
Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

Fallowing temporal patterns assessment in rainfed agricultural areas based
on NDVI time series autocorrelation values
L. Recueroa,b, K. Wiesea,c,d, M. Huescae, V. Cicuéndeza, J. Litagof, A.M. Tarquisb,g,
A. Palacios-Oruetaa,b,⁎

a Departamento de Sistemas y Recursos Naturales, ETSIMFMN, Universidad Politécnica de Madrid (UPM), C/ José Antonio Novais 10, 28040, Madrid, Spain
b Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), UPM, Madrid, Spain
cMuseo de Historia Natural, Escuela de Biología, Universidad Nacional Autónoma de Honduras, Ciudad Universitaria, Tegucigalpa, Honduras
dDepartamento de Ciencias de la Vida, Universidad de Alcalá, Campus universitario, 28805, Alcalá de Henares, Madrid, Spain
e Land, Air and Water Resources Department, Center for Spatial Technologies And Remote Sensing (CSTARS), University of California Davis, One Shields Avenue, Davis,
CA, 95616, USA
fDepartamento de Economía Agraria, Estadística y Gestión de Empresas, ETSIAAB, Universidad Politécnica de Madrid (UPM), Avenida Complutense 3, 28040, Madrid,
Spain
gGrupo de Sistemas Complejos, Universidad Politécnica de Madrid, Avenida Complutense 3, 28040, Madrid, Spain

A R T I C L E I N F O

Keywords:
MODIS NDVI
Rotation
Fallow lands
Autocorrelation function
Random forest classification
Spain

A B S T R A C T

Fallowing is a common practice in Mediterranean areas where water scarcity becomes a limiting factor, affecting
soil productivity, crop yield and biodiversity. In mainland Spain, fallow lands expand across three million
hectares every year, constituting around 30% of rainfed arable lands and 6% of the national surface. There is a
need of monitoring fallow lands to better map land use intensity and therefore achieve a sustainable expansion
and intensification of agriculture. However, most of current land use classification systems do not include lands
under fallowing practices as a specific class. In this research, a new and highly operative methodology based on
NDVI time series autocorrelation values to assess fallowing temporal patterns across rainfed agricultural areas is
proposed. This approach was tested in mainland Spain, using the autocorrelation function of MODIS NDVI time
series from 2001 to 2012 at 250m spatial resolution. The field observational database from the Spanish Ministry
of Agriculture, Fisheries and Food was used for validation purposes. The dataset used includes 338 pixels with
annual information about the cultivated and fallowed surface within the entire study period. It was demon-
strated that specific autocorrelation values at lags corresponding to one, two, and three years contained relevant
information to identify lands under fallowing practices and assess their temporal pattern. Integrating auto-
correlation variables in a random forest model made it possible to improve the assessment. The classification
results were in agreement with the field dataset with an overall accuracy higher than 80%. Results revealed that
approximately half of rainfed agricultural areas were regularly cultivated and distributed mainly in the north-
western Spain. The other half mainly located across northeast, center and south of Spain, showed crop-fallow
rotation patterns. This methodology is a promising technique to map land management intensity using the entire
time series in a highly operative manner. It is expected that in the near future the availability of remote sensing
time series with better spatial resolution will make it possible to improve the assessment of agricultural in-
tensification.

1. Introduction

Croplands (arable and permanent crops) occupy around 11% (1.5
billion ha) of the global land surface (FAO, 2017a). In many areas of the
world, when soils are not highly productive or water availability is

uncertain, it is common to leave agricultural lands “fallow”, that is,
unseeded for variable periods (one or more growing seasons) before re-
cultivation. In FAO land use definitions, “Land with temporary fallow”
are those lands not seeded for one or more growing seasons with a
maximum idle period of five years (FAO, 2017b). This agricultural
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management practice is known as “crop-fallow rotation” or “fallowing”
(Bégué et al., 2018) and fallow frequency is the number of fallow years
in a certain period (Estel et al., 2015). Some of the environmental ef-
fects of leaving lands fallow are the following: (1) modification of soil
physical-chemical properties by increasing nutrients and soil water
storage (Moret et al., 2007); (2) impacts on carbon exchanges favoring
levels of carbon sequestration by reducing soil disturbance (Freibauer
et al., 2004) and (3) increase biodiversity (Tscharntke et al., 2011).

Fallowed area represents approximately 28% (440 million ha) of the
global cropland surface (Siebert et al., 2010) being a common practice
in non-irrigated Mediterranean areas where water scarcity is the main
limiting factor (Iglesias et al., 2011; Jacobsen et al., 2012). Particularly,
in mainland Spain fallow lands occupy a large extension of around
three million ha every year, representing 30% of rainfed arable lands
and 6% of the country area (FAO, 2017a; MAPA, 2019a).

Fallowing was enforced in Europe from 1992 to 2008 by a set-aside
program as part of the MacSharry reform of the Common Agricultural
Policy (CAP) with the aim of decreasing rates of cereal production
(Boellstorff and Benito, 2005; European Economic Community (ECC),
1992). Currently, fallow lands play a key role in the CAP programming
period 2014-2020. They are considered as Ecological Focus Areas
(EFAs), being one of the main greening measures to improve biodi-
versity contributing to support climate and environmental policy ob-
jectives. Every year, farmers with arable lands covering more than
15 ha are qualified to receive direct payments by leaving 5% of their
agricultural land fallow (European Commission (EC), 2013; Ottoy et al.,
2018). In addition, in the current context of climate change, fallows
with proper weed management has been proposed as a drought man-
agement strategy across Mediterranean areas to help preserving soil
moisture (Manalil and Flower, 2014).

