

**IDENTIFICATION AND SUSCEPTIBILITY TESTING OF CANDIDA SPECIES FROM
NEONATES ADMITTED IN ICU BY VITEK-2 SYSTEM**
Dr. Sanjida Khondakar Setu^{1*}, Dr. Abu Naser Ibne Sattar² and Sanjar Taufiq³
¹Associate Professor, Department of Microbiology & Immunology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka, 1000. Bangladesh.

²Professor & Chairman, Department of Microbiology & Immunology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka, 1000. Bangladesh.

³Department of Mathematics & Natural Science, BRAC University Dhaka, Bangladesh.

***Corresponding Author: Dr. Sanjida Khondakar Setu**

Associate Professor, Department of Microbiology & Immunology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka, 1000. Bangladesh.

Article Received on 17/04/2024

Article Revised on 07/05/2024

Article Accepted on 27/05/2024

ABSTRACT

Background: In the Neonatal Intensive Care Unit (NICU), candidal infections constitute a significant contributor to morbidity and mortality. The incidence of neonatal candidiasis is rising, primarily due to increased survival rates for low-birth-weight newborns, premature deliveries, life support systems and widespread use of broad-spectrum antibiotics. The prevalence of *Candida* species has gradually shifted over the last few decades from *Candida albicans* to non-albicans *Candida*. **Methods:** A total of 68 cases of neonatal candidaemia were used in this study. Using Vitek 2 Compact (Biomerieux France), the identification of *Candida* isolates from these samples and their antifungal sensitivity testing were carried out. Vitek 2 ID-YST cards are used to identify yeast and organisms that resemble yeast. The study was conducted in the Department of Microbiology & Immunology, Bangabandhu Sheikh Mujib Medical University, Dhaka. **Result:** After 68 cases of newborn candidaemia were analyzed, the study found a 1.9:1 male preponderance. The majority of instances of candidaemia were linked to low birth weight, 86.77% of the positive samples for candidaemia were caused by non-albicans *Candida*, while *C. albicans* was the cause of 13.23% of the cases. Most of the *C. albicans* exhibited resistance to widely used antifungal medications. The susceptibilities of each isolate to micafungin, voriconazole, and capsofungin were all the same. **Conclusions:** Around the world, candidaemia is becoming a more pressing issue for NICU patients. The etiological agent's antifungal susceptibility must be determined in conjunction with its identification due to changes in the epidemiology and pattern of antifungal susceptibility of *Candida* infections. With a prevalence of non-albicans *Candida* species in our location, our study highlights the clinical significance and mycological shift of *Candida* species in neonatal candidaemia.

KEYWORDS: Antifungal susceptibility, *Candida albicans*, neonatal candidaemia, non-albicans candida, Vitek 2 ID-YST.

INTRODUCTION

Candida species endured the fourth most common bloodstream pathogen regarding as 8% of all hospital-acquired bloodstream infections and attributed a significant cause of morbidity and mortality.^[1] The incidence and prevalence of candidemia are on a rise in many countries worldwide. The Asian scenario regarding the incidence of candidemia is, ever so not very clear owing to a lack of multicentric studies.^[2] From a tertiary care hospital in Thailand a 13 years long study of candidemia showed a prevalence of 6.14% for *Candida* species among blood culture isolates.^[3] Few studies indicate the increasing trend of candidemia in some tertiary care hospitals In India.^[4] The mortality rate associated with candidemia worldwide is also high

ranging from 10% to 49%.^[5] In Neonatal Intensive Care Units (NICUs) importance of *Candida* species is increasingly being recognized. All blood isolates in NICUs shows 9%–13% of candida species.^[6] Some current works shows an increase in the prevalence of non-albicans candidal septicemia after introduction of fluconazole and itraconazole.^[7] Among neonatal septicemia another study shows that *Candida tropicalis*, *Candida glabrata*, and *Candida parapsilosis* are being increasingly isolated.^[8] *Candida* species can spread through vertical transmission from maternal flora or through horizontal transmission from hands of health-care workers. Candidaemia associated risk factors include the use of broad-spectrum antibiotics, low birth weight (LBW), prematurity, and intravenous catheter.^[9]

