# An Experimental Analysis of Machine Learning Algorithms for Maize Yield Prediction

## The research question (RQ)

What machine learning technique is suitable for maize yield prediction?

## How we address the RQ?

### Data used

Table 1: Overview of three datasets used.

| Databases | Predictor categories | Data | Provenance |
|-----------|----------------------|------|------------|
|           |                      | -    |            |

| What we found?                        |
|---------------------------------------|
| Maize yield modeling                  |
| Table 2: Performance of the ML models |
| using different evaluation metrics.   |

| Models | Dataset                | MAE   | MSE   | EVS   | RMSE  | Rsquare | ME    | Time     |
|--------|------------------------|-------|-------|-------|-------|---------|-------|----------|
| LR     | Cover                  | 0.230 | 0.094 | 0.923 | 0.307 | 0.920   | 0.974 | 0.005    |
| Lasso  | crop and<br>irrigation | 0.243 | 0.105 | 0.912 | 0.324 | 0.911   | 1.117 | 0.541    |
| SVR    |                        | 0.265 | 0.133 | 0.894 | 0.364 | 0.888   | 1.289 | 4.296    |
| KNN    |                        | 0.934 | 1.217 | 0.095 | 1.103 | -0.030  | 2.380 | 0.557    |
| RR     |                        | 0.230 | 0.094 | 0.923 | 0.307 | 0.920   | 0.974 | 0.564    |
| DT     |                        | 0.361 | 0.220 | 0.814 | 0.469 | 0.814   | 1.233 | 38.123   |
| RF     |                        | 0.262 | 0.117 | 0.902 | 0.342 | 0.901   | 1.097 | 879.671  |
| GBR    |                        | 0.250 | 0.118 | 0.903 | 0.344 | 0.900   | 1.018 | 8920.403 |
| GBM    |                        | 0.300 | 0.146 | 0.877 | 0.382 | 0.877   | 1.181 | 100.562  |
| XGB    |                        | 0.230 | 0.088 | 0.927 | 0.297 | 0.925   | 0.981 | 2547.399 |
| ADB    |                        | 0.307 | 0.153 | 0.872 | 0.391 | 0.871   | 1.034 | 329.119  |
| BR     | ]                      | 0.319 | 0.165 | 0.863 | 0.407 | 0.860   | 1.292 | 0.913    |
| ERT    |                        | 0.202 | 0.074 | 0.939 | 0.272 | 0.937   | 1.020 | 324.491  |

|                         |                        | size |        |
|-------------------------|------------------------|------|--------|
| Crop yield prediction   | climate, year, and     | 4121 | Kaggle |
|                         | pesticide              |      |        |
| Cover crop and          | cover crop type,       | 240  | Zenodo |
| irrigation impacts on   | irrigation, weed       |      |        |
| weeds and maize yield   | quantity, and water    |      |        |
|                         | stress characteristics |      |        |
| Marked impacts of       | climatic parameters,   | 975  | Zenodo |
| pollution mitigation on | and pollution factors  |      |        |
| crop yields in China    |                        |      |        |

# Models used

Thirteen models were designed using 70% training data and 30% test data.

Classical learning: SVM, KNN, LR, RR,

### Important variables



# LASSO, decision trees DT;

Ensemble learning: AdaBoost, XGBoost, GBR, light GBM, ERT, RF, and BR.

**Evaluation Metrics** Rsquare, EVS, MAE, MSE, RMSE, and ME.

## Important variables

Variables tested by permutation techniques.

Figure 1: Important model variables depending on data

#### Perspectives

#### ERT model can easily be used to better predict maize yield.

# Bibliography

T. R. Shah, K. Prasad, and P. Kumar. Maize—a potential source of human nutrition and health: A review. Cogent Food and Agriculture, 2, 2016. ISSN 23311932. doi: 10.1080/23311932.2016.1166995.

G. P. Souand Tahi<sup>1</sup>, Castro G. Hounmènou<sup>1</sup> V. Ratheil Houndji<sup>2,1</sup> & L. Romain Glèlè Kakaï<sup>1</sup>, souandtahi@gmail.com

Laboratoire de Biomathématiques et Estimations Forestières



d'Estimations Forestière