In the current context of climate change and population increase,
there is a need of accurate and updated maps to help policy makers to
achieve sustainable expansion of croplands and agricultural in-
tensification (Estel et al., 2015; Gumma et al., 2011). The geographic
distribution of fallowing practices would provide information to detect
hotspots of high cropping intensity and areas with soil deficiencies that
restrict cultivation all years (Melton et al., 2015). Thus, improving
methodologies to assess fallowing at large scales constitutes one of the
challenges and research priorities when mapping land use intensity
globally (Kuemmerle et al., 2013).

In spite of their high relevance, lands under fallowing practices are
usually not recognized as specific class in land cover classification
systems. Products such as the MODIS IGBP at 500m resolution (Friedl
et al., 2010), the GLC2000 database (Fritz et al., 2003), the Global
Cropland Extent (Pittman et al., 2010), or the global IIASA-IFPRI
cropland percentage map (Fritz et al., 2015) among others, only include
a general cropland class. Datasets such as the MERIS GlobCover 2009 at
300m (Bontemps et al., 2011), the CORINE database (Bossard et al.,
2000) and the Land Cover and Use Information System of Spain (SIOSE)
(http://www.siose.es/) include only irrigated and non-irrigated arable
land classes. Other information sources based on field data such as
ESYRCE (Spanish acronym standing for “Spanish Annual Survey of Crop
Acreages and Yields”) (MAPA, 2019b) can be inaccurate since in-
formation of approximately 3% of the national surface is used. There-
fore, developing operational methodologies to map operatively fal-
lowing practices are still needed.

Remote sensing plays an important role in monitoring agricultural
areas due to the continuous spatial coverage and high temporal data
acquisition (Melaas et al., 2013; Yang et al., 2012). Initiatives such as
GEO Global Agricultural Monitoring (GEOGLAM) encourages using
Earth observation data to forecast agricultural production at different
scales (regional, national or global) (https://cropmonitor.org/).
Working with data from the MODerate resolution Imaging Spectro-
radiometer (MODIS) sensor launched in 1999 has two main advantages.
First, it provides 8–day composite data products at moderate spatial
resolution (250–500m) reducing the effects of clouds and atmospheric

conditions and allows a better comparison within and among years
(Vrieling et al., 2014). Second, the availability of almost 20 years of
data enables working with long time series of vegetation indices.
Among the spectral indices, the Normalized Difference Vegetation
Index (NDVI) (Tucker, 1979) is the most widely used to monitor agri-
cultural areas and cropping practices (Chen et al., 2018; Pittman et al.,
2010; Wardlow and Egbert, 2008). The satellites launched in the last
years such as PROBA-V and Sentinel-2 provides multispectral images
with higher spatial resolution offering new opportunities to better map
agricultural areas, especially those with smallholding agriculture
(Belgiu and Csillik, 2018; Bontemps et al., 2015; Lambert et al., 2016;
Zhang et al., 2016). It is expected that in near future working with long
vegetation indices time series at finer resolution will be possible.

Mapping fallow lands is challenging when using remote sensing
techniques due to several reasons that affect the signal of vegetation
indices. (1) Adjacent fields with different fallowing practices within a
pixel may result in a mixture of signals (Setiawan et al., 2014; Tong
et al., 2017). (2) The different temporal patterns of fallowing may result
in crop-fallow rotations every two, three or even more years (de Beurs
and Ioffe, 2014d) with more or less irregularity. (3) Soil in fallowed
fields could be completely bare o partially covered by weeds
(Boellstorff and Benito, 2005). (4) Natural disturbances such as
droughts or hail can decrease crop biomass and yield or even ruin the
crops (Estel et al., 2015; Siebert et al., 2010). Therefore, developing
methodologies that minimize errors derived from these difficulties is
still challenging.

Most methodologies to assess fallow lands are developed on a yearly
basis by applying threshold values to vegetation indices time series.
Tong et al. (2017) used amplitude and decrease rate of annual MODIS
NDVI 250m profiles in Niger, concluding that in this area fallowed
fields generally show higher NDVI and a more rapid decrease than
unmanured cropped fields. Melton et al. (2015) used NDVI time series
based on Landsat and MODIS data in the Central Valley of California.
They classified fallowed fields by applying a decision-tree algorithm to
a set of phenological metrics together with information of land-use
changes obtaining a classification accuracy above 85%. Zheng et al.
(2015) identified as fallow land those pixels in which the difference
between the maximum and minimum annual NDVI was lower than
60%. Wallace et al. (2017) applied a fallow-land algorithm based on
Neighborhood and Temporal Anomalies (FANTA) to MODIS NDVI
250m time series in California. They compared the current greenness of
a cultivated pixel to its historical values and to the greenness of all
cultivated surrounding pixels obtaining accuracies over 75%. In some
cases, fallow frequency and/or fallowing temporal patterns are assessed
summarizing annual fallow information (Bégué et al., 2018; Estel et al.,
2016, 2015).The main disadvantage of these methodologies is that the
annual assessment can be time consuming, so more operational algo-
rithms that use the entire time series should be tested.