Further speciation and susceptibility testing of *Candida* sp. is still not routinely being done at most of the centers and as such no reliable data are available from our region regarding the estimation of antifungal use in hospitals. Clinicians now depend on identification of *Candida* to the species level in order to optimize the selection of antifungal agents allowing them to provide the best possible patient care.^[10] Therefore, there is a need for continuous surveillance to monitor trends in incidence, species distribution and antifungal drug susceptibility profiles of candidaemia.^[11] Automated species identification and sensitivity of candida can be observed by the Vitek 2 system.^[12]

In Bangladesh, little is known about the actual situation of infections caused by *Candida* species, though the considerable burden of candidaemia has been estimated.^[13]

The present study was conducted to clarify the prevalence of individual *Candida* species and their susceptibility pattern by Vitek 2 automated system. Information regarding the prevalence of *Candida* species, based on accurate identification within this study, may provide advancement in the overview of candidaemia in neonatal ICU in a tertiary care hospital in Bangladesh for a better understanding of its etiology and antifungal treatment.

MATERIALS AND METHODS

This prospective observational study took place at the Department of Microbiology & Immunology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, for a duration of two years (January 2022 to December 2023). Each patient's guardian provided informed consent. Candidaemia was determined by the presence of at least one positive blood culture for *Candida* species along with signs and symptoms of sepsis.

With all aseptic precautions, about 1–2 ml of blood is drawn from each neonate. Blood culture samples were incubated in BacTAlert 3D (Biomerieux, India®) automated blood culture system. One milliliter of blood was inoculated into ready to use BacT/ALERT PF Plus culture bottles (yellow color coded) for pediatric use with all due precautions and shaken well. The culture bottles were loaded into the instrument after scanning the barcode of the bottle and incubated. Positive or negative culture bottles were determined by BacT/ALERT Microbial Detection System. Blood cultures were considered negative only after 7 days of incubation.

Identification of the organism was confirmed with automated Vitek 2 compact 60 system (BioMerieux India®) using Vitek 2 cards. The Vitek-2 ID and AST cards were logged and loaded into the Vitek-2 Compact system. Antifungal sensitivity was performed against amphotericin B, 5 flucytosine, fluconazole, caspofungin, voriconazole, and micafungin. The MICs obtained were resolved into the three clinical categories (susceptible, intermediate, and resistant), according to the interpretative criteria provided by the automated systems' recommendations (CLSI) guidelines (M100-S25) version 2020.

For the identified cases, we collected the demographic data, underlying disease, and the presence of risk factors. Data were maintained in Microsoft Office Excel, and tests of proportions were used for analysis. Results were recorded in percentages.

RESULT

During the Two-years study period cases selected from NICU of BSMMU. On analyzing 68 cases of neonatal candidaemia, the sex distribution of selected cases was found to be male 45 (66.17%) and female 23 (33.83%). There was a male preponderance in this study with a ratio 1.9:1 [Figure1].

