

**DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR SIMULTANEOUS
ESTIMATION OF ATROPINE SULPHATE AND DIPHENOXYLATE
HYDROCHLORIDE IN BULK DRUG AND TABLET DOSAGE FORM**

Sadia Tabassum^{1*}, K. Sreedevi¹, Maliha Masrath² and Anupama Koneru³

Department of Pharmaceutical Quality Assurance, Sultan-ul-Uloom College of Pharmacy, Mount Pleasant, Road no. 3, Banjara Hills, Hyderabad-500034, Telangana, India.

***Corresponding Author: Sadia Tabassum**

Department of Pharmaceutical Quality Assurance, Sultan-ul-Uloom College of Pharmacy, Mount Pleasant, Road no. 3, Banjara Hills, Hyderabad-500034, Telangana, India.

Article Received on 26/07/2023

Article Revised on 14/08/2023

Article Accepted on 04/09/2023

ABSTRACT

The aim of the study is to develop a stability indicating method for the concomitant determination of Atropine and Diphenoxylate in bulk and pharmaceutical dosage forms by RP-HPLC method. The method employed for the determination includes KROMASIL C18 column with the solvent system being Na₂HPO₄: Methanol (50:50), maintaining ambient temperature, flow rate of 1.0 ml/min and the run time was 6 minutes. Detection was carried out with a PDA detector at 225 nm and the pH was adjusted to 4.5. validation of the method was performed and the effect of Forced degradation of the sample under various conditions were evaluated. The outcomes of the method with the above selected criterion met the specifications of the regulatory guidelines such as ICH. Accuracy and recovery of the method was deduced in the range of 99-101%, linearity was perceived in the range of 50-150 µg/mL for both Atropine and diphenoxylate. The regression coefficient values for atropine and diphenoxylate were found to be 0.997 and 1 respectively. Precision of the method was found to be less than 2 for both the drugs. Robustness of the method was evaluated and the results met the acceptance limits. Outcomes of the forced degradation studies were within the limit i.e., 5-20%, indicative of stability of drugs under various conditions. All the outcomes of the method development, validation and degradation studies proved that the method is reliable for the simultaneous estimation of above said drugs in bulk and pharmaceutical dosage forms.

KEYWORDS: RP-HPLC, Atropine, Diphenoxylate, ICH guidelines, stability-indicating.

INTRODUCTION

Diarrhoea is generally caused due to increase in the peristaltic movements in the gut, which results in increased defecations and excessive loss of water. Atropine and diphenoxylate are two medications used in combination for management of diarrhoea. In combination, it is marked under the brand name called Lomotil containing a fixed dose of Diphenoxylate and atropine, the former being in a highest dose than the latter. The combination belongs to the class of anti-motility agents, where diphenoxylate is used to decrease the movements in the intestines. Atropine is used to prevent the exploited utilization of diphenoxylate by patients.

MATERIALS AND METHODS

Equipment Kit

- Waters 2695 module in the HPLC system
- Empower 2 Waters software
- Waters 2699 module Photodiode array (PDA) detector

- KROMASIL C-18 column; 250 mm × 4.6 mm; 5 µm dimension particle size

Chemical Substances

- Na₂HPO₄
- Ortho-Phosphoric Acid

Solvents

- Methanol

Drug

- Atropine sulphate (ATP)
- Diphenoxylate (DPH)

Tablet dose

- Brand name: Lomotil®
- Name: Atropine Sulphate (ATP) and Diphenoxylate (DPH)
- Claimed strength: ATP - 0.025 ppm and DPH - 2.50 ppm

- Company manufacturing: Pfizer

PREPARATION OF MOBILE PHASE

Na₂HPO₄ is weighed and transferred into a 1000 ml volumetric flask. Add a small amount of HPLC graded water to dissolve it. The volume is made up to 1000 ml with HPLC grade water. Sonicate the solution to remove any air particles present.

To prepare the desired mobile phase 500 ml of the prepared buffer solution is mixed with 500 ml of methanol and sonicated to eliminate the air particles.

PREPARATION OF ATROPINE & DIPHENOXYLATE STOCK SOLUTION

Precisely weigh and transfer 0.025 mg Atropine sulphate and 2.50 mg diphenoxylate into 100 ml of volumetric flask. Add 10 ml of Methanol to dissolve the substances. Shake the solution or sonicate it for 20 minutes to eliminate the entrapped air particles and is used as a stock solution.

Dilute 1 ml of the above formulated solution to 10 ml with water to obtain standard solution for analysis.

PREPARATION OF ATROPINE & DIPHENOXYLATE SAMPLE SOLUTION

Accurately weigh and transfer 94 mg of Lomotil® crushed tablet powder equivalent to 0.025 mg Atropine Sulphate and 2.5 mg Diphenoxylate into a 100 ml of volumetric flask and add 10 ml Methanol and sonicate it for 20 min (or) shake 10 min and makeup with Methanol.

Transfer above solution (1ml) into 10 ml flask. Dilute the volume with Water. Filter the solution through a 0.45µm filter, inject into HPLC system.

WORKING LINEARITY CALIBRATED SOLUTIONS OF ATROPINE & DIPHENOXYLATE

Working concentrations solutions of ATP (0.01-0.03 µg/ml) and DPH (1-3 µg/ml) are prepared according to linearity concentration range by diluting stock solutions with suitable amount of methanol.

- Solution 1:** Pipette 0.5 ml of stock solution into a 100 ml volumetric flask, dilute with methanol to obtain concentrations of 0.0125 µg/ml of ATP and 1.25 µg/ml of DPH respectively.
- Solution 2:** Pipette 0.7 ml of stock solution into a 100 ml volumetric flask, dilute with methanol to obtain concentrations of 0.018 µg/ml of ATP and 1.875 µg/ml of DPH respectively.
- Solution 3:** Pipette 1 ml of stock solution into a 100 ml volumetric flask, dilute with methanol to obtain concentrations of 0.025 µg/ml of ATP and 2.50 µg/ml of DPH respectively.
- Solution 4:** Pipette 1.2 ml of stock solution into a 100 ml volumetric flask, dilute with methanol to obtain concentrations of 0.0312 µg/ml of ATP and 3.125 µg/ml of DPH respectively.
- Solution 5:** Pipette 1.5 ml of stock solution into a 100 ml volumetric flask, dilute with methanol to obtain concentrations of 0.0375 µg/ml of ATP and 3.75 µg/ml of DPH respectively.

RESULTS AND DISCUSSIONS

ATP AND DPH HPLC METHOD ASSESSMENT PREREQUISITES:

Mobile Phase : Na₂HPO₄: Methanol (50:50)

Column : KROMASIL, C18, 150 × 4.6mm, 5µm

Flow Rate : 1.0 ml/Min

Temperature : 25°C

Volume : 10µl

Run time : 6 min

Detector : PDA, 225 nm

pH : 4.5

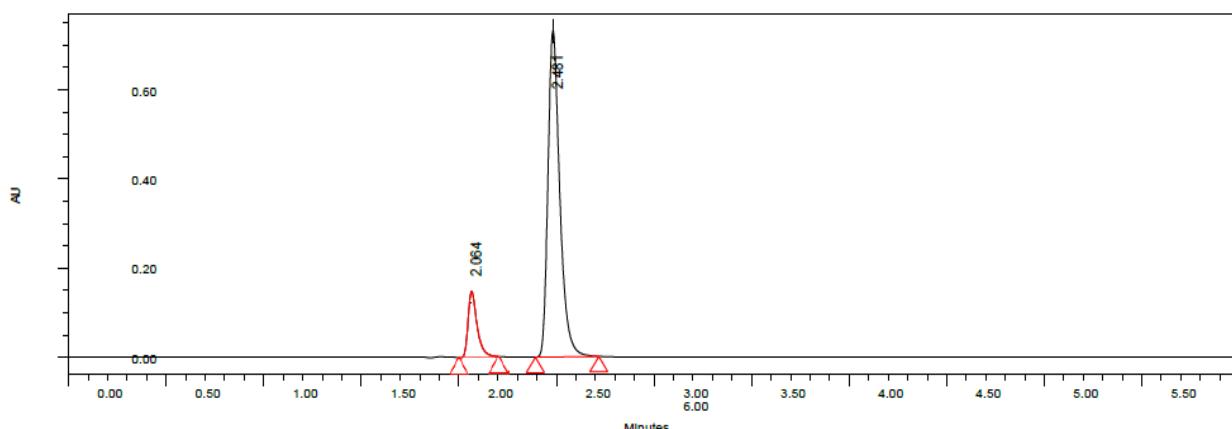


Fig 1: Results of Trial.

	Name	Retention Time	Area	% Area	Height	USP Resolution	USP Tailing	USP Plate Count
1		2.064	478585	13.48	148786		1.50	10142
2		2.481	3072146	86.52	732656	4.24	1.38	8446

Observation: Both the components are eluted and all the system suitability parameters are within the limit.