Statistical time series analysis from multispectral data provides
systematic and consistent information on vegetation temporal patterns
minimizing the impact of anomalies. Specifically, the autocorrelation
function (ACF) (Box et al., 1994) is a mathematical tool that enables to
assess quantitatively vegetation dynamics in terms of seasonality and
periodicity considering all the observations in remote sensing time
series (De Jong et al., 2011; Huesca et al., 2015). Within an agricultural
context, Setiawan et al. (2014) evaluated the seasonal vegetation dy-
namics in paddy fields of Java using MODIS EVI 250m time series,
being able to determine cropping intensity and to analyze the dynamics
of change. Tornos et al. (2015) used ACF of different spectral indices to
assess the temporal dynamics of two rice-cropping areas in Spain under
different flooding regimes and management practices. The NDVI auto-
correlation values at specific time periods (lags) provide information on
greening patterns at intra-annual (e.g., number seasonal cycles) and
inter-annual scales. However, this approach has not been employed yet
for mapping purposes. Since crop-fallow rotation occurs at inter-annual
scales, it is expected that the use of the autocorrelation values at annual
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and multiannual terms will provide relevant information about fal-
lowing temporal patterns with one, two and three-year periodicity
within a certain time period.

The aim of this research was to develop a robust and operative
methodology to assess fallowing temporal patterns based on MODIS
NDVI time series. First, it was tested that information provided by au-
tocorrelation values at specific time periods (one, two and three years)
is highly relevant to assess fallowing temporal patterns based on
greening dynamics in agricultural drylands. Secondly, it was shown that
when this information is integrated in an appropriate classification
procedure mapping accuracy is improved.

The specific objectives were:

(1) To map fallowing temporal patterns using quantitative criteria
based on autocorrelation values at specific time periods (one, two
and three years)

(2) To improve the fallowing temporal patterns classification by in-
tegrating autocorrelation values with other variables in a random
forest model able to exploit hidden relationships among variables.

2. Study area

The developed methodology was tested and validated in a
Mediterranean area, specifically around 10 million ha of non-irrigated
arable lands in mainland Spain (Fig. 1), which comprises approximately
70% of rainfed herbaceous crops and 30% of fallow lands each year.
This surface represents approximately 60% of the total croplands and
20% of the total mainland Spain (FAO, 2017a; MAPA, 2019a). Among
the most extended rainfed herbaceous crops are cereals and legumes
with around 5 and 0.4 million ha cultivated every year respectively

(MAPA, 2019a).
Mainland Spain, located in the Iberian Peninsula, presents a high

variability of geological features, topography, climate and land use
resulting in a high diverse landscape (Alcaraz et al., 2006; Immerzeel
et al., 2009). The majority of rainfed crops are located in a vast plateau
in the central part of mainland Spain delimited by several mountain
ranges (the Cordillera Cantábrica, Sierra Morena and the Sistema
Ibérico) and divided into two regions by the Sistema Central. The field
size is variable, large plots are common in the south whereas small-
holdings are more frequent in the north and northwestern regions (Fritz
et al., 2015). Rainfed agriculture is strongly conditioned by climate.
According to Köppen classification, the climates are: (1) temperate
without a dry season in the north and the Sistema Ibérico (Cf); (2)
Mediterranean with cool summer in the northwest Spain (Csb); (3)
Mediterranean with hot summer in half south Spain (Csa); and (4) dry
climates in the southeast area and the Ebro valley (B) (AEMET, 2011).
In addition, droughts events are frequent with negative consequences in
crop biomass and yield (Vicente-Serrano et al., 2013). The lack of water
availability and poor soils in some regions makes fallowing a wide-
spread cropping management system in Spain.

3. Data sources

3.1. MODIS data

The MOD09Q1 collection 6 product (Vermote, 2015) consists of 8-
day MODIS composites at 250-meters spatial resolution and provides
estimates of surface reflectance for two spectral bands in the optical
domain: red (620–670 nm) and near-infrared (841–876 nm). Data from
January 1 st 2001 to December 31 st 2012 was acquired from the NASA

Fig. 1. Spatial distribution of ESYRCE locations (red) across mainland Spain.
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Land Processes Distributed Active Archive Center (LP DAAC) webpage
(https://lpdaac.usgs.gov/). This product was selected because its good
performance in other studies to capture differences in temporal patterns
among planted and fallowed croplands (Tong et al., 2017).

The four scenes that cover the study area were merged and re-
projected to UTM zone 30, datum WGS-84 using “MODIS Reprojection
Tool” (MRT) (Dwyer and Schmidt, 2006) and quality flags were de-
coded using the “Land Data Operational Products Evaluation” tool
(LDOPE) (Roy et al., 2002). Both tools were provided by LP DAAC.

3.2. CORINE land cover 2012

Rainfed agricultural areas were delimited based on the CORINE land
cover 2012 dataset which provides consistent information about Europe
land uses with a minimum mapping unit of 25 ha (Bossard et al., 2000).
It was downloaded in shapefile format from the Spanish platform for
open datasets (https://datos.gob.es/es). The CORINE class selected was
the “non-irrigated arable land” (code 211) covering around 10 million
ha of herbaceous crops along mainland Spain and representing 20.5%
of the entire area. In order to homogenize with MODIS data, polygons
were rasterized to 250m spatial resolution and used to mask all land
cover types outside this class.

