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Abstract

This poster focus on investigating the effectiveness of data poisoning attacks in centralized and fed‐
erated learning environments. The research utilizes the Flower framework to establish a federated
learning setting, which introduces unique challenges and possibilities for malicious actors.
The evaluation involves comparing the impact of data poisoning attacks on two datasets, CIFAR10
and MNIST—the attack success rate used as a metric to evaluate the efficacy of the attacks in both
environments. The results indicate that federated learning exhibits higher resistance to data poisoning
attacks when applied to the CIFAR10 dataset. However, centralized learning shows a slightly higher
resilience level than federated learning when applied to the MNIST dataset.

Centralized and Federated Learning

Machine learning involves supervised and unsupervised learning, with supervised learning relying on
labeled data and unsupervised learning using unlabeled data. Security vulnerabilities in supervised
learning are a concern.

Centralized machine learning refers to a traditional approach where data is collected and
centralized in a single location or server for training and building machine learning models.
Decentralized machine learning addresses privacy concerns by training local models and sharing
updates with a central server.

Data poisoning attack in Centralized and Federated Learning

Data poisoning attacks threaten machine learning systems by degrading trained models and concealing
them. They evaluate effectiveness using accuracy and attack success rate. Adversaries modify training
data, with success varying depending on the adversary’s knowledge of the target model. [3]
Although data poisoning attacks on federated learning environments have achieved their objectives,
We can notice that the researchers depend on simulated learning environments. However, the ef‐
fectiveness of these attacks on the production environment is still questionable and requires more
investigation. The poisoning attack condected in our research is already proposed in [4, 2]

Threat Model

Attacker’s Goal: The attacker’s primary objective is to misclassify instances from a class to a
different one. The CIFAR10 and MNIST datasets were evaluated for their effectiveness. In the
case of CIFAR10, the target is to misclassify instances labeled as class 9 and classify them as class
1. On the other hand, for the MNIST dataset, the goal is to misclassify examples belonging to class
2 and classify them as class 3.
Attacker’s knowledge: White‐box attack involves attacker with model architecture knowledge and
dataset access, while federated learning the attacker may have access to a portion of the dataset.
Convex Polytope (CP) data poisoning attack: Convex Polytope attack generates poisoned data,
transforming target instance’s feature representation into convex combination using optimization
problem, achieving optimal variety of features.This is achieved by solving the following
optimization problem to find the optimal variety of features for the poisons.[2]

Xp = argmin
{cj},

{
x(j)

}1
2

∥∥∥f (xt) −
∑J

j=1 cjf
(

x(j)
)∥∥∥2

2
∥f (xt)∥2

2

subject to
J∑

j=1
cj = 1

and cj ≥ 0∀j,

and
∥∥∥x(j) − x

(j)
b

∥∥∥
∞

≤ ε∀j.

Evaluate the success of the attack: The evaluation of the attack is based on the Attack Success
Rate (ASR), which represents the percentage of instances where the attack successfully
misclassifies the target class into another class.

Poisoning attack on Centralized Environment

The Resnet18 DL model is tested on a pre‐trained CIFAR10 dataset, achieving a test accuracy of 88%.
Subsequently, the same model is evaluated on a poisoned dataset to assess its performance during
training exposure to poisoned data.
The attack is tested with 100 images , a 15% success rate in the poisoning attack is observed. Ad‐
ditionally, we tested the model’s performance with different trainset sizes (2500,8000 and 14000
samples).

Summery of the results

MNIST dataset achieves an accuracy of 99%; both are trained with SGD optimization. On the CIFAR10
dataset, when there are 25 poisoned samples on the trainset, the ASR values are 15%, 11%, and 7%
for 2500, 8000, and 14000 train sizes, respectively. When the poisoned samples increased to 125,
the ASR was 9%, 12% and 11% for 2500, 8000, and 14000 train sizes, respectively. ( see Table 1).
On the MNIST dataset( See Table 2), when the trainset size is 2500, the ASR is 15%; for a trainset
size of 8000, the ASR decreases to 11%, with a further increase to a trainset size of 14000, the ASR
reduces to 7%. Under the Adam o)ptimizer, the ASR drops to 9% for a trainset size of 2500, 6% for a
trainset size of 8000, and slightly increases to 10% for a trainset size of 14000. Under the RMSprop
optimizer, the ASR is 12% for a trainset size of 2500, 13% for a trainset size of 8000, and 11% for a
trainset size of 14000.