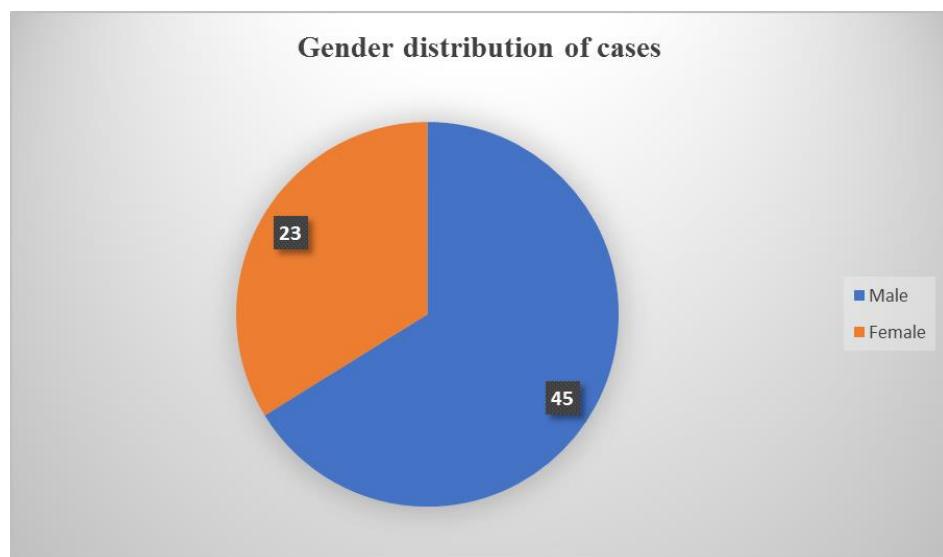


Fig. 1: Gender distribution of cases.

Table 1: Risk factors among selected cases n=68.

Risk factor	No of cases of candidemia	P value
Low birth wt.	55	0.001
Respiratory distress	53	
Broad spectrum antibiotics >7days	54	
Preterm	52	

Table 2: Species level distribution of Candida species among Blood Sample in NICU n=68.

Name. Of Species	No. of Isolates	Percentage
<i>C.tropicalis</i>	21	30.08
<i>C.ciferri</i>	15	22.05
<i>C.guilliermondii</i>	14	20.58
<i>C.albicans</i>	09	13.23
<i>C.parapsilosis</i>	05	7.35
<i>C.auris</i>	04	5.88
Total Positive	68	100

Table 3: Antifungal susceptibility profile of Candida isolates n=68.

Candida Species (n)	Resistance (%) to antifungal agents					
	Fluconazole n(%)	Flucytosin n(%)	Amphotericin B n(%)	Caspofungin n(%)	Micafungin n(%)	Voriconazole n(%)
<i>C.tropicalis</i> (21)	10(47.61)	9(42.85)	2(9.52)	0	0	0
<i>C.ciferri</i> (15)	8(53.33)	7(46.6)	3(20.0)	0	0	0
<i>C.guilliermondii</i> (14)	2(14.28)	2(14.28)	1(7.14)	0	0	0
<i>C.albicans</i> (9)	4(44.4)	2(22.2)	1(11.1)	0	0	0
<i>C.parapsilosis</i> (5)	3(60.0)	2(40.0)	1(20.0)	0	0	0
<i>C.auris</i> (4)	2(50.0)	2(50.0)	1(25.0)	0	0	0

Table 4: MIC distribution of antifungal drugs against most common Candida species.

Amphotericin B	MIC Range								
	≤0.06	≤0.12	≤0.25	0.5	≤1	2	4	8	>8
<i>C.tropicalis</i>		1	3	8	7				2
<i>C.ciferri</i>			1	7	4				3
<i>C.guilliermondii</i>		2	6	5					1
<i>C.albicans</i>		3	3	2					1
<i>C.parapsilosis</i>		1	1	2					1
<i>C.auris</i>			2	1					1
Caspofungin									
<i>C.tropicalis</i>	12	4	3	2					
<i>C.ciferri</i>	8	3	2	1		1			
<i>C.guilliermondii</i>	9	2	1	1			1		
<i>C.albicans</i>	4	2	3						
<i>C.parapsilosis</i>	3	1	1						
<i>C.auris</i>			2	2					
Flucytosin									
<i>C.tropicalis</i>			1	3	8				9
<i>C.ciferri</i>			1	5	2				7
<i>C.guilliermondii</i>		1	2	6	3				2
<i>C.albicans</i>		1	1	1	4				2
<i>C.parapsilosis</i>				1	1	1			2
<i>C.auris</i>					1	1			2
Fluconazol									
<i>C.tropicalis</i>			4	1	6				10
<i>C.ciferri</i>		1	3	2	1				8
<i>C.guilliermondii</i>				5	6	1			2
<i>C.albicans</i>		2	2	1					4
<i>C.parapsilosis</i>		1	1						3
<i>C.auris</i>					1	1			2