3.3. The ESYRCE dataset

The ESYRCE (Spanish acronym standing for “Spanish Annual Survey
of Crop Acreages and Yields”) database dispensed by the Spanish
Ministry of Agriculture, Fisheries, and Food was used for validation
purposes (MAPA, 2019b). It contains geo-referenced significant agri-
cultural information gathered in situ by experts every year, covering
about 3% of the Spanish territory. Specialists collect land cover in-
formation (primarily crops) of plots distributed across Spain annually
from May to August. The maximum plot size is 700×700m, being
500×500m or even 350× 350m in very fragmented areas such as
Galicia, northwest area. Plots information from 2001 to 2012 was
provided in shapefile format. In the ESYRCE database a plot is con-
sidered fallow when it has not been cultivated during a year, in-
dependently of the purpose. The classes selected were cereals (CE),
legumes (LE) and fallow (BA) because they comprise the majority of
rainfed herbaceous crop surface. This dataset was rasterized to MODIS
spatial resolution and 338 pixels with more than 80% (5 ha) of the
surface occupied by herbaceous crops or fallow and containing in-
formation every year (12 observations) were used in the analysis
(Fig. 1). Fallow frequency (i.e., the number of fallow years in the study
period) was used to validate fallowing temporal patterns since it is the
most objective variable to represent the occurrence of fallows that can
be derived from a yearly database. Thus, fallow frequency for the 12-
year period was calculated per pixel obtaining values ranging from zero
to seven.

The surfaces of herbaceous crops and fallow lands on yearly basis
from 2001 to 2012 were obtained from the Spanish Statistical
Yearbooks (Anuarios de Estadística, AE) provided by the Spanish
Ministry of Agriculture, Fisheries, and Food (MAPA, 2019a). This in-
formation was used to assess mean annual fallowed and cultivated
surfaces in the 12-year period.

4. Methodology

4.1. NDVI time series generation

The Normalized Difference Vegetation Index (NDVI) time series
were computed using red (ρR) and near-infrared (ρNIR) spectral bands
obtaining values oscillating between -1 and 1 (Tucker, 1979). The
larger the pixel value, the higher the fraction of vegetation cover and/
or greenness within the pixel.

NDVI time series were filtered by removing low quality values based

on MOD09Q1 quality data band (sur_refl_qc_250m). Since there were
not more than two consecutive observations with low quality data in
the time series, they were filled with the average of adjacent date values
with good quality. Afterwards, a smooth filter was applied removing
outliers that fall outside the threshold of the mean plus/minus twice the
standard deviation within a five-date period window. These anomalous
values were also replaced with the average of the previous and sub-
sequent date values in the time series. Finally, time series were
smoothed with a Savitzky-Golay filter (Savitzky and Golay, 1964) using
the R package "prospectr" (Stevens and Ramirez, 2014). The width of
the smoothing window and the degree of the smoothing polynomial
were set to 9 and 2 respectively (Zhang et al., 2015). Fig. 2 shows an
example of MODIS NDVI time series at the different steps of time fil-
tering. The original 8-day composites are represented in red dots, the
filtered NDVI time series using the quality data and the smooth filter in
orange and the smoothed Savitzky-Golay time series in green.

4.2. Statistical time series analysis

Fallowing temporal patterns across rainfed agricultural areas were
assessed by means of the autocorrelation function (ACF) of NDVI time
series on a pixel basis. The ACF is a mathematical tool that allows the
identification of periodic components and temporal dependency in time
series by a set of correlation coefficients that quantify the relationship
between observations at different time intervals (lags) (Box et al.,
1994). For a stationary process, autocorrelation (AC) values are cal-
culated by means of Eq. (1):

= = +
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y y y y

y y
ˆ

( ¯)( ¯)
( ¯)

k
t
N k

t t k

t
N

t

1

1
2 (1)

where r̂k is the autocorrelation coefficient for lag k, y is the studied
variable, ȳ is the mean value of y and N de number of observations.
Autocorrelation values range from -1 to 1 and they were computed for
the first 200 lags using the NDVI time series from 2001 to 2012.

Since the MOD09Q1 product consists of 8-day composites, the de-
rived NDVI time series has a temporal frequency of 46 observations per
year and the annual temporal dependency is estimated by the AC at lag
46. Consequently, in the study of fallowing temporal patterns, the most
relevant periodic components to assess are annual, every other year and
every three years measured by AC values at lags 46, 92, and 138 re-
spectively. Additionally, AC at lag 1 was included as a reference of the
shortest temporal dependency.

To evaluate NDVI time series randomness and identify white noise
series, the Ljung–Box Q statistic (L–B Q) at pixel level was calculated
according to the Eq (2) (Ljung and Box, 1978):

Fig. 2. Example of MODIS NDVI time series at the different steps of time fil-
tering from January 1 st 2001 to December 31 st 2012 for a selected pixel.
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Where, N is the number of time series observations, r̂k is the auto-
correlation coefficient at lag k, M is the number of lags up to which the
sum of autocorrelation coefficients is calculated in the Q test and de-
fines the number of degrees of freedom (d.f.) for the Chi-square prob-
ability distribution.

In this test, the null hypothesis is that there is not autocorrelation up
to order M, that is, the time series data are random not containing re-
levant information. Consequently, the time series is labeled as white
noise.