METHOD VALIDATION

System suitability tests

System suitability tests are done to evaluate the parameters as number of theoretical plates, peak tailing,

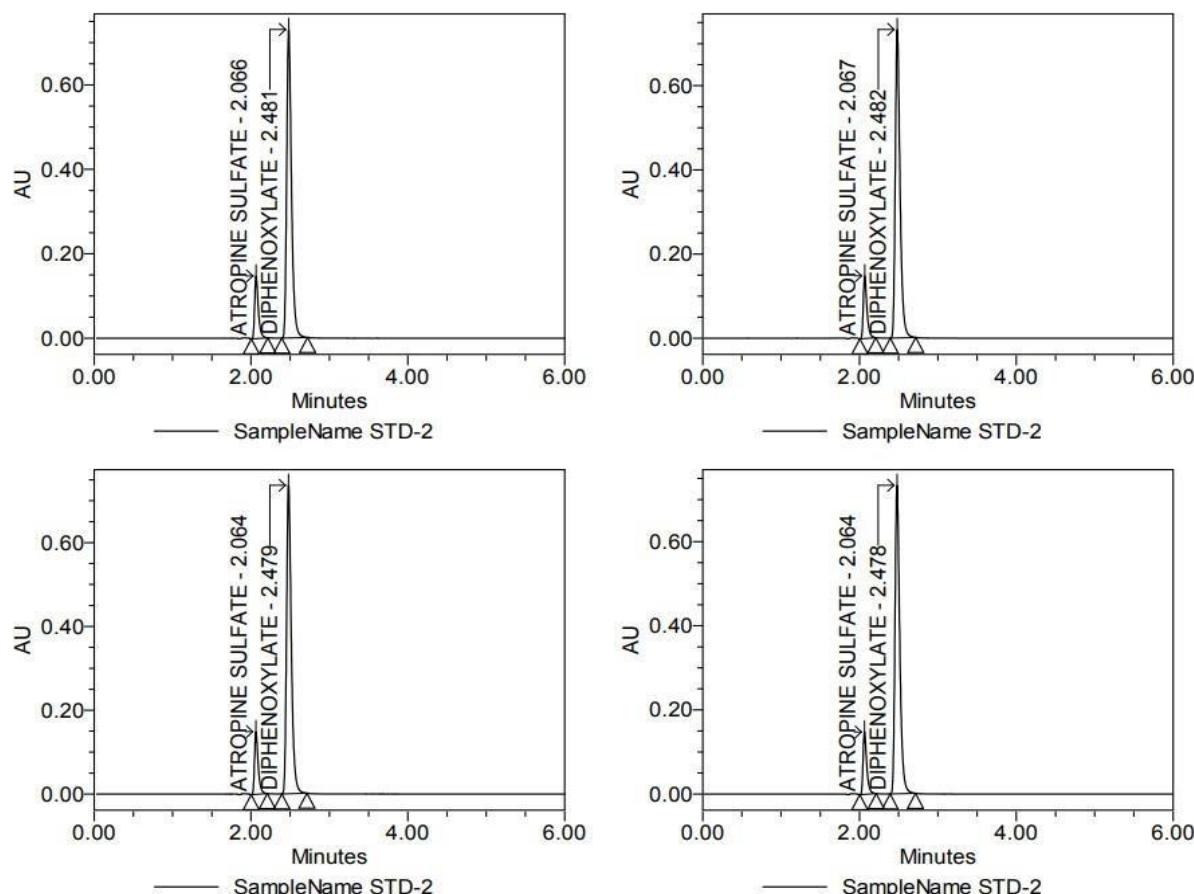

retention time, resolution, plate count, etc. Sample solution of ATP and DPH are instilled six times in to the HPLC system with a KROMASIL C18, 150 × 4.6mm, 5µm column, with the solvent system Na₂HPO₄: Methanol (50:50). The outcomes of the tests are given in the following table.

Table 1: System suitability results for ATP.

S.no	Peak Name	Rt	Area	USP Plate Count	USP Tailing
1	Atropine sulphate	2.064	481122	10173	1.51
2	Atropine sulphate	2.064	480568	10055	1.52
3	Atropine sulphate	2.065	485629	9659	1.50
4	Atropine sulphate	2.066	481253	10068	1.49
5	Atropine sulphate	2.067	480171	10150	1.53
Mean			481748.7		
% RSD			0.5		

Table 2: System suitability results for DPH.

S.no	Peak Name	Rt	Area	USP Resolution	USP Plate Count	USP Tailing
1	Diphenoxylate	2.478	3077153	4.22	8450	1.39
2	Diphenoxylate	2.479	3078638	4.24	8492	1.39
3	Diphenoxylate	2.480	3085138	4.17	8287	1.38
4	Diphenoxylate	2.481	3075589	4.22	8419	1.38
5	Diphenoxylate	2.482	3072692	4.22	8461	1.39
Mean			3077841.8			
% RSD			0.2			

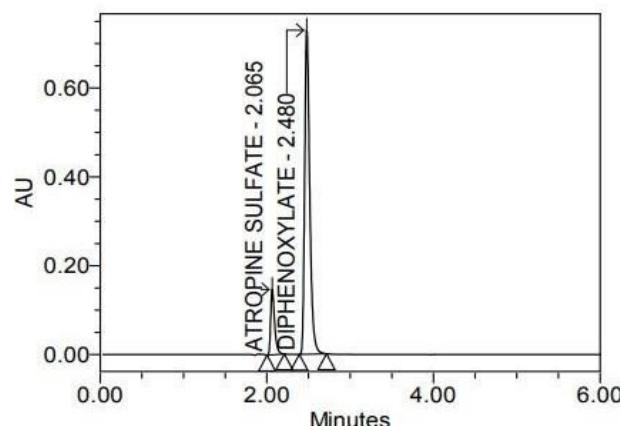


Fig 2: System suitability results of ATP & DPH.

Selectivity

Selectivity of the method is evaluated by instilling blank and working concentration of sample solutions in to the HPLC system equipped with a KROMASIL C18, 150 × 4.6mm, 5µm and solvent system Na₂HPO₄: Methanol (50:50). The criterion is adjusted as per the specifications of optimization conditions. The selectivity of the designed method is tested by comparing the chromatograms of the blank with the sample/placebo.

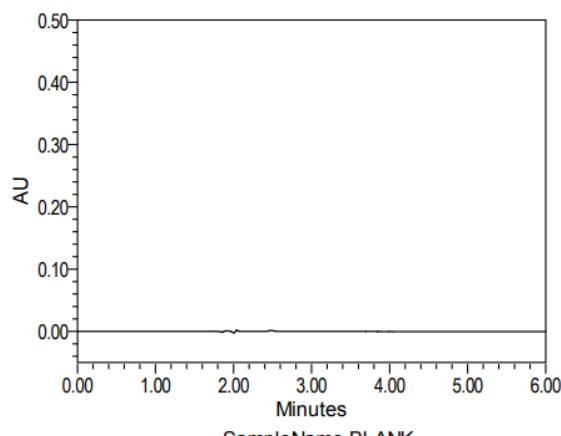


Fig 3: Chromatogram of Blank.

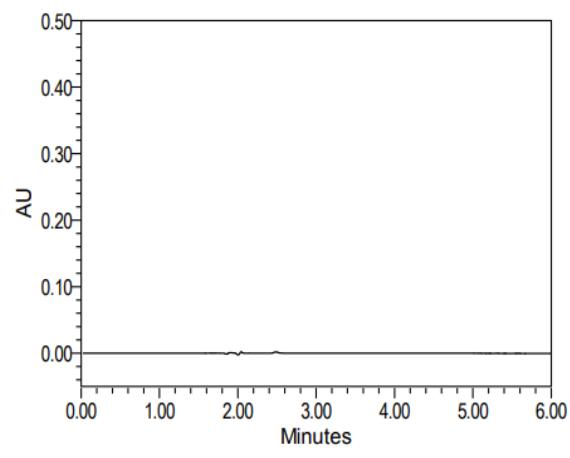


Fig 4: Chromatogram of Placebo.

Linearity

Working concentrations of ATP & DPH are prepared in the level of upper interval and lower interval of 0.01-0.03 µg/ml and 1-3 µg/ml respectively and are instilled into the HPLC system with KROMASIL C18, 150 × 4.6mm, 5µm. The peaks area for the respective concentrations were recorded and a plot of concentration vs peak areas is plotted, and the R² values were 0.9978 and 1 respectively, which proves that the said method is linear in the abovesaid range.

Table 3: Results of Linearity and range of ATP & DPH.

