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Abstract
The essence of artificial intelligence (AI) machines in our society presents both opportunities and potential

threats. To gain insights into this phenomenon, we propose a simulation model of a Human-AI ecosystem. This
model considers various factors, including biased behaviour among agents, peer-to-peer interactions, three-body
interactions, and also four-body interactions. The latter involves three humans interacting with an AI agent, two
humans interacting with two AI agents, and three AI agents interacting with a human. Our main focus is to examine
how the proportion of AI agents in the ecosystem influences its dynamics. Our analysis reveals compelling evidence
that even slight changes in the percentage of AI agents can trigger significant and profound transformations within
the system.

Introduction
In the realms of technological progress, few innovations have captured the world’s imagination quite
like Artificial Intelligence (AI). Unleashing the potential to simulate human intelligence in machines,
AI has metamorphosed from a theoretical concept into a transformative reality. This cutting-edge
technology has traversed multiple sectors, altering the way we live, work, and interact with our en-
vironment. From advanced natural language processing and computer vision to autonomous vehicles
and personalized recommendations, AI’s ever-expanding applications continue to shape the future in
unprecedented ways[1].

Our approach involves constructing a sophisticated agent-based model, encompassing numerous pa-
rameters that can be refined through a complex fitting procedure. This endeavour aims to imitate
reasonable behaviour within the system. The second approach, which we adopt in this paper, entails
using a simplified model that retains essential elements of the original problem. With this analytical
approach, we can push the boundaries of understanding[2].

Main Objectives
The main purpose of this research is to gain valuable insights into the behaviour of the human-AI
ecosystem using the quartic mean field model.

Materials and Methods
We will analyse the Hamiltonian of an Ising model that consists of M spin configurations, defined as

TM (ϕ) = −
M∑

a,b,c,d=1

Ia,b,c,dϕaϕbϕcϕd −
M∑

a,b,c=1

Ja,b,cϕaϕbϕc −
M∑

a,b=1

Ka,bϕaϕb −
M∑
a=1

haϕa. (1)

ΩM = {−1,+1}M is the configuration space including all possible spins. In this context,

ϕa =

{
+1, spin up,
−1, spin down .

The notation ϕ = (ϕ1, ϕ2, . . . , ϕM ) ∈ ΩM .

Mathematical Section

0.1 The one component quartic mean-field model
In continuation, our focus lies solely on the mean-field interaction between agents. By assuming a
mean-field interaction, we fix Ia,b,c,d =

I

4M3
, Ja,b,c =

J

3M2
Ka,b =

K

2M
and ha = h. The sym-

bols I, J, K, and h represent the coupling of spins in a quartic, cubic, and binary spin, respectively,
while h denotes the strength of an external magnetic field. Therefore, the Hamiltonian per particle is

TM (ϕ) = −M
(
I

4
m4 +

J

3
m3 +

K

2
m2 + hm

)
, (2)

where

m =
1

M

M∑
a=1

ϕa (3)

is the magnetization per particle of the configuration ϕ. The probability distribution for the choice
ϕ = (ϕ1, ϕ2, · · · , ϕM ) is described by the joint probability distribution given as:

ψM,I,J,K,h(ϕ) =
e−TM(ϕ)

DM
, where ϕ ∈ ΩM , (4)

with DM representing the partition function of the model, defined as:

DM =
∑
ϕ∈ΩM

e−TM(ϕ). (5)

The function sM that represents the pressure function of the model can then be expressed as

sM =
1

M
lnDM . (6)

For a given observable f , the Boltzmann-Gibbs expectation w̃M (f ) is defined as follows:

w̃M (f ) =

∑
ϕ fe

−T (ϕ)∑
ϕ e

−T (ϕ) . (7)

In the thermodynamic limit, which refers to very large values of M , the behaviour of the model is
dictated by the pressure function. Therefore, we analyse how the pressure function behaves as M
approaches infinity.

Let TM be a Hamiltonian as defined in 2 and let I, J, K, and h be fixed parameters. Define
the pressure per particle as sM =

1

M
lnDM , where DM is the grand canonical partition function for

a system with M particles. Then, if the thermodynamic limit lim
M→∞

sM = s exists, then it can be
expressed in the following equivalent form: s = sup

µ̄
slower, with

slower =
I

4
µ̄4 +

J

3
+
J

3
µ̄3 +

K

2
µ̄2 + hµ̄− 1 + µ̄

2
ln

(
1 + µ̄

2

)
+
1− µ̄

2
ln

(
1− µ̄

2

)
, µ̄ ∈ [−1, 1].