= = =r r rH0 : ˆ ˆ . . . ˆ 0M1 2

r r rH1 : ˆ ˆ . . . ˆ 0M1 2

The decision rule is:
If L–B Q(M)< 2 (M) → the H0 is not rejected: the series is white

noise.
If L–B Q(M)> 2 (M) → the H0 is rejected: the series is not white

noise.
The Ljung–Box Q statistic was calculated for the first 46 auto-

correlation coefficients, representing the information content of the
time series at annual term. Low values indicate low time series in-
formation content and vice versa. Pixels with Ljung–Box Q values lower
than the Chi-squared distribution ( 2 (M)) at the 1% significance level
(i.e.,71.20) were removed from further analysis because of lack of
useful information. This test is appropriate when using remote sensing
time series because abnormal values can strongly modify the signal
hiding significant information of vegetation dynamics. The ACF and the
Ljung-Box Q statistic were implemented in IDL language.

4.3. Definition of quantitative criteria to assess fallowing temporal patterns
based on NDVI autocorrelation values

In this study, only unseeded fallow lands were considered. It is ex-
pected that active farmlands with vigorous herbaceous crops show
significant higher NDVI values than unseeded fallow lands. Therefore, a
field with crop-fallow sequence with a certain periodicity must show
NDVI inter-annual cycles that can be captured by autocorrelation
function and more specifically by AC values at lags 46 (one year), 92
(two years) and 138 (three years) (Fig. 3). Based on this hypothesis, a
set of criteria were defined to classify non-irrigated fields in three main
types of fallowing temporal patterns during the 12-year period based on
a simple relationship (i.e., the maximum) among the AC values at these
three lags (Table 1). Croplands regularly cultivated (RC) are expected to
show the maximum AC value at lag 46 since greening annual pattern is
repeated every year (Fig. 3a,b). Farmlands with 2-year crop-fallow ro-
tation (CF-2) are expected to show the maximum AC value at lag 92
since high NDVI values are repeated every two years (Fig. 3c,d). Finally,
croplands with 3-year crop-fallow rotation (CF-3) are expected to show
the maximum AC value at lag 138 since farmers plant crops two con-
secutive years and leave fallow every three years (Fig. 3e–f).

The classification accuracy was assessed using fallow frequency
information during the 12-year period from the ESYRCE locations
(Table 1) by an error matrix including user’s and producer’s accuracies
together with the overall accuracy and Kappa coefficient (Congalton,
1991). It was assumed that fallow frequency ranges from zero to three
years in RC croplands, from five to seven years in farmlands with CF-2
pattern and it is four in croplands with CF-3 pattern. In addition, based
on our results, mean annual fallowed surface during the period was
estimated in order to be compared with the information provided by the
AE (MAPA, 2019a).

4.4. Spatial distribution of fallowing temporal patterns based on a random
forest model

In a second step, AC values at different lags were integrated together
with geographical information in a random forest (RF) model algorithm
(Breiman, 2001) to optimize their capability to identify fallowing
temporal patterns across rainfed agricultural areas in mainland Spain.
This was implemented in the “RandomForest” package (Liaw and
Wiener, 2002) within R environment software (R Core Team, 2018).

The RF classification model is an ensemble technique based on the
results of a user-defined number of decision trees. Each tree is con-
structed by sub-sampling randomly 2/3 of the training dataset through
a bootstrap aggregating method. The final predictions for the class
memberships arise from the majority vote of the individual trees. This
method was chosen because previous studies showed high accurate
predictions of land cover classes using remote sensing data (Estel et al.,
2015; Rodriguez-Galiano et al., 2012; Vuolo et al., 2018). The RF main
strength is its capability to deal with noisy and highly correlated pre-
dictor variables (Breiman, 2001), such those derived from remote
sensing data.

In RF classification, three parameters are required: (1) the number
of trees (ntree), (2) the number of variables randomly sampled to be
tested at each node of the tree (mtry), and (3) the minimal size of the
terminal nodes of the trees (nodesize). In this study, the parameters
were set to 1000, 2 and 1 respectively.

To train and validate the model the 338 pixels from ESYRCE dataset
were used. In this case, a new fallow frequency class was defined, so
that the dataset was divided in four classes (Table 2). Pixels without
fallow years throughout the study period were considered as RC crop-
lands without any fallowing practice. Pixels with fallow frequency
ranging from zero to three were considered as RC croplands with some
fallowing practices randomly distributed during the period. Pixels with
fallow frequency of four and those ranging from five to seven were
considered as farmlands with CF-3 and CF-2 patterns respectively. The
338 pixels were divided randomly in two subsets containing 80% and
20% of the data in order to train and validate the model respectively
(Mutanga et al., 2012; Puletti et al., 2017; Ramo and Chuvieco, 2017).
These percentages were applied across all classes to make sure all of
them were well represented. In addition, pixels coming from the same
ESYRCE plot were used either to train or to validate the model. The
classification accuracy was assessed by a confusion matrix, deriving
user’s and producer’s accuracies together with the overall accuracy and
Kappa coefficient (Congalton, 1991).