ATP			DPH		
Concentration (%)	Concentration (µg/ml)	Peak area	Concentration (%)	Concentration (µg/ml)	Peak area
50	0.0125	541083	50	1.25	1105140
75	0.018	813669	75	1.875	1675423
100	0.0250	1061247	100	2.50	2233693
125	0.0312	1330576	125	3.125	2802591
150	0.0375	1611742	150	3.75	3368096

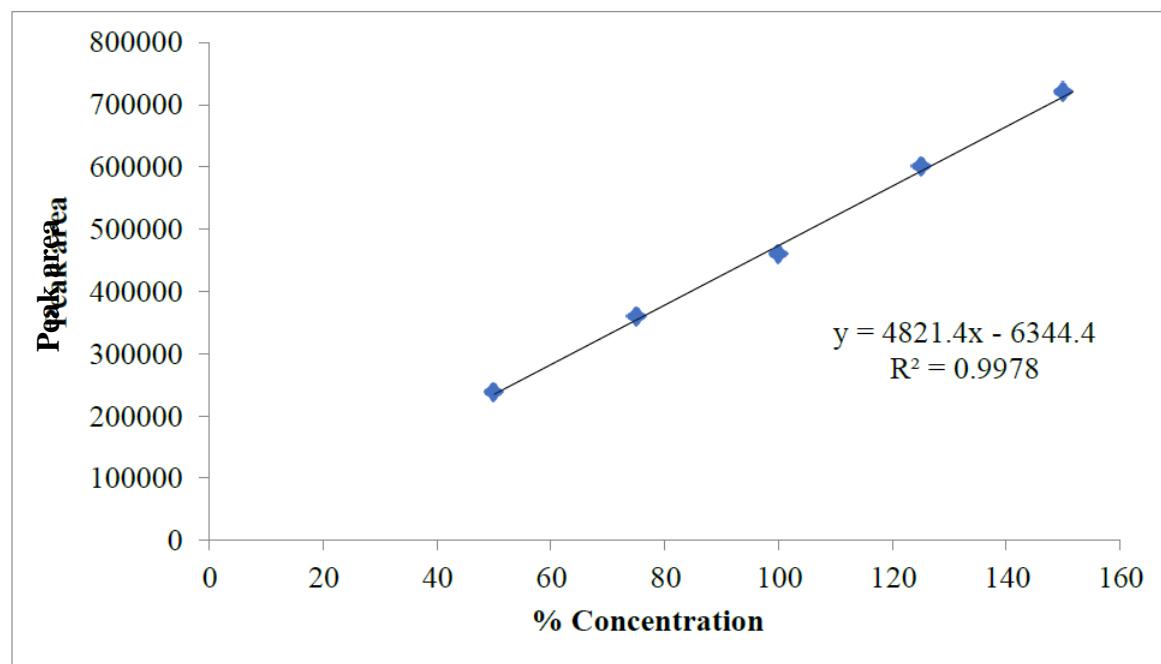


Fig 5: Calibration curve for ATP.

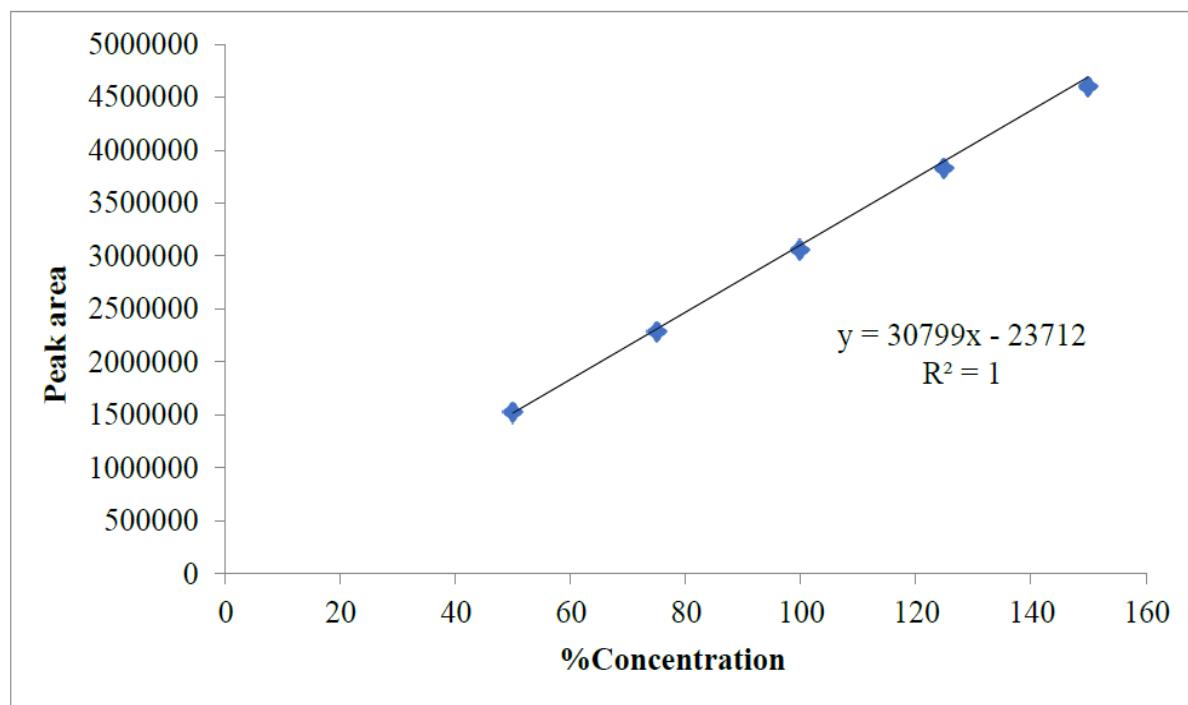


Fig 6: Calibration curve for DPH.

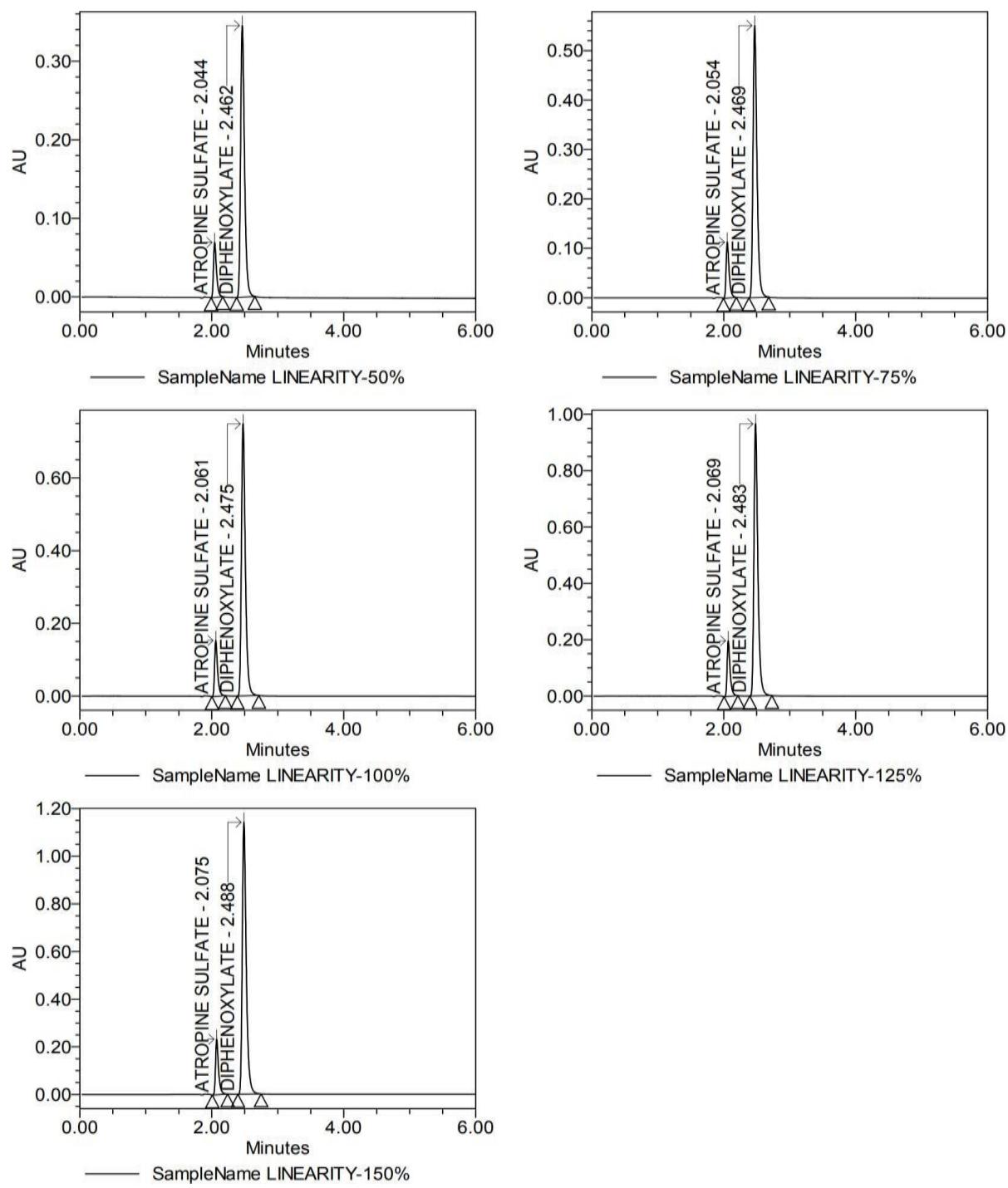


Fig 7: Chromatograms for linearity and range of ATP & DPH.

Limit of detection

Sample solution of ATP & DPH were instilled into the HPLC system on a KROMASIL C18, 150 × 4.6mm, 5 μ m, modifying the settings according to the optimized parameters selected for the method. Evaluation of LOD was done based on signal to noise ratio. The formula for calculation of LOD is $3.3 * \sigma/s$ and was understood to be 0.000 μ g/ml and 0.001 μ g/ml respectively. Thus, the strategy employed was proved to be sensitive for analyzing the above-mentioned drugs.