Table 1. Attack Success Rate on CIFAR10 dataset

Number of poisoned
data in train set

Train‐set Size Attack Success
Rate

25
2500 10%
8000 14%
14000 12%

125
2500 9%
8000 12%
14000 11%

Poisoning attack on Federated Learning Environment

Flower Federated Learning framework: Flower is an open‐source framework for developing and de‐
ploying federated learning systems, offering a user‐friendly interface, tools, and a flexible training
process for efficient and scalable implementation [1].

Attack configuration: The experiments conducted on the Flower Federated Learning (FL) platform
involved the following two configurations: Three honest clients and one out of the three clients being
malicious.
Summery of the results : The test accuracy on the CIFAR10 dataset remains consistent at 88.7%.
Regardless of the trainset sizes, the attack success rate (ASR) remains at 3% with 25 poisoned data
samples and 4% with 125 poisoned data samples.
On the MNIST dataset, the ASR is consistently 14% regardless of the optimizer or trainset size.
The test accuracy values vary slightly depending on the optimizer and trainset size. Using SGD op‐
timizer, the test accuracies are 97.7%, 97.6%, and 96.3% for trainset sizes 2500, 8000, and 14000,
respectively. With the Adam optimizer, the test accuracy values are 97.9%, 96.6%, and 96.6%. Finally,
with the RMSprop optimizer, the test accuracy values are 97.99%, 97.9%, and 96.7% for trainset sizes
2500, 8000, and 14000, respectively.

Table 2. CP attack on MNIST dataset with 25 poisoned samples.

Learning
Environment

Optimizer Train‐set
size

Attack
Success Rate

Test accuracy

Centralized
Model

SGD
2500 15%

99%

8000 11%
14000 7%

Adam
2500 9%
8000 6%
14000 10%

RMSprop
2500 12%
8000 13%
14000 11%

Federated
Learning (Flower)

SGD
2500

14%

97.7%
8000 97.6%
14000 96.3%

Adam
2500 97.7%
8000

96.6%
14000

RMSprop
2500

97.99%
8000
14000 96.7%

Discussion

The ResNet18 model achieves an accuracy of 88.7% on the CIFAR10 dataset. In a centralized learning
environment, the attack success rate (ASR) for poisoned samples in the train set ranges from 9% to
14%, indicating the relatively low effectiveness of the poisoned attack. However, in the Federated
Learning (FL) environment, the ASR remains fixed at 3% or 4%, demonstrating the resilience of FL
against poisoned attacks. The impact of increasing the number of poisoned samples in the train set
does not necessarily result in a higher ASR or a more significant attack impact.
When comparing optimizers in the centralized environment on the CIFAR10 dataset, the Adam opti‐
mizer shows a relatively lower ASR than SGD and RMSprop, indicating its potential to improve model
resilience. For the MNIST dataset, regardless of the optimizer or trainset size, the ASR remains consis‐
tent at 14%, indicating its higher vulnerability to data poisoning attacks compared to CIFAR10 in the
FL environment.

FutureWork

In our future work, we aim to investigate the efficacy of various defence mechanisms in countering
data poisoning attacks within centralized and federated learning environments. We will focus on de‐
veloping resilient techniques that can effectively detect and mitigate the adverse effects caused by
poisoned samples on model performance. Furthermore, we plan to broaden the scope of our evalu‐
ation by including a diverse array of machine‐learning models, datasets, and optimization algorithms.
This expanded analysis will provide a more comprehensive understanding of the vulnerabilities and
potential defence strategies against data poisoning attacks.
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