0.1.1 Exact solution of the model

Even though slower and supper are different functions, they share the same local maxima. This can
be shown by differentiating both functions with respect to the parameter µ̄ and noticing that the
Mean Field Equations yield identical extremality conditions for both functions:

µ̄ = tanh
(
Iµ̄3 + Jµ̄2 +Kµ̄ + h

)
where µ̄ ∈ [−1, 1]. (8)

Results

Figure 1: For h = J = 0 3D and h = J = 0 top view, the phase diagram of the stable solutions in equation 8 illustrates
the coexistence curves. For I < 2.8, three distinct phases are observed: the negatively polarized phase (in blue), the zero
or unpolarized phase (in gray), and the positively polarized phase (in red). Consequently, if K increases progressively
from negative to positive values in this region, it encounters two consecutive jumps.



0.2 The two component quartic mean-field model
Let’s divide the group of M agents into two distinct subsystems, referred to as AI and H, containing
M1 and M2 agents respectively and let AI∩H = ∅. Consider µ̄1 and µ̄2 as the mean opinions regard-
ing the AI and H subsystems, respectively. Additionally, let’s define γ1 and γ2 as the relative sizes
of AI and H agents, represented by M1

M
and M2

M
, respectively. In the context of the two-component

quartic mean-field model, the energy contribution can be expressed as follows:

G(µ̄1, µ̄2) =
1

4

[
I1111γ

4
1µ̄

4
1 + 4I1112γ

3
1γ2µ̄

3
1µ̄2 + 6I1122γ

2
1γ

2
2µ̄

2
1µ̄

2
2 + 4I1222γ1γ

3
2µ̄1µ̄

3
2 + I2222γ

4
2µ̄

4
2

]
+
1

3

[
J111γ

3
1µ̄

3
1 + 3J112γ

2
1γ2µ̄

2
1µ̄2 + 3J122γ1γ

2
2µ̄1µ̄

2
2 + J222γ

3
2µ̄

3
2

]
+
1

2

[
K11γ

2
1µ̄

2
1 + 2K12γ1γ2µ̄1µ̄2 +K22γ

2
2µ̄

2
2

]
+ [h1γ1µ̄1 + h2γ2µ̄2]

(9)

The large number limit of the generating functional (6) linked to the two-component quartic mean-
field model (9) can be expressed in its variational form as follows:

sup
µ̄∈[−1,1]2

∇(µ̄) = sup
µ̄∈[−1,1]2

[G(µ̄1, µ̄2)− (γ1Q(µ̄1) + γ2Q(µ̄2))] (10)

where

Q(µ̄) =
1 + µ̄

2
ln

(
1 + µ̄

2

)
+
1− µ̄

2
ln

(
1− µ̄

2

)
. (11)

The stationary solutions µ̄ of ∇ can be described as follows

µ̄d = tanh

hd + 2∑
t,s,r=1

γt (Kdt + γsJdtsµ̄s + γsγrIdtsrµ̄sµ̄r) µ̄t

 for d = 1, 2. (12)

Figure 1 illustrates the surfaces representing the solutions of equation (12), which correspond to the
global maxima of the function ∇ as described in equation (10). These surfaces are displayed with
respect to the free parameters γ and I1112 = I1122 = I1222 = I , while keeping the remaining param-
eters fixed at specific values.

Figures 2 exhibit the total average opinion surfaces obtained from a two-component quartic mean-field
model.

Figure 2: I = (1, I, I, I, 1), J = (0, 95,−56, 0), K = (0, 111,−0.24), µ∗ = (0, 0)

Conclusion

This section introduces phase diagrams of the model, exploring the correlation between parameter
γ and one of the interacting variables. The demarcation between the different colours represents
distinct opinion phases, with a special focus on highlighting the occurrence of first-order phase transi-
tions. These transitions manifest as sudden shifts in opinions, leading to abrupt changes in the colour
distribution, as visually depicted in Figure 3.

The analysis of Figure 3 indicates that the model parameter’s appropriate values lead to simulations
where even a tiny proportion of AI agents can trigger abrupt behaviours in opinion formation within
the Human-AI ecosystem. This finding aligns with Figure 3 demonstrates, showing that in a system
with limited interaction among Human agents I2222 = I , a smaller fraction of AI agents can still drive
phase transitions and prevalent opinion formation. In Figure 3, when I1112 = I1122 = I1222 = I is
small the system require a smaller fraction (i.e. γ) of the AI agents to observe a phase transition and
as I1112 = I1122 = I1222 = I increases, the proportion of AI agents required for a phase transition in-
creases. We observe from Figures 3 that when interaction among AI agents (I1111 = I) increases their
proportion needed to observe a phase transition increases. We observe that interaction among human
agents (I2222 = I) increases their proportion needed to observe a phase transition also increases.
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