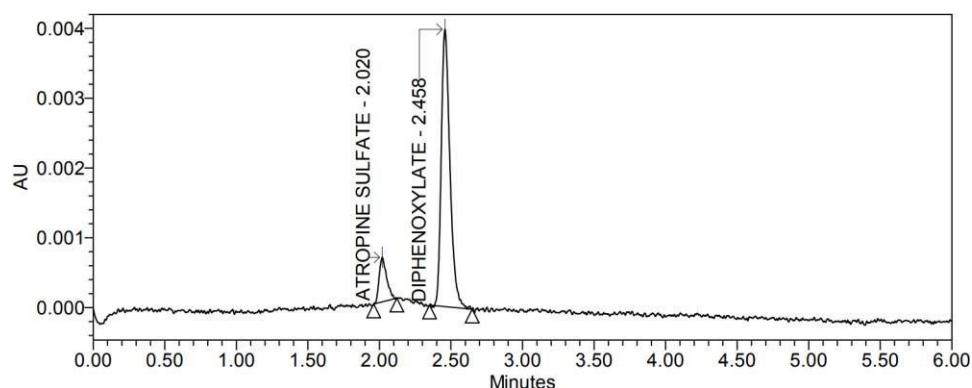


Fig 8: Chromatogram showing LOD of ATP & DPH.

Limit of Quantification

Sample solution of ATP & DPH were instilled into the HPLC system on a KROMASIL C18, 150 × 4.6mm, 5 μ m, modifying the settings according to the optimized parameters selected for the method. Evaluation of LOD

was done based on signal to noise ratio. The formula for calculation of LOD is $10 * \sigma/s$ and was found to be 0.000 μ g/ml and 0.004 μ g/ml respectively. Thus, the strategy employed was proved to be sensitive for analyzing the above-mentioned drugs.

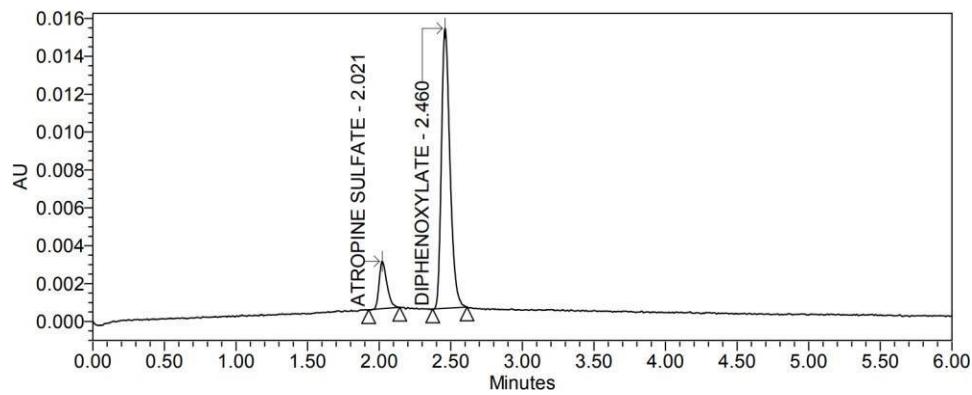
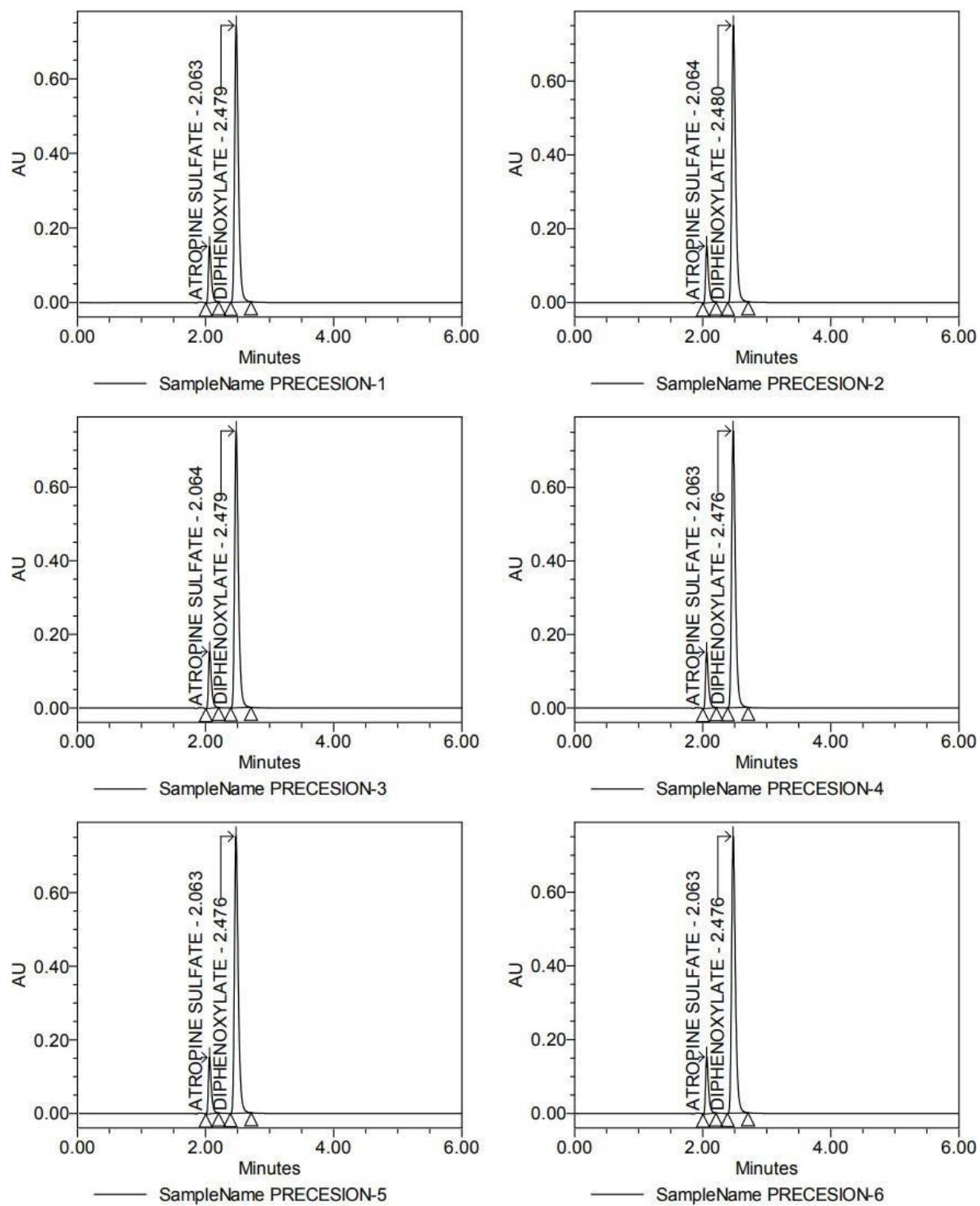


Fig 9: Chromatogram showing LOQ of ATP & DPH.


Precision

The precision of the proposed method is evaluated based on the repeatability results. Six injections of working concentrations of ATP & DPH were instilled in the HPLC system on a KROMASIL C18, 150 × 4.6mm, 5 μ m column and the settings were modified according to

the cardinal parameters. Repeatability of the chosen method was evaluated based on the % RSD obtained from the peak areas, deduced to be 0.16 and 0.18 respectively, showing that the said method is precise for the analysis of ATP & DPH.

Table 4: Precision results for ATP & DPH.

Drug name	Peak area	Average	Standard deviation	% RSD
ATP	479163	479795.33	0.16	0.16
	479203			
	479161			
	480539			
	480921			
	479785			
DPH	3050646	3057699.5	0.18	0.18
	3051802			
	3058078			
	3059811			
	3061884			
	3063976			

Fig 10: Chromatograms showing precision of ATP & DPH.

Accuracy and recovery

Working concentration solutions of ATP & DPH were instilled into the HPLC system on a KROMASIL C18, 150 × 4.6mm, 5µm column, the settings were modified according to the optimized criteria. The % RSD and assay of the sample are calculated from the peaks area obtained, proving that the method is accurate for estimation of ATP & DPH simultaneously.

Recovery of the method is evaluated by spiking the sample solutions of ATP & DPH at a level of 50%, 100% and 150% and the % recovery after spiking was made in contrary with that of the amount of the drug content in the sample before spiking. Results obtained prove that the method is judicious for the concomitant quantification of ATP & DPH in the formulations.