Micafungin						
<i>C.tropicalis</i>	15	3	3			
<i>C.ciferri</i>	10	1	2	1	1	
<i>C.guilliermondii</i>	9	2	1	1		1
<i>C.albicans</i>	5	1	3			
<i>C.parapsilosis</i>	3	1	1			
<i>C auris</i>			2	2		
Voriconazol						
<i>C.tropicalis</i>	13	6	2			
<i>C.ciferri</i>	11	2	2			
<i>C.guilliermondii</i>	5	9				
<i>C.albicans</i>	6	2	1			
<i>C.parapsilosis</i>	2	1	2			
<i>C auris</i>		2	2			

Majority of Candidaemia cases were associated with Low Birth Weight followed by Broad spectrum antibiotics use, Respiratory distress and Preterm delivery [Table 1].

Among the positive samples for candidaemia, non-albicans Candida were responsible for 86.77% cases, whereas 13.23% cases were due to *C.albicans*. *C.tropicalis* (30.88%) was the predominant species isolated among the non-albicans Candida followed by *C ciferri* (22.05%), *C guilliermondii* (20.58%), *C parapsilosis* (7.35%), and *C auris* (5.88%) [Table 2].

The majority of the *C.albicans* were resistant to commonly used antifungal drugs such as fluconazole (44.4%), flucytosine (22.2%), and amphotericin B (11.1%). Among the non-albicans Candida sp., *C.tropicalis* showed 47.6% resistance to fluconazole, 42.8% resistance to flucytosine, and 9.5% resistance to amphotericin B. *C Ciferri* and *C. parapsolosis* were more resistant to fluconazole, flucytosine and amphotericin B, than *C.albicans*. *C guilliermondii* showed 14.2% resistance to both fluconazole and flucytosine and 7.14% resistant to amphotericin B. *C auris* showed 50.0% resistance to fluconazole, 50.0% resistance to flucytosine, and 25.0% resistance to amphotericin B. All the isolates were uniformly sensitive to micafungin, voriconazole, and caspofungin [Table 3].

DISCUSSION

One of the leading causes of death in NICU is septicemia.^[14] During the past decade candidaemia is developing a common occurrence in patients admitted in ICU.^[15] Emergence of non-albicans Candida (86.77%) was a major cause of neonatal candidaemia which is a remarkable feature of our study.

Our findings are reinforced by other studies from different regions of India that have documented predominance of non-albicans Candida over *C.albicans* in neonatal septicemia.^[6,16] Conveyance to non-albicans Candida was also noted by Kapila, Mendiratta et al., and Pfaller et al.^[17,19]

The inappropriate use of invasive devices, broad-spectrum antibacterial agents, more extensive surgical procedures, use of advance life support and selection of less susceptible species by the pressure of antifungal agent such as fluconazole probably are the reason for increased incidence of non-albicans Candida.^[20]

Male predominance (64.6%) was noted in our study with a ratio of 1.9:1, which concordance with the study of Maharashtra by S. Tatte & R. Bhise.^[21] Similar results were found by Caggiano et al with a ratio of 1.8:1.^[22]

According to our study species dispersion shows *C.tropicalis* (30.88%) as the most common species followed by *C ciferri* (22.05%), *C guilliermondii* (20.58%), *C parapsilosis* (7.35%), and *C auris* (5.88%). These results were comparable to the epidemiological studies carried out in India designating *C.tropicalis* as the common cause of nosocomial candidaemia.^[19,23] *C.tropicalis* as a cause of fungemia in neonatal ICU has been linked to the presence of the fungus on the hands of the hospital personnel. One of its major virulence factors is the ability of this organism to produce clusters. *C.tropicalis* may be more virulent than *C.albicans* and can rapidly progress from colonization to invasion among immunocompromised host.^[24]

