

LEXICON BASED SENTIMENT CLASSIFICATION FOR SELECTED AFRICAN LANGUAGES

Precious Ooreoluwanimi Ayinde & Halleluyah Oluwatobi Aworinde

MOTIVATION

- In the modern era of social media, where online reviews, discussions, and comments are abundant, people and businesses heavily depend on content from these platforms to inform their choices.
- Analyzing and extracting valuable information from extensive amounts of text can be a challenging endeavor, this is where automated sentiment analysis systems come to the forefront.
- However, Nigerian languages are low-resource in the context of the sentiment classification task.
- Using deep learning-based approaches such as pre-trained language models which have been shown to have gotten impressive performance on different NLP is computationally expensive and resources for training those kinds of models are not readily available in Nigeria.
- Furthermore, the sentiment lexicon has been curated for these languages but not used for developing sentiment classifiers for these languages.

OBJECTIVES

- i. Lexicon-based sentiment classification were performed for 4 African languages {Nigerian Pidgin, Yoruba, Igbo, Hausa}.
- ii. Investigation on how preprocessing techniques and other lexicon-based approaches influence the performance of sentiment classification models specifically designed for African languages.

iii. Comparison of the result of lexicon-based approach with machine learning approach of sentiment classification for African languages.

FRAMEWORK PHASE IV-SENTIMENT ANALYSIS PHASE III-SENTIMENT ANALYSIS APPROACH IGBO LEXICON IGBO DATASET IGBO STOPWORDS weets collected fron .Extracted from a Twitter APIs GitHub repository .Removing @,#,numbers,RT,punctuations Analyzing Positive, Neutral & Negative Subjectivity Extraction from a GitHub PIDGIN LEXICON PIDGIN DATASET PIDGIN STOPWORDS .Extracted in both Convert all text to lowercase Polarity Extraction weets collected from .Extracted from a Twitter APIs from a GitHub repository Word Tokenization HAUSA LEXICON HAUSA DATASET HAUSA STOPWORDS .Extracted in both weets collected from ositive and negative Twitter APIs GitHub repository from a GitHub Remove Stopwords YORUBA DATASET YORUBA LEXICON weets collected from .Extracted in both .Extracted from a Twitter APIs ositive and negative GitHub repository from a GitHub

RESULTS

HAUSA Overall accuracy: 0.5347313237221494				
Precison	0.543723	0.694749	0.469392	
Recall	0.574215	0.376250	0.644561	
F-1 Support	0.558553	0.488141	0.543204	
Support	3281.000000	3200.000000	3438.000000	

		IGBO			
Overall accuracy: 0.5893733352025795					
POSITIVE NEGATIVE NEUTRAL					
Precison	0.601452	0.601695	0.575829		
Recall	0.652456	0.468132	0.616165		
F-1 Support	0.625917	0.526576	0.595315		
Support	2158.000000	1820.000000	3155.000000		

Result generated using Tweets in Original Language (Hausa, Igbo)

	H	IAUSA	
Overall accuracy	r: 0.3466075209194475	1	
N. 5	POSITIVE	NEGATIVE	NEUTRAL
Precision	0.0	0.0	0.346608
Recall	0.0	0.0	1.000000
F-1	0.0	0.0	0.514786
Support	3281.0	3200.0	3438.000000

		IGBO	
Overall accuracy	r: 0.4423103883359035		
0.00	POSITIVE	NEGATIVE	NEUTRAL
Precision	0.0	0.0	0.442310
Recall	0.0	0.0	1.000000
F-1	0.0	0.0	0.613336
Support	2158.0	1820.0	3155.000000

DATA COLLECTION AND VISUALIZATION

preprocesse	label	tweet	ID	
[lu, ile, guo, eze, onu, ocho, lu, ", if, cap,.	neutral	@user @user @user @user @user Ji lu ile	ig_train_04335	0
[eze, iche, httpstcobdpkezo	neutral	Eze! Ka o di iche https://t.co/bdp0K0eZ8D	ig_train_03810	1
[mgbaka, juru, so, not, surprised, one, bit, h.	negative	Ndi isi mgbaka juru na ebe a, so not surprised	ig_train_02389	2
[thats, content, am, here, for, isuru, ekwulob.	neutral	@user That's the content I am here for. Isuru	ig_train_04932	3
[mmiri, enweghi, ild	neutral	Mmiri enweghi ilo.	ig_train_04668	4
			train	cn

	ID	tweet	label	preprocessed
0	ig_train_04335	@user @user @user @user @user Ji lu ile	neutral	[lu, ile, guo, eze, onu, ocho, lu, ", if, cap,
1	ig_train_03810	Eze! Ka o di iche https://t.co/bdp0K0eZ8D	neutral	[eze, iche, httpstcobdpkezd]
2	ig_train_02389	Ndi isi mgbaka juru na ebe a, so not surprised	negative	[mgbaka, juru, so, not, surprised, one, bit, h
3	ig_train_04932	@user That's the content I am here for. Isuru	neutral	[thats, content, am, here, for, isuru, ekwulob
4	ig_train_04668	Mmiri enweghi ilo.	neutral	[mmiri, enweghi, ilo]

7128	ig_train_00466	@user @user @user Nne, ujo a na atu gi? Gozie	negative	[ujo, atu, gozie, is, my, managernya, jee, nal
7129	ig_train_03598	Good Morning Coal City! Ndị Enugu kedụ ka os	neutral	[good, morning, coal, city, \P , ndi, enugu, ked
7130	ig_train_04093	@user @user @user Enweghi m ego. 😥 😔 😩	neutral	[enweghi, 😥 😔 😩]

Umu nwoke na tuwita, iirikwa udo ke do ada obi... negative [umu, tuwita, iirikwa, udo, ke, do, ada, gi, n.,

array([ˈgo̞', ˈeseˈ, ˈaisododoˈ, ˈabirunˈ, ˈwahalaˈ], dtype=object)

array(['a', 'an', 'bá', 'bí', 'be̞re̞'], dtype=object)

Source:https://github.com/afrisenti-semeval/afrisent-semeval-2023/tree/main/sentiment lexicon

Language code	Name	Language family	Number of speakers (approx.)	Number of Tweets		
ha	Hausa	Chadic	120000000		14172	
ig	Igbo	Niger-congo	25000000		10192	
pcm	Naija pidgin	English creole	78000000		5123	
yo	Yoruba	Niger-congo	30000000		8522	
-				. / С		-

Tweets used for the work was obtained from Afrisenti Datatset

Result generated without preprocessing dataset.

	EN	GLISH	
Overall accuracy	y: 0.49413145539906106	5	55
	POSITIVE	NEGATIVE	NEUTRAL
Precision	0.645010	0.421875	0.450247
Recall	0.388620	0.329519	0.713563
F-1	0.485016	0.329519	0.552117
Support	2478.000000	1311.000000	0.552117

The result of the classification carried out on preprocessed translated datasets

	E	NGLISH	
Overall accuracy	r: 0.3646881287726358		
	POSITIVE	NEGATIVE	NEUTRAL
Precision	0.0	0.0	0.364688
Recall	0.0	0.0	1.000000
F-1	0.0	0.0	0.534464
Support	2478.0	1311.0	2175.000000

Result of the classification carried out on un-preprocessed translated datasets

CONCLUSION

To improve the precision and efficiency of lexicon-based sentiment categorization, the researcher's study emphasizes the necessity for more comprehensive lexicon resources for African languages. For accurate sentiment analysis in African languages, language-specific lexicons must still be developed and made available, even though the machine learning approach shows promise in the absence of enough lexicons.