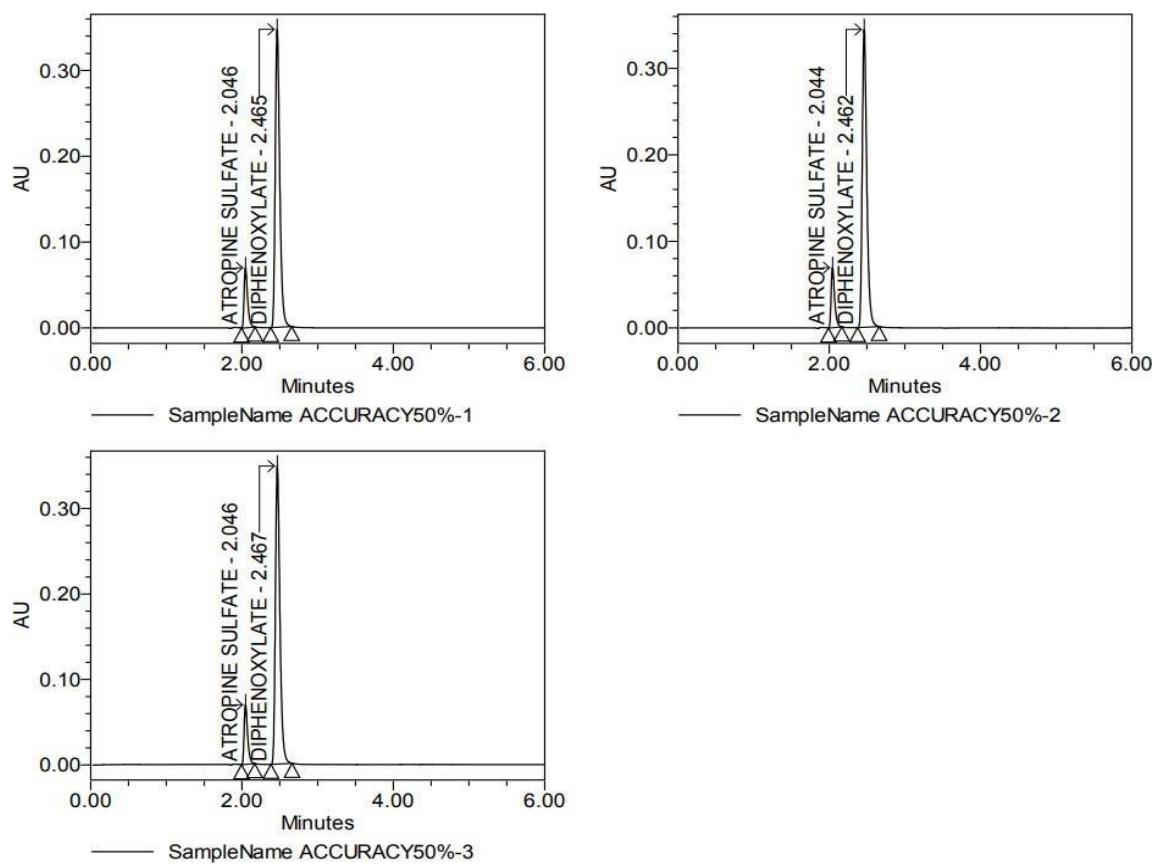


Fig 11: Recovery of ATP & DPH at a level of 50% spiking.

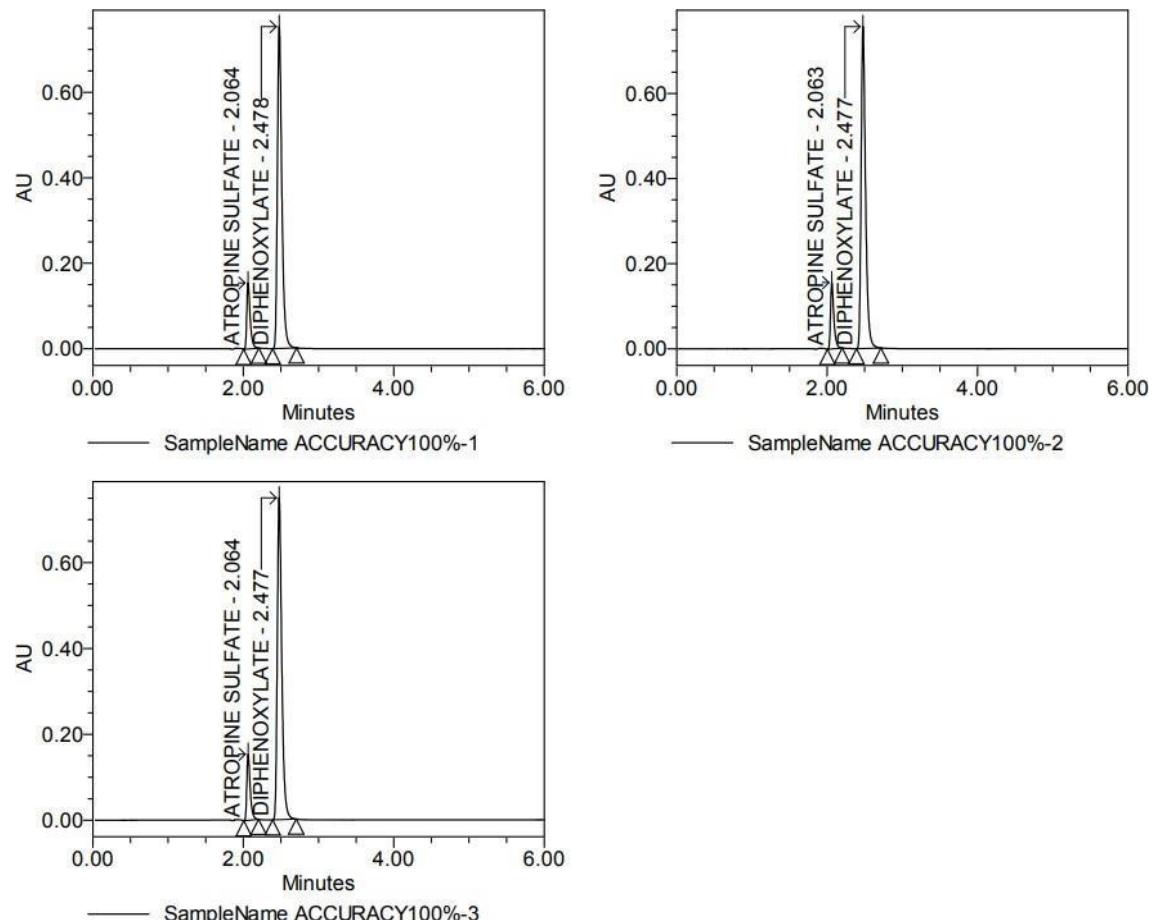


Fig 12: Recovery of ATP & DPH at a level of 100% spiking.

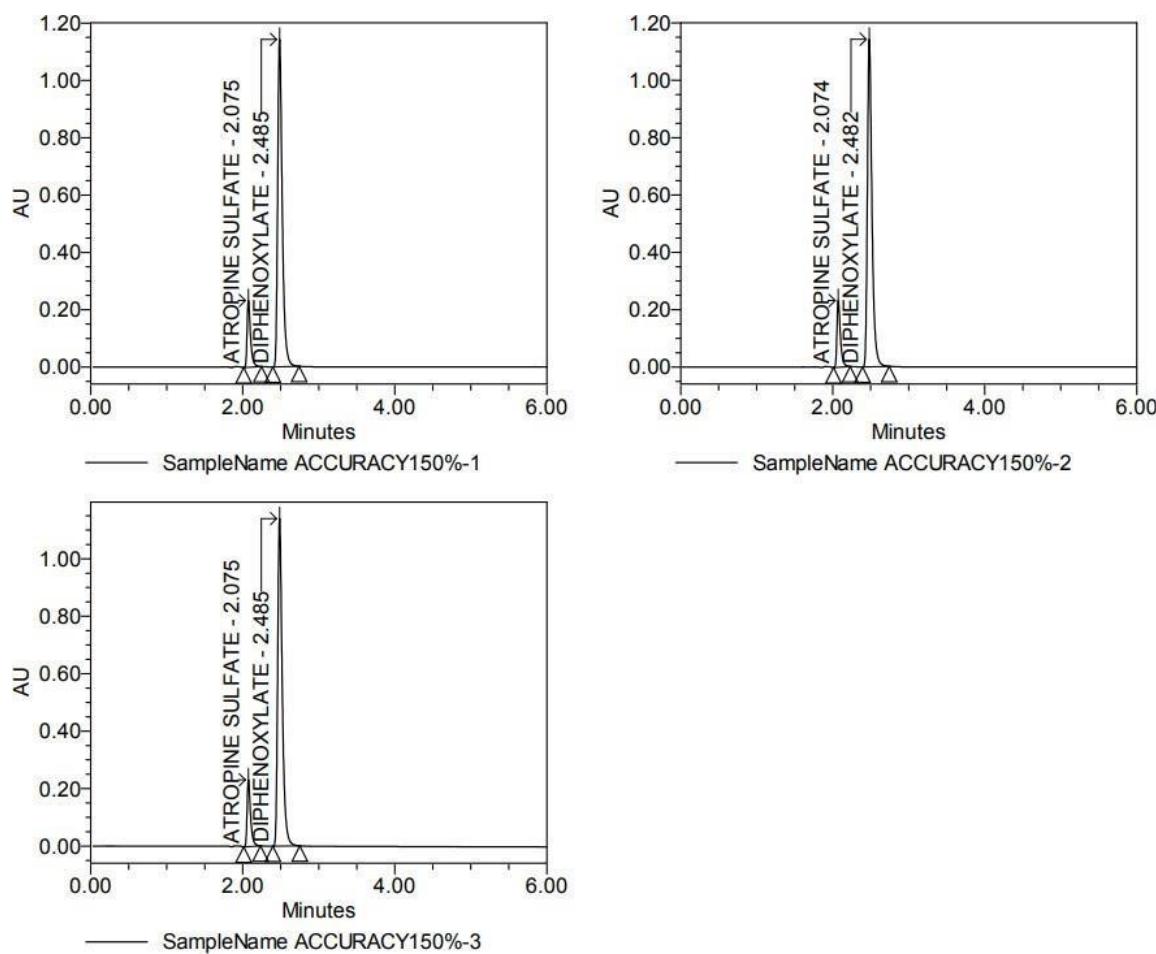
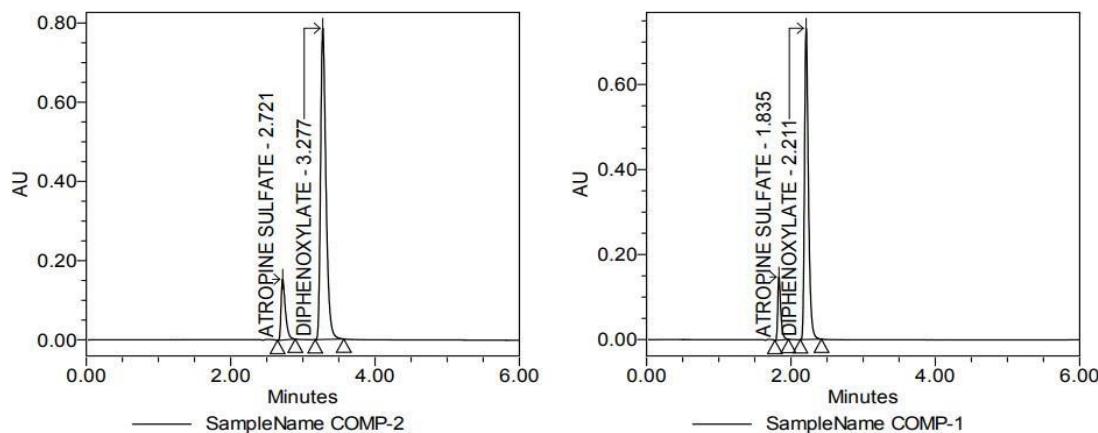


Fig 13: Recovery of ATP & DPH at a level of 150% spiking.