Advent of neonatal candidaemia can be attributable to a number of risk factors including widespread use of broad-spectrum antibiotics, preterm birth, LBW, and use of mechanical ventilation.^[25,27] In our study, preterm birth (76.5%) and respiratory distress (77.9%) were the most common associated findings present in neonates with candidaemia which concordance with the results other studies.^[9,10,28,29] Low birth weight (80.8%) was observed the most common clinical presentation followed by broad spectrum antibiotics used more than seven days. These findings analogues the study reported by Narains et al.^[10]

In our study, we found an increase in the antifungal drug resistance, especially for the azole group of drugs, both in *C.albicans* and non-albicans Candida species.

Antifungal susceptibility testing by Vitek-2 system revealed that most of the *C. albicans* species were resistant to fluconazole (44.4%), flucytosine (22.2%), and amphotericin B (11.1%) respectively. Among the non-albicans *Candida* sp., *C. tropicalis* showed 47.6% resistance to fluconazole, 42.8% resistance to flucytosine, and 9.52% resistance to amphotericin B. Such type of increasing trends of fluconazole resistance were reported by Gupta et al and Kothari et al by 45.5% and 46% respectively.^[26,30]

A variable range of resistance from 30% to 37% to flucytosine was reported by Bhatt et al and Pahwa et al consecutively.^[31,32] In the present study, resistance to amphotericin B among all *Candida* isolates were found ranging from 10% to 25% which were similar to the results reported by Bhatt et al.^[31] Although amphotericin B has a rapid cidal action against most strains of *Candida* species (especially, *C. albicans*), it is not the first choice due to associated nephrotoxicity and the newer lipid formulation having a better cidal effect profile. Four cases of *C. auris* were isolated from blood culture and were resistant to fluconazole (50.0%), flucytosine (50.0%), and amphotericin B (25.0%). Micafungin, voriconazole, and caspofungin found sensitive in a consistent manner among all the isolates which accordance with the study done by Nazia et al.^[33]

CONCLUSION

In the midst of NICU patients *Candidaemia* is springing up as a compelling problem worldwide. The change in epidemiology and pattern of antifungal susceptibility of *Candida* infection necessitates identification of etiological agent compulsory along with its antifungal susceptibility.

Our study accentuates the clinical importance and mycological shift of *Candida* species in neonatal candidaemia with a predominance of non-albicans *Candida* species in our region. From the results of our study it is noticeable that routine identification of *Candida* isolates to the species level, and the detection of resistant strains by antifungal susceptibility test is essential.

Vitek-2 automated system is considered as a reliable technique for antifungal susceptibility of yeast species with added advantage of being more rapid and easier than the alternative procedure developed by CLSI like broth microdilution method which is cumbersome and expensive. So, a fast and accurate technique for yeast identification is very important for microbiological laboratories. Accordingly, Vitek-2 automated system can be applied for early identification and antifungal susceptibility testing which is a paramount part for microbiological laboratories.

Furthermore, ongoing surveillance is required for candidaemia in order to track alterations in the epidemiological characteristics and antifungal

susceptibility, as well as to carefully develop and evaluate a preventative approach. Moreover, the speciation of *Candida* in neonatal candidaemia and the steps taken to minimize risk factors can lower the neonates' morbidity, mortality, and need for antifungal medications.

ACKNOWLEDGEMENTS

Authors would like to thank the Department of Microbiology and Immunology, Bangabandhu Sheikh Mujib Medical University for their support.

ETHICAL MATTERS

Ethical approval was not required to carry out this work as the bacterial isolates were collected as part of routine patient care investigation in the hospital.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest with respect to research, authorship, and/or publication of this article.

