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Abstract # 2 Evaluation Tools Repo
We have open-sourced a repo to do all statistical aggregation and produce all plots given raw

Multi-agent reinforcement learning (MARL) has emerged as a useful approach to solving decentralised experiment data in the correct format.
decision-making problems at scale. Research in the field has been growing steadily with many break-
through algorithms proposed in recent years. In this work, we take a closer look at this rapid de- # 3 Standardised evaluation protocol
velopment with a focus on evaluation methodologies employed across a large body of research in A Standardized Performance Evaluation Protocol for Cooperative MARL
cooperative MARL. By conducting a detailed meta-analysis of prior work, spanning 104 papers ac-
cepted for publication from 2016 to 2022, we bring to light worrying trends that put into question Input: Environments with tasks ¢ from a set 7. Algorithms a €.A4, including baselines and novel work.

the true rate of progress.

1. Evaluation parameters - defaults

From RL to MARL: Lessons, trends and recommendations » Number of training timesteps, T'= 2 million.
 Number of independent training runs, R= 10 (from Agarwal et al. (2022) 1).
# 1 Know the true source of improvement and report everything « Number of independent evaluation episodes per interval, E= 32.

e Evaluabon intervals, i € T, at every 10000 timesteps.
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":_8 3' :l_a to compare the algarithms, using the tools proposed by Agarwal et al. (2022)" Sample efficiency curves can be computed by using
normalised returns at each evaluation interval.
Figure 1. Historical performance of QMIX on different SMAC maps across papers. )
3. Reporting
: L : : : : : e Experiments: All hyperparameters, code-level optimisations, computational requirements and
# 2 Use standardised statistical tooling for estimating and reporting uncertainty .
framework details.
a) b) o) e Plots: All task and environment evaluations as well as ablation study results.
Aggregate function Measure of spread Number of independent runs . . .
45 30 e Tables: Normalised absolute performance per task with 25% ClI for all tasks, IQM with 95%
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3 6- RWARE adopted, such a protocol could make comparisons across different works much faster, easier and
. o GRE more accurate leading to sustained progress in the field.
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Figure 4. Environment adoption over time.
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