Table 5: Recovery results for Atropine Sulphate.

Spiking value (%)	Peak Area	Amount of drug added	Total amount of drug found	Recovery of drug	Mean recovery value
50	238901	0.012	0.01	100	100
50	239640	0.012	0.01	100	
50	238804	0.012	0.01	100	
100	479106	0.025	0.02	100	100
100	479922	0.025	0.02	100	
100	480875	0.025	0.02	101	
150	721952	0.037	0.04	101	100
150	720248	0.037	0.04	100	
150	720420	0.037	0.04	100	


Table 6: Recovery results for Diphenoxylate.

Spiking value (%)	Peak Area	Amount of drug added	Total amount of drug found	Recovery of drug	Mean recovery value
50	1511106	1.238	1.22	99	99
50	1515813	1.238	1.23	99	
50	1527192	1.238	1.24	100	
100	3064532	2.475	2.48	100	100
100	3056285	2.475	2.48	100	
100	3059921	2.475	2.48	100	
150	4597498	3.713	3.72	100	100
150	4601663	3.713	3.73	100	
150	4595436	3.713	3.72	100	

Robustness

Working concentration solutions of ATP & DPH were passed into the HPLC system equipped with a KROMASIL C18, 150 × 4.6mm, 5µm column, and modification of the selected parameters such as wavelength, pH, flow rate, ratio of mobile phase and temperature was done to evaluate the robustness of the

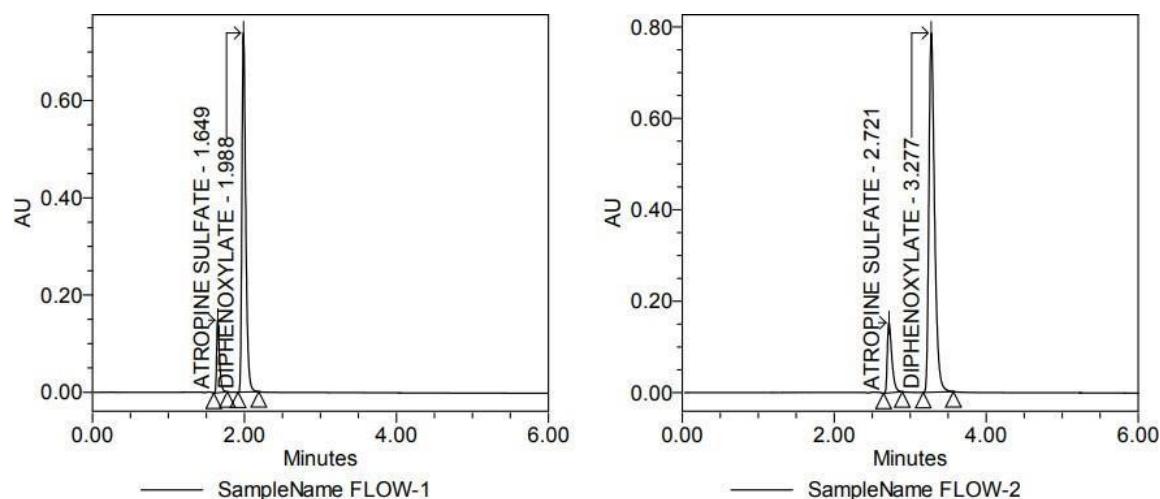

method. Number of theoretical plates, peak tailing, peak resolution, retention times and peak areas of ATP & DPH after modification were calculated and the results show that the chosen method is robust for the concomitant quantification of ATP & DPH in the dosage forms.

Fig 14: Chromatograms showing robustness of ATP & DPH- Mobile Phase composition modification.

Table 7: Robustness results- mobile phase composition modification.

Mobile phase (Methanol)	Sample name	Rt	Peak area	USP resolution	USP plate count	USP tailing
35%	ATP	2.185	1363098		8166	1.45
55%	ATP	1.599	993706		6983	1.47
35%	DPH	2.829	2833813	5.82	9103	1.29
55%	DPH	2.098	2067183	5.68	7931	1.32

Fig 15: Chromatograms showing robustness of ATP & DPH- Flow rate modification.

Table 8: Robustness results- Flow rate modification.

Flow rate (ml/min)	Sample name	Rt	Peak area	USP resolution	USP plate count	USP tailing
0.9	ATP	1.463	912052		6865	1.49
1.1	ATP	2.185	1363098		8166	1.45
0.9	DPH	1.910	1885873	5.53	7769	1.34
1.1	DPH	2.829	2833813	5.82	9103	1.29

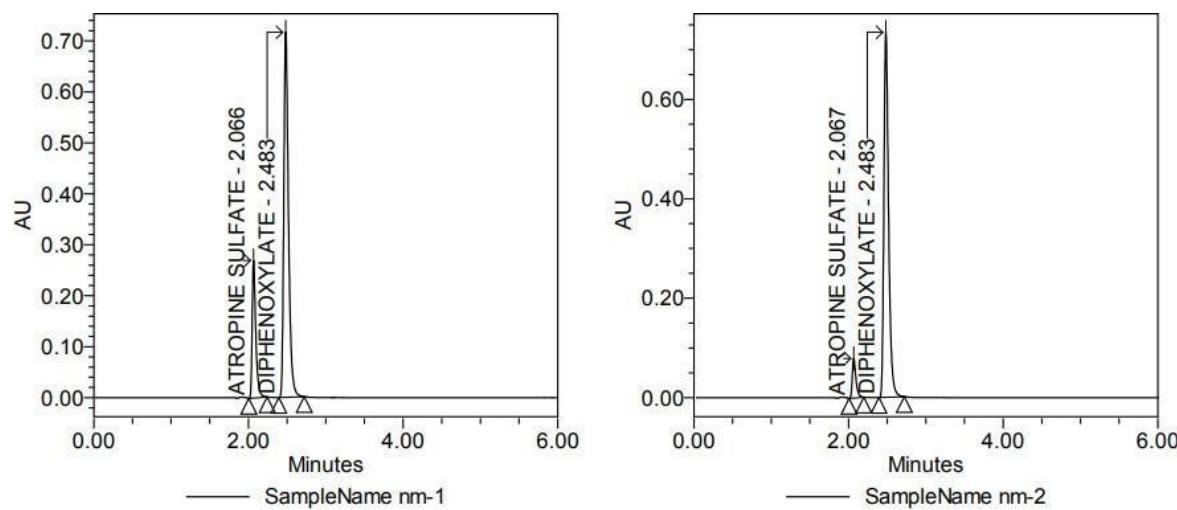


Fig 16: Chromatograms showing robustness of ATP & DPH- Wavelength modification.

Table 9: Robustness results- wavelength modification.

Wavelength (nm)	Sample name	Rt	Peak area	USP resolution	USP plate count	USP tailing
246	ATP	1.761	1584445		7413	1.47
250	ATP	1.760	655507		7446	1.48
246	DPH	2.310	2157770	5.82	8264	1.31
250	DPH	2.309	2343027	5.83	8326	1.32

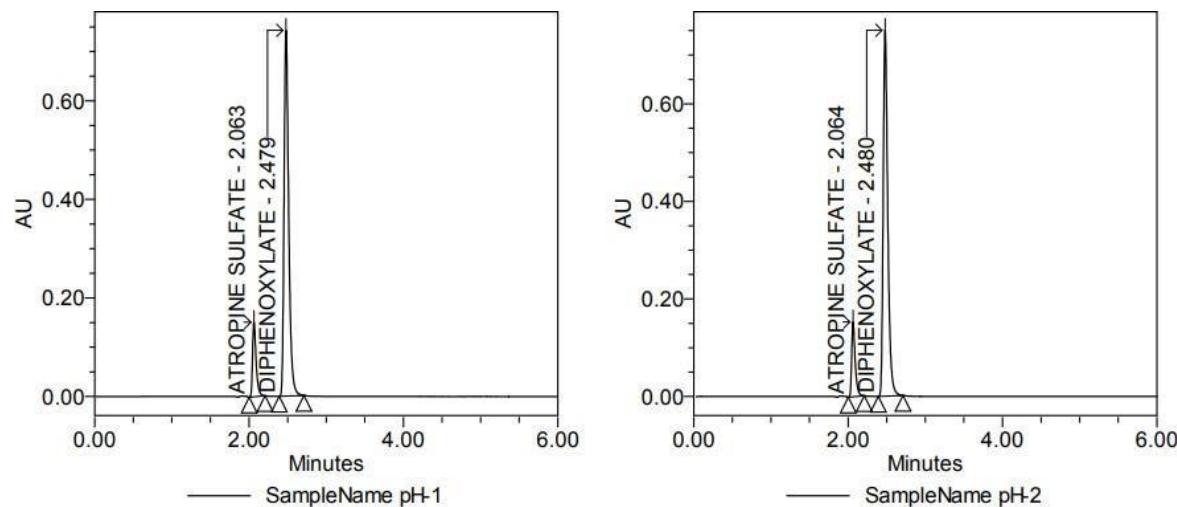


Fig 17: Chromatograms showing robustness of ATP & DPH- pH modification.