REFERENCES

1. Banerjee SN, Emori TG, Culver DH, Gaynes RP, Jarvis WR, Horan T, et al. Secular trends in nosocomial primary bloodstream infections in the United States, 1980-1989. National Nosocomial Infections Surveillance System. Am J Med., 1991; 91: 86S-9S.
2. Jarvis WR. Epidemiology of nosocomial fungal infections, with emphasis on *Candida* species. Clin Infect Dis., 1995; 20: 1526-30.
3. Tritipwanit K, Chindamporn A, Suankratay C. Epidemiology of candidaemia at King Chulalongkorn Memorial Hospital, Thailand. J Infect Dis Antimicrob Agents, 2005; 22: 59-69.
4. Sahni V, Agarwal SK, Singh NP, Anuradha S, Sikdar S, Wadhwa A, et al. Candidemia – An under-recognized nosocomial infection in Indian hospitals. J Assoc Physicians India, 2005; 53: 607-11.
5. Narang A, Agrawal PB, Chakrabarti A, Kumar P. Epidemiology of systemic candidiasis in a tertiary care neonatal unit. J Trop Pediatr, 1998; 44: 104-8.
6. Baradkar VP, Mathur M, Kumar S, Rathi M. *Candida glabrata* emerging pathogen in neonatal sepsis. Ann Trop Med Public Health, 2008; 1: 5-8.
7. Chakrabarty A, Singh K, Das S. Changing face of nosocomial candidaemia. Indian J Med Microbiol., 1999; 17: 160-6.
8. Wenzel RP. Nosocomial candidemia: Risk factors and attributable mortality. Clin Infect Dis., 1995; 20: 1531-4.
9. Agarwal J, Bansal S, Malik GK, Jain A. Trends in neonatal septicemia: Emergence of non-albicans *Candida*. Indian Pediatr, 2004; 41: 712-5.
10. Narain S. Neonatal systemic candidiasis in a tertiary care centre. Indian Journal of Medical Microbiology, 2003; 21(1): 56-8.