Six predictor variables were used in RF classification model: the AC
values at lags 46, 92 and 138, the AC value at lag 1 (short term), and
location, represented by latitude (Y) and longitude (X) coordinates and
linked to environmental conditions. The contribution of the variables to
model performance was measured in terms of importance by the mean
decrease in accuracy (Archer and Kimes, 2008)

5. Results

5.1. Fallowing temporal patterns assessment using quantitative criteria
based on NDVI autocorrelation values

All NDVI time series showed enough information content for the
assessment of fallowing temporal patterns, being Ljung–Box Q values
higher than the threshold value of 71.20. Fig. 4 displays the spatial
distribution of the different patterns obtained by applying the quanti-
tative criteria using the maximum value among the AC values at lags
46, 92 and 138 (see Section 4.3) across around 10 million ha of rainfed
agricultural areas in mainland Spain. Approximately half surface
(46.5%) showed a crop-fallow rotation pattern, corresponding 33.5% to
fallow every other year (red) and 13.0% every three years (blue). The
remaining surface (53.5%) was labeled as regularly cultivated with at
most three fallow years (green). Based on these results, it was estimated
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that the mean annual cultivated surface was 78.9% of the total study
area which slightly overestimated the estimation provided by the AE
(69.1%) (MAPA, 2019a).

Classification accuracy was assessed by an error matrix using 338
pixels with ESYRCE information (Table 3). The classification presented
high overall accuracy and intermediate Kappa coefficient with 76.04%
and 0.59 values respectively. Farmlands with RC and CF-2 patterns
showed high producer’s and user’s accuracies with values above 80%.
Croplands with CF-3 patterns presented the lowest accuracies with
values lower than 25%.

5.2. Spatial prediction of fallowing temporal patterns based on a random
forest classification model

Table 4 shows the predictive power of each variable to the classi-
fication of each category and to the general classification model in
terms of mean decrease in accuracy. Higher values indicate greater
importance of the predictor variable. For the global model, the most

important variable was AC at lag 138 followed by AC at lag 46 and
latitude with values 60.73, 49.67 and 45.96 respectively. The less im-
portant variable was AC at lag 1 with a value of 25.43. Similarities were
found in RC croplands without fallows and those with CF-2 pattern
showing the same most and less important variables although with
different values. RC farmlands with fallow frequency from one to three
and those with CF-3 pattern showed more disparities being more

Fig. 3. (a) NDVI time series and (b) ACF of a cropland pixel with regularly cultivated pattern (RC). (c) NDVI time series and (d) ACF of a cropland pixel with 2-year
crop-fallow rotation. (e) NDVI time series and (f) ACF of a cropland pixel with 3-year crop-fallow rotation (CF-3). Red bars show fallow years according to ESYRCE
database.

Table 1
Set of criteria to discriminate three fallowing temporal patterns during the period 2001–2012 based on maximun value between the AC at lags 46, 92 and 138.
Crop-fallow sequence will be validated with the information of fallow frequency derived from ESYRCE database.

Fallowing temporal pattern Lag at which AC value is maximum Fallow frequency for validation (ESYRCE)

Regular cultivation (RC) lag 46 0-3
2-year crop-fallow rotation (CF-2) lag 92 5-7
3-year crop-fallow rotation (CF-3) lag 138 4

Table 2
Number of pixels per each fallow frequency class (ESYRCE, 2001–2012) to train
and validate the random forest classification model.

Number of pixels Fallow frequency classes (ESYRCE, 2001-2012)

0 1-3 4 5-7

Training dataset 68 39 29 134
Validation dataset 17 10 7 34
Total 85 49 36 168
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important longitude and AC at lag 46 in the first case and latitude and
longitude in the second one. In spite of the low importance of the
contribution of several variables in some classes, none was removed
from the classification since all variables can contribute to the general
classification model.

The random forest classification resulted in a map of fallowing
temporal patterns from 2001 to 2012, including two subclasses within
RC class (Fig. 5). Areas cultivated every year together with those with
the lowest fallow frequency (1–3 years) were mainly distributed across
northwestern Spain occupying 22.66% and 25.08% of the surface re-
spectively. Croplands with CF-2 pattern occupied the majority of the
surface (48.73%) and were widespread across all the study area but

mainly in the half south and northeast of mainland Spain. Finally,
croplands with CF-3 pattern occupied scarcely 3.53% of the surface and
were scattered in southern mainland Spain. In this case, the results
indicate that the mean annual cultivated surface estimation comprises
70.3% of the study area which is in better agreement with the in-
formation provided by the AE (69.1%) (MAPA, 2019a).

The accuracy of the prediction of fallowing temporal patterns was
evaluated with an independent validation sample consisting on 68
pixels and results are shown in the confusion matrix of Table 5. Overall
accuracy, user’s and producer’s accuracies, and the Kappa statistic were
derived from the error matrix. The overall accuracy and the Kappa
statistic were 80.88% and 0.70 respectively. Categories corresponding
to RC croplands without fallow and croplands with CF-2 pattern,

Fig. 4. Spatial distribution of fallowing temporal patterns across rainfed agricultural areas in mainland Spain from 2001 to 2012 derived from quantitative criteria
using the NDVI AC values at lags 46, 92 and 138. Cropland regularly cultivated (RC), cropland with 2-year crop-fallow rotation (CF-2) and cropland with 3-year crop-
fallow rotation (CF-3) are represented in green, red and blue respectively.

Table 3
Error matrix of fallowing temporal patterns classification during 2001–2012
based on maximum AC values criteria using the fallow frequency information
from ESYRCE dataset. User’s accuracy (UA), producer’s accuracy (PA), overall
accuracy and Kappa coefficient. Fallow frequency from ESYRCE database in
parenthesis.