Table 10: Robustness results - pH modification

pH	Sample name	Rt	Peak area	USP resolution	USP plate count	USP tailing
5.3	ATP	1.758	1087453		7532	1.48
5.7	ATP	1.757	1087998		7370	1.48
5.3	DPH	2.305	2260741	5.87	8508	1.32
5.7	DPH	2.301	2257971	5.78	8343	1.32

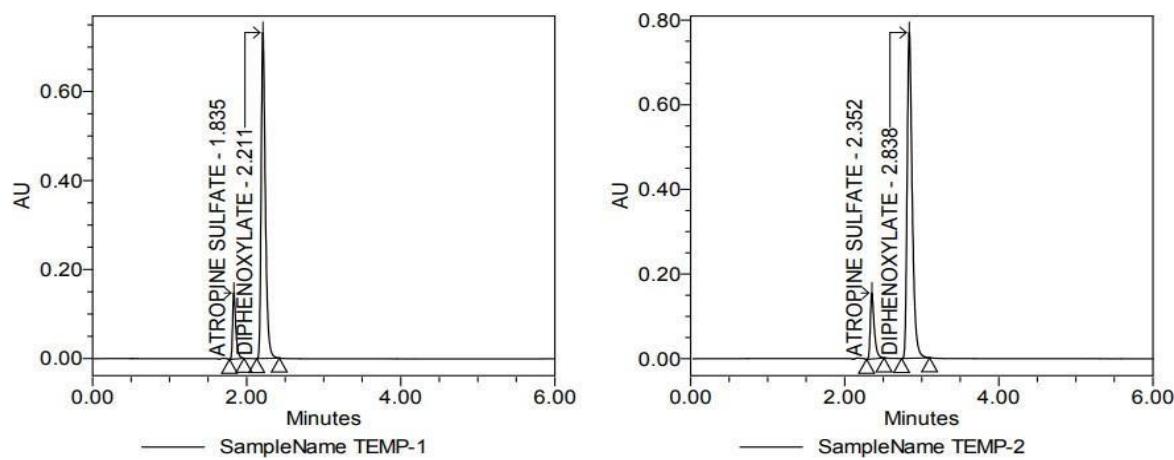


Fig 18: Chromatograms showing robustness of ATP & DPH- Temperature modification

Table 11: Robustness results- Temperature modification.

Temperature (°C)	Sample name	Rt	Peak area	USP resolution	USP plate count	USP tailing
23	ATP	1.835	427785		10059	1.49
27	ATP	2.352	552193		10838	1.54
23	DPH	2.211	2755995	4.28	8346	1.38
27	DPH	2.838	3529827	4.50	9249	1.39

Forced degradation studies

Stability of the sample solutions were tested by exposing the working sample solutions of ATP& DPH to various conditions such as Acid, Base, Peroxide, Thermal (Heat), Moisture (Humidity) and Sunlight. The peak areas of

ATP & DPH working Solutions before exposing to degradation and after degradation were collated and % amount degraded was evaluated. The results are enumerated in the table below.

Table 12: Results for degradation studies of ATP & DPH Order of Stability.

Stress Applied	ATP			DPH		
	Response	% Remained	% Degraded	Response	% Remained	% Degraded
No stress	478585	100	0	3072146	100	0
Acid	429967	88.98	11.02	2792731	90.46	9.54
Base	443489	91.78	8.22	2858876	92.61	7.39
Peroxide	457409	94.66	5.34	2945450	95.41	4.59
Thermal	434899	90.00	10.00	2750192	89.09	10.91
Sunlight	445752	92.25	7.75	2829604	91.66	8.34
Humidity	477609	98.84	1.16	3060990	99.15	0.85

ATP: Acid > Thermal > Base > Sunlight > Peroxide > Humidity

DPH: Thermal > Acid > Sunlight > Base > peroxide > Humidity

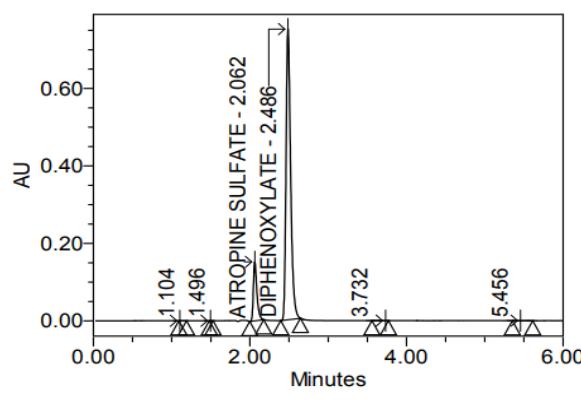
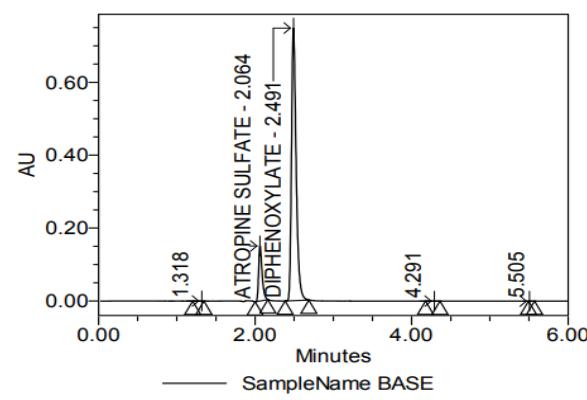
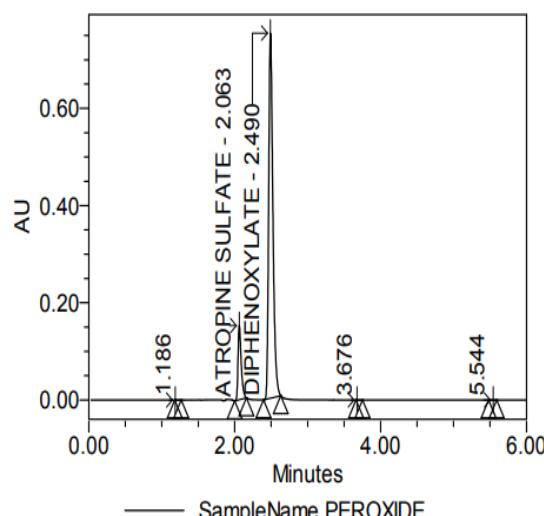
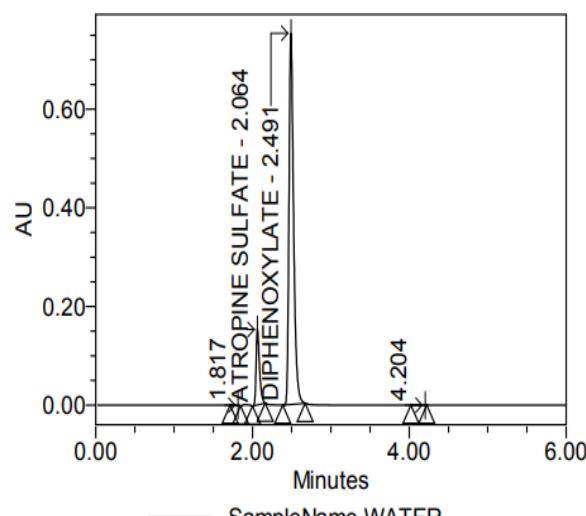
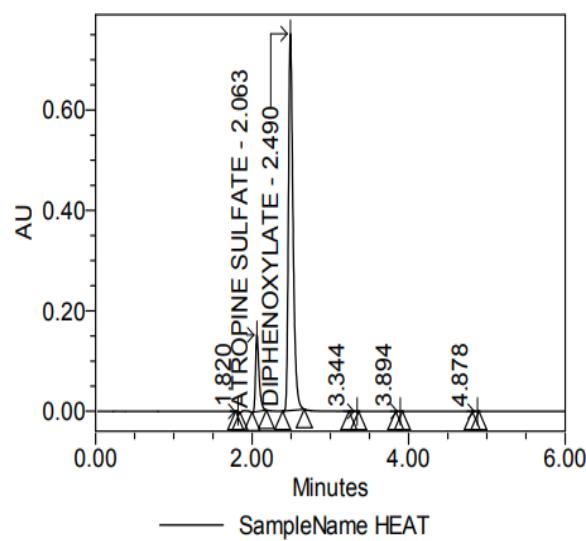


Fig 19: Chromatogram showing acid degradation of ATP & DPH.