11. Wadile RG, Bhate VM. Study of clinical spectrum and risk factors of neonatal candidemia. *Indian Journal of Pathology and Microbiology*, 2015; 58(4): 472-4.
12. Giuseppe Valenza, Jörn Strasen, Frauke Schäfer, et al. Evaluation of new colorimetric vitek 2 yeast identification card by use of different source media. *Journal Of Clinical Microbiology*, 2008; 46(11): 3784-7.
13. Gugnani, H.C.; Denning, D.W.; Rahim, R.; Sadat, A.; Belal, M.; Mahbub, M.S. Burden of serious fungal infections in Bangladesh. *Eur. J. Clin. Microbiol. Infect.*, 2017; 36: 993-997. [CrossRef] [PubMed]
14. Carvalho PR, Feldens L, Seitz EE, Rocha TS, Soledade MA, Trotta EA, et al. Prevalence of systemic inflammatory syndromes at a tertiary pediatric Intensive Care Unit. *J Pediatr (Rio J)*, 2005; 81: 143-8.
15. Baley JE, Kliegman RM, Fanaroff AA. Disseminated fungal infections in very low-birth-weight infants: Clinical manifestations and epidemiology. *Pediatrics*, 1984; 73: 144-52.
16. Xess I, Jain N, Hasan F, Mandal P, Banerjee U. Epidemiology of candidemia in a tertiary care centre of North India: 5-year study. *Infection*, 2007; 35: 256-9.
17. Kapila S. Identification of *Candida* species in neonatal septicemia. *Int J Contemp Pediatr*, 2016; 3: 601-5.
18. Mendiratta DK, Rawat V, Thamke D, Chaturvedi P, Chhabra S, Narang P, et al. *Candida* colonization in preterm babies admitted to neonatal Intensive Care Unit in the rural setting. *Indian J Med Microbiol*, 2006; 24: 263-7.
19. Pfaller MA, Diekema DJ, Rinaldi MG, Barnes R, Hu B, Veselov AV, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study: A 6.5-year analysis of susceptibilities of *Candida* and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing. *J Clin Microbiol*, 2005; 43: 5848-59.
20. Saiman L, Ludington E, Pfaller M, Rangel-Frausto S, Wiblin RT, Dawson J, et al. Risk factors for candidemia in neonatal Intensive Care Unit patients. The National Epidemiology of Mycosis Survey Study Group. *Pediatr Infect Dis J.*, 2000; 19: 319-24.
21. S. Tatte P, R. Bhise P. Antifungal Susceptibility Profile of *Candida* Isolates from Bloodstream Infections in Hospitalised Patients at Tertiary Care Hospital. *Int J Curr Microbiol Appl Sci.*, 2018; 7(10): 997-1009.
22. Caggiano G, Lovero G, Giglio O De, Barbuti G, Montagna O, Laforgia N, et al. Candidemia in the Neonatal Intensive Care Unit: A Retrospective , Observational Survey and Analysis of Literature Data., 2017; 2017(ii).
23. Shivaprakasha S, Radhakrishnan K, Karim PM. *Candida* spp. Other than *Candida albicans*: A major cause of fungaemia in a tertiary care centre. *Indian J Med Microbiol*, 2007; 25: 405-7.
24. Verma AK, Prasad KN, Singh M, Dixit AK, Ayyagari A. Candidaemia in patients of a tertiary health care hospital from North India. *Indian J Med Res.*, 2003; 117: 122-8.
25. Fraser VJ, Jones M, Dunkel J, Storfer S, Medoff G, Dunagan WC, et al. Candidemia in a tertiary care hospital: Epidemiology, risk factors, and predictors of mortality. *Clin Infect Dis.*, 1992; 15: 414-21.
26. Gupta N, Mittal N, Sood P, Kumar S, Kaur R, Mathur MD, et al. Candidemia in neonatal Intensive Care Unit. *Indian J Pathol Microbiol.*, 2001; 44: 45-8.
27. Singh K, Chakrabarti A, Narang A, Gopalan S. Yeast colonisation & fungaemia in preterm neonates in a tertiary care centre. *Indian J Med Res.*, 1999; 110: 169-73.
28. Rani R, Mohapatra NP, Mehta G, Randhawa VS. Changing trends of *Candida* species in neonatal septicemia in a tertiary North Indian hospital. *Indian J Med Microbiol.*, 2002; 20: 42-4.
29. Goel N, Ranjan PK, Aggarwal R, Chaudhary U, Sanjeev N. Emergence of non albicans *Candida* in neonatal septicemia and antifungal susceptibility: Experience from a tertiary care center. *J Lab Physicians*, 2009; 1: 53-5.
30. Kothari A, Sagar V. Epidemiology of *Candida* bloodstream infections in a tertiary care institute in India. *Indian J Med Microbiol.*, 2009; 27: 171-2.
31. Bhatt M, Sarangi G, Paty BP, Mohapatra D, Chayani N, Mahapatra A, et al. Biofilm as a virulence marker in *Candida* species in nosocomial blood stream infection and its correlation with antifungal resistance. *Indian J Med Microbiol.*, 2015; 33(S1): 112-4.
32. Pahwa N, Kumar R, Nirkhiwale S, Bandi A. Species distribution and drug susceptibility of *Candida* in clinical isolates from a tertiary care centre at Indore. *Indian J Med Microbiol.*, 2014; 32: 44-8.
33. Nazir A and Masoodi T. Spectrum of candidal species isolated from neonates admitted in an Intensive Care Unit of teaching hospital of Kashmir, North India. *Journal of Laboratory Physicians.*, 2018; 10(3): 255-59.