Reference

RC (0-3) CF-3 (4) CF-2 (5-7) Total UA(%)

CF-3 (4) 11 7 15 33 21.21
CF-2 (5-7) 14 18 141 173 81.50
Total 128 36 168 338
PA(%) 81.34 19.44 83.93

Overall accuracy (%)= 76.04% ; Kappa coefficient= 0.59

Table 4
Variable importance contribution to the classification of each class and to the
general classification model in terms of mean decrease in accuracy. Fallow
frequency during 2001–2012 derived from ESYRCE in parenthesis.

Variables Fallowing temporal patterns (2001-2012) Global

RC (0) RC (1-3) CF-3 (4) CF-2 (5-7)

X 25.71 22.75 14.26 14.29 33.70
Y 40.67 12.58 20.93 17.65 45.96
AC at lag 1 17.08 9.94 12.25 11.00 25.43
AC at lag 46 45.09 22.25 1.20 34.56 49.67
AC at lag 92 22.93 12.71 6.80 15.90 29.12
AC at lag 138 47.13 16.52 8.56 47.96 60.73
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showed very high producer’s accuracies above 90% and high user’s
accuracies with values around 85%. The RC croplands class with few
fallow years (1–3) presented intermediate producer’s and user’s ac-
curacies with 80.00% and 61.54% values respectively, while pixels in
the CF-3 class were completely misclassified.

Table 6 summarizes the area of the different fallowing temporal
patterns obtained with the two procedures. RC croplands showed a
slight decrease from 5.43 million ha in the first map to 4.85 million ha
in the second map. Farmlands with CF-2 pattern showed an increase of
1.54 million ha whereas those with CF-3 pattern showed a decrease of
0.96 million ha.

6. Discussion

In this research, a new and operative methodology was proposed to
assess three main fallowing temporal patterns (RC, CF-2 and CF-3)
across non-irrigated croplands in mainland Spain throughout
2001–2012, using MODIS NDVI time series at 250m spatial resolution.
The use of quantitative criteria based on the maximum value among the
NDVI AC at lags 46 (one year), 92 (two years) and 138 (three years)
allowed mapping fallowing temporal patterns with a high overall ac-
curacy (76.04%) showing the potential of specific AC values to identify
recurrent patterns present in agricultural practices.

The integration of these AC values together with geographical in-
formation in a random forest classification model enabled to exploit

Fig. 5. Spatial distribution of fallowing temporal patterns across rainfed agricultural areas in mainland Spain from 2001 to 2012 derived from a random forest
classification model. Cropland regularly cultivated (RC), cropland with 2-year crop-fallow rotation (CF-2) and cropland with 3-year crop-fallow rotation (CF-3) are
represented in green, red and blue respectively.

Table 5
Error matrix for the classification of fallowing temporal pattern during 2001–2012 derived from the random forest classification model. User’s accuracy (UA),
producer’s accuracy (PA), overall accuracy and Kappa coefficient. Fallow frequency from ESYRCE database in parenthesis.

Reference

RC (0) RC (1-3) CF-3(4) CF-2(5-7) Total UA(%)

Classification RC (0) 16 2 1 0 19 84.21
RC (1-3) 1 8 1 3 13 61.54
CF-3(4) 0 0 0 0 0 0.00
CF-2(5-7) 0 0 5 31 36 86.11
Total 17 10 7 34 68
PA(%) 94.12 80.00 0.00 91.18

Overall accuracy (%)= 80.88%; Kappa coefficient= 0.70.
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hidden relationships among variables improving the previous fallowing
assessment with higher overall accuracy (80.88%). It was possible to
identify two subclasses within the RC class: (1) croplands without fal-
lowing practices and (2) those with up to three fallow years. The AC
values at lags 46 and 138 provided the largest proportion of informa-
tion content to map fallowing temporal patterns especially when
identifying fields belonging to classes RC and CF-2 (Table 4). This is
probably due to their large dynamic range varying from negative values
in CF-2 pattern to significant positive values in fields cultivated every
year (Fig. 3). In this case, the estimated CF-2 area increased from 3.40
million ha to 4.94 million ha with most of them being previously
classified as CF-3 and being mainly located in northeastern Spain (Ebro
valley). Furthermore, an exploration of the validation dataset showed
that some pixels considered to belong to the CF-3 class and classified as
CF-2 (Table 5) showed fallow every other year during eight consecutive
years indicating that they belong to the CF-2 class. This shows a lim-
itation of using fallow frequency values for validation purpose, espe-
cially for CF-3 class. An additional constraint was the low number of
pixels in the CF-3 class to train and validate RF model (Table 2).

Field location, especially latitude, played a relevant role in the RF
classification model (Table 4), indicating that the use of fallowing
temporal patterns is highly related to environmental conditions in
mainland Spain. RC croplands were mainly located in the northwest
plateau with RC areas with up to three fallows distributed in the
southern fringe. The more intense land management in this area is due
to high soil fertility together with milder temperatures and higher
precipitation amount with lower inter-annual variability (AEMET,
2011; Gómez Miguel, 2006; Rodriguez‐Puebla et al., 1998). In contrast,
farmlands cultivated every other year (CF-2) were mainly distributed in
areas with lower amount and with higher temporal variability of pre-
cipitation such as in Ebro valley and the southeast plateau (AEMET,
2011; Rodriguez‐Puebla et al., 1998). In these areas, water is the most
limiting factor for crop production (Cantero-Martfnez et al., 1995;
McAneney and Arrúe, 1993) leading farmers not to cultivate in order to
increase soil moisture (Austin et al., 1998; Boellstorff and Benito, 2005;
Lampurlanés et al., 2002; Moret et al., 2006). The presence of drought
events can result in: (1) farmers do not sow their fields (Wallace et al.,
2017); (2) a decrease of NDVI signal of cultivated fields overestimating
fallowed surface. This results in a more variable temporal distribution
of fallow years and higher NDVI inter-annual variability that makes the
interpretation of the AC values more difficult.