Fig 20: Chromatogram showing base degradation of ATP & DPH.

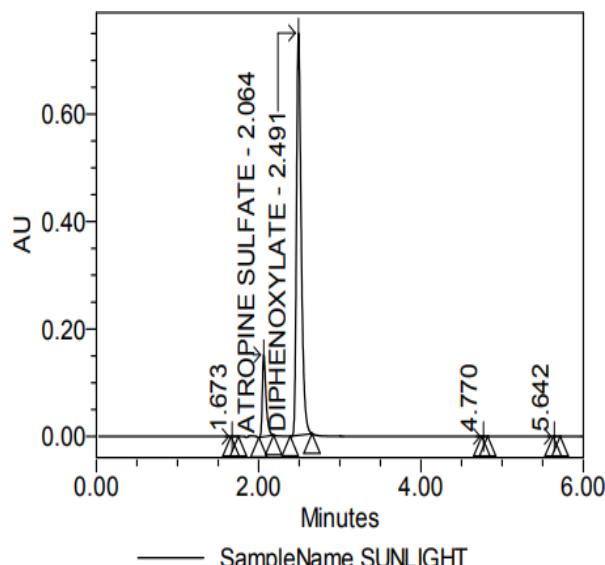

Fig 21: Chromatogram showing peroxide degradation of ATP & DPH.

Fig 24: Chromatogram showing moisture (water) degradation of ATP & DPH.

Fig 22: Chromatogram showing thermal degradation of ATP & DPH.

Fig 23: Chromatogram showing light degradation of ATP & DPH.

CONCLUSION

Development of method and its validation for the simultaneous estimation of Atropine and Diphenoxylate being the prime objective of the study was carried out by performing various trials using RP-HPLC method. Out of the total trials carried out, use of KROMASIL C18 column as a stationary phase and the solvent system employed being buffer and methanol in the ratio of 50:50 showed all the system suitability parameters inside the acceptable criteria and hence considered as the optimized method. Validation of the developed method parameters was performed using the above optimized parameters. Forced degradation studies, indicative of stability of products on storage was carried out and the outcomes were within the limit. Hence the proposed method can be utilized for the routine simultaneous estimation of above said drugs.

REFERENCES

1. "Diarrhoeal disease Factsheet". World Health Organization. 2 May 2017. Retrieved 29 October 2020.
2. "WGO Practice Guideline – Acute diarrhoea". Archived from the original on 22 February 2011. Retrieved 9 March 2011.
3. "Cholera outbreak toolbox" (PDF). WHO. June 2019. Retrieved 2 May 2022.
4. WHO, Diarrhoeal disease: fact sheet. <https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease> (2020).
5. Institute for Health Metrics and Evaluation. Global Burden of Disease Study 2016 (GBD 2016) Results. Global Burden of Disease Collaborative Network, 2017.
6. Srivastava S, Banerjee S, Debbarma S, Kumar P, Sinha D (2022) Rural-urban differentials in the prevalence of diarrhoea among older adults in India: Evidence from Longitudinal Ageing Study in India, 2017–18. PLoS ONE 17(3): e0265040. <https://doi.org/10.1371/journal.pone.0265040>.

7. Blaser, Annika & Deane, Adam & Fruhwald, Sonja. (2015). Diarrhoea in the critically ill. Current opinion in critical care. 21. 10.1097/MCC.000000000000000188.
8. Schiller, Lawrence. (2019). Chronic Diarrhoea Evaluation in the Elderly: IBS or Something Else? Current Gastroenterology Reports. 21. 10.1007/s11894-019-0714-5.
9. SCHILLER, L.R. (1995), Review article: anti-diarrhoeal pharmacology and therapeutics. *Alimentary Pharmacology & Therapeutics*, 9: 86-106. <https://doi.org/10.1111/j.1365-2036.1995.tb00358.x>
10. Nwachukwu CE, Okebe JU. Antimotility agents for chronic diarrhoea in people with HIV/AIDS. *Cochrane Database Systematic Review*. 2008 Oct 8;(4):CD005644. doi: 10.1002/14651858.CD005644.pub2. PMID: 18843696.
11. Lee KJ. Pharmacologic Agents for Chronic Diarrhea. *Intestinal Research*, 2015 Oct; 13(4): 306-312. doi: 10.5217/ir.2015.13.4.306. Epub 2015 Oct 15. PMID: 26576135; PMCID: PMC4641856.
12. Szajewska H, Kolodziej M. Systematic review with meta-analysis: *Saccharomyces boulardii* in the prevention of antibiotic-associated diarrhoea. *Aliment Pharmacology & Therapeutics*, 2015; 42:793-801. Allen SJ, Wareham K, Wang D, et al. A high-dose preparation of lactobacilli and bifidobacteria in the prevention of antibiotic-associated and *Clostridium difficile* diarrhoea in older people admitted to hospital: a multicentre, randomised, double-blind, placebo-controlled, parallel arm trial (PLACIDE) *Health Technology Assessment*, 2013; 17:1-140.
13. Mego M, Chovanec J, Vochyanova-Andrezalova I, et al. Prevention of irinotecan induced diarrhoea by probiotics: A randomized double blind, placebo-controlled pilot study. *Complementary Therapies in Medicine*, 2015; 23:356-362.
14. Sandy Cairncross, Caroline Hunt, Sophie Boisson, Kristof Bostoen, Val Curtis, Isaac CH Fung, Wolf-Peter Schmidt, Water, sanitation and hygiene for the prevention of diarrhoea, *International Journal of Epidemiology*, Volume 39, Issue supplementary 1, April 2010, Pages i193-i205, <https://doi.org/10.1093/ije/dyq035>.
15. Luxminarayan Lodha et al., A Review on Chromatography Techniques, *Asian Journal of Pharmaceutical Research and Development*, 2017; 5(2): 1-08.
16. Kevin Robards, Danielle Ryan, in *Principles and Practice of Modern Chromatographic Methods* (Second Edition), 2022.
17. Kumar, Ashok & Kishore, Lalit & Kaur, Navpreet & Nair, Anoop. (2012). Method development and validation: Skills and tricks. *Chronicles of Young Scientists*. 3. 3-11. 10.4103/2229-5186.94303.
18. Gajra, Balaram & Patel, Munjal & Patel, Dhagash. (2011). Validation of Analytical Procedures: Methodology ICH-Q2B. *International Journal of Pharmaceutical Innovations*-2249-1031. 1. 45-50.
19. Sankar, Ravi & Babu, Puttagunta. (2020). Analytical Method Validation Parameters an Updated Review; *International Journal of Pharmaceutical Sciences Review and Research*, 61(2): Article No 1; pg. no 1-7.
20. M Blessy, Ruchi D. Patel, Prajesh N. Prajapati, Y.K. Agrawal, Development of forced degradation and stability indicating studies of drugs (2014), A review, *Journal of Pharmaceutical Analysis*, 4(3): 159-165.
21. <https://go.drugbank.com/drugs/DB00572>.
22. <https://go.drugbank.com/drugs/DB01081>.
23. Niaz, Hadia & Hassan, Syed & Iqbal, Muhammad & Ahmed, Hammad & Jamshaid, Tahir. (2022). Simultaneous Estimation of Diphenoxylate HCL and Atropine Sulphate in Solid Dosage Forms by High Performance Liquid Chromatography. *Pharmaceutical Chemistry Journal*. 55. 10.1007/s11094-021-02525-7. P. Sitharamaraju, M. Prasanthi Evangelin and Manohar Babu S. (2016). Analytical.
24. Method Development and Validation of Atropine Sulphate and Diphenoxylate Hydrochloride by RP-HPLC Method in Pharmaceutical Dosage Forms. *World Journal of Pharmacy and Pharmaceutical Sciences*, 5(10): 1491-1509.
25. Lehr GJ. Determination of diphenoxylate hydrochloride and atropine sulphate in combination drug formulations by liquid chromatography. *Journal of AOAC International*, 1996 Nov-Dec; 79(6): 1288-93. PMID: 8946706.
26. Chauhan, Payal et al. "Sensitive RP-HPLC Method for Estimation of Atropine Sulphate and Dexamethasone Sodium Phosphate in Ophthalmic Formulation." (2015). *Journal of Current Pharma Research*, 6(1): 1763-1769.
27. Eserian, Jaqueline & Lombardo, Marcia. (2015). Method validation in pharmaceutical analysis: from theory to practical optimization. *Innovations in pharmacy*, 6: 10.24926/iip. V6i1.376.
28. Chandran, S. & Singh, R. S. P. Comparison of various international guidelines for analytical method validation. *Die Pharmazie International Journal of Pharmacy and Pharmaceutical Sciences*, 2007; 62: 4-14.
29. Naz, S., Vallejo, M., García, A. & Barbas, C. Method validation strategies involved in non-targeted metabolomics. *Journal of Chromatography. A*, 2014; 1353: 99-105.
30. Gajra, Balaram & Patel, Munjal & Patel, Dhagash. (2011). Validation of Analytical Procedures: Methodology ICH-Q2B. *International Journal of Pharmaceutical Innovations*-2249-1031. 1. 45-50.
31. Vinubhai N. Patolia, An Introduction to Forced Degradation Studies for Drug Substance & Drug Product, *Pharmaceutical Online*, guest Column, January 2020.