29,29, 29,29, 29,42, 42,42, 29, 41] X1 is more similar to A
et s X2 WO 145, 10, 10, 10, 10, 10, 38, 38, 35, 35, 7] X2 is more similar to A
K-n?eans Cluste:ring Table 3. ABX phone discrimination test at Cluster 50
71 [M] Z3 [M]
I Samples Cluster 100 Discrete Units ABX result
HUBERT-base-LS960
Transformer A Wa 170, 70, 14, 14, 24, 24 13, 58, 58, 1] AX1: 337/AX2: 120
T = T T B Wa 170, 70, 14, 24, 24,13, 13,43, 65] BX1: 277/BX2: 65
- X1 wo |70, 48, 48, 48, 48, 48, 48, 48, 51, 51, 19, 19, 19, 99] X1 is more similar to B
}‘1 [“;] ’}3 “}”1 X2 We (69, 70, 70, 70, 70, 14, 14, 14, 76, 65, 74] X2 is more similar to B
CNN Encoder Table 4. ABX phone discrimination test at Cluster 100
Samples Cluster 50 Discrete Units ABX result
A si (11, 14, 14,14, 14, 21, 45,45, 45, 31, 28] AX1: 101/AX2: 291
B S| 134,11, 14, 14, 14, 21,45, 45] BX1: 78/BX2: 287
Figure 3. HUBERT masked Prediction step X1 bi [20, 18, 18, 18,18, /, /, 3/, 3/, 3/, 45, 45: X1 is more similar to B
X2 bi /7, 7,7,37,37,37,37,45, 45, 45, 45
Yoruba Phonology A 4 4 A 4 4 4 4 4] X2 is more similar to B
Consonants ‘VOWGlS ‘ Tones Table 5. ABX phone discrimination test at Cluster 50
Plosives btdkeikneb| Orals ie a e 0,0 ul Low (do) ( Samples Cluster 100 Discrete Units ABX result
Nasals m | Nasals iﬂ, en, on, un H|gh (m|) . A Si 16, 36, 36,36,36,7,7,45, 53,44, 80] AX1: 319/AX2: 270
Cricatives fs, [, h Mid (re) Unmarked B 5|, 129, 6,15,36,7, 7,45, 45: BXI: 255/5)(2: 326
“lapped - X1 D 172,93, 10, 10, 66, 66, 66, 66, 66,47,45, 45] X1 is more similar to B
aterals " X2 bi [16, 66, 66, 66, 66, 66,47, 11,45, 45,45 45, 45,
. ’ 64, 64, 64, 64, 64, 64, 64] X2 is more similar to A
Semi-vowels V,W

Table 6. ABX phone discrimination test at Cluster 100