The availability of MODIS data since the year 2000 enables to use
this approach in other agricultural regions with large field size (Fritz
et al., 2015; Kuemmerle et al., 2013; Yan and Roy, 2016). It is espe-
cially interesting when there are recurrent fallow periods such as in
some areas in California (Melton et al., 2015), Great Plains (Tarkalson
et al., 2006), Europe (Estel et al., 2016), Southeast Asia (Burgers et al.,
2005) or the Sahel drylands (Tong et al., 2017). In addition, the cap-
ability to discriminate between RC fields without fallowing practices
and those with one to three fallow years indicates the potential of this

approach to assess cropping stability in irrigated lands.
The decrease of mapping accuracy due to presence of mixed pixels

(Setiawan et al., 2014; Tong et al., 2017) could be a drawback of this
methodology. In fact, in this study it is expected the areas with small-
holding agriculture (e.g., Galicia) will show higher uncertainty. At the
present, the main limitation of using the autocorrelation method with
high spatial resolution is the lack of long time series. However, the
availability of Sentinel data with finer spatial resolution and high
temporal frequency constitutes an opportunity to assess more accu-
rately and efficiently land use intensity in the near future using this
approach. While the use of NDVI time series was proved to be useful to
map fallowing temporal patterns, the availability of other indices able
to discriminate among active and dry vegetation such as spectral shape
indices, could help to better characterized crop seasonal cycle (Palacios-
Orueta et al., 2012).

The land management information generated by this approach may
be very useful for providing information on vegetation dynamics in
other types of studies such as the identification of trends (Tong et al.,
2017) or the estimation of anomalies based on the NDVI annual mean
profile among others (De Keersmaecker et al., 2015; Papagiannopoulou
et al., 2017). As an example, Fig. 6 shows the effect of using all years in
the period (including fallow years) when calculating the annual mean
profiles of a cropland with CF-2 pattern. NDVI values were significantly
higher when fallow years were not included in the average computa-
tion, resulting in a more representative average year.

The promising results obtained with this methodology at national
scale, highlights the potential of the use of specific AC values of remote
sensing time series for monitoring land use intensity in agricultural
areas and more specifically, fallow lands. The information provided
may facilitate a better use of natural resources and forecasting sown

Table 6
Area of the different fallowing temporal patterns during 2001–2012 using two
different procedures, quantitative criteria with AC values and a random forest
classification model. Fallow frequency from ESYRCE database in
parenthesis.Values are in million hectares and percentage.

Fallowing
temporal patterns

Quantitative criteria with
AC values

Random forest classification
model

Million ha Percentage (%) Million ha Percentage (%)

RC (0) 5.43 53.47 2.30 20.34
RC (1-3) 2.55 25.44
CF-3 (4) 1.32 13.00 0.36 2.38
CF-2 (5-7) 3.40 33.53 4.94 51.84
Total 10.15 100.00 10.15 100.00

Fig. 6. a) NDVI time series of a cropland pixel with 2-year crop-fallow rotation.
Red bars show fallow years according to ESYRCE database. b) NDVI annual
mean profile of a cropland pixel with 2-year crop-fallow rotation (above)
considering years with crop and fallow (red) and only years with crop (black).
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and fallowed surfaces as well as the crop yield depending on the in-
formation of previous campaign.

7. Conclusions

In this study, a new approach based on the NDVI autocorrelation
values to assess fallowing temporal patterns in rainfed agricultural
areas was proposed. This approach was applied and tested in mainland
Spain using MODIS NDVI time series from 2001 to 2012 at 250m
spatial resolution. Simplicity and high operability are the main ad-
vantages of the autocorrelation approach.

The criteria based on the maximum among the autocorrelation va-
lues at lags 46, 92 and 138 showed a significant capability to identify
and map fields under crop-fallow rotation management. It was shown
that integrating these autocorrelation values and geographical in-
formation in a random forest model improved the assessment of fal-
lowing temporal patterns reaching high overall accuracy (80.88%). It
was possible to discriminate between fields cultivated every year and
those regularly cultivated with some fallow years. The autocorrelation
approach has proved to be especially adequate to identify croplands
cultivated every year and those with fallow every other year with
regular temporal pattern. No robust conclusions were obtained for the
3-year crop-fallow rotation class. Regularly cultivated croplands were
located in northwestern Spain whereas those with crop-fallow rotation
patterns expanded across the south and northeast Spain as a strategy of
farmers to manage water scarcity and droughts. It was estimated that
the mean annual cultivated and fallowed surfaces were 70.3% and
29.7% of the study area respectively, which is in agreement with the
information provided by the Spanish Ministry of Agriculture, Fisheries
and Food.

Geographical distribution of lands under fallowing practices could
be integrated in the existing land cover classification systems to enrich
the information content within the cropland/agriculture main class. In
the near future, it is expected this approach to become a powerful tool
with the integration of high spatial resolution with longer time series
such as those provided by the Sentinel mission. In this context, it will be
possible to offer highly detailed information to policy makers to assess
the use of natural resources, agricultural intensification, yield estima-
tions and possible environmental